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D-Homothetic Deformations and Almost Paracontact Metric Manifolds

Şirin Aktay ∗

Eskişehir Technical University, Faculty of Science, Department of Mathematics
Eskişehir, Türkiye

Received: 23 January 2023 Accepted: 04 December 2023

Abstract: In this study, we determine some of the classes of almost paracontact metric structures

which are invariant under D-homothetic deformations. We write the Riemannian curvature tensor, the

Ricci tensor and the scalar curvature when the characteristic vector field is Killing. In addition, we give

examples.

Keywords: Almost paracontact metric structure, D-homothetic deformation, Killing vector field.

1. Introduction

Differentiable manifolds having almost paracontact structures were introduced by [5] and after

[11] many authors have made contribution, see [7, 9, 11–13] and references therein. Manifolds

with almost paracontact metric structure were classified according to the Levi-Civita covariant

derivative of the fundamental tensor. There are 212 classes of almost paracontact metric manifolds.

The defining relations and projections onto each subspace are given in [7, 13].

D-homothetic deformations of almost contact metric manifolds is extensively studied, see

[1, 3] and references therein. For D-homothetic deformations of almost contact metric structures

with B-metric, refer to [2]. D-homothetic deformations of almost paracontact metric structures

were introduced in [11]. In [10], almost paracontact metric manifolds whose characteristic vector

field is parallel are considered and their D-homothetic deformations are studied. Our aim is to

investigate D-homothetic deformations of almost paracontact metric manifolds having arbitrary

characteristic vector fields.

2. Preliminaries

Assume that M2n+1 is a smooth manifold having odd dimension. An ordered triple (φ, ξ, η) of an

endomorphism, a vector field, a 1-form, respectively, with the properties below is called an almost

∗Correspondence: sirins@eskisehir.edu.tr
2020 AMS Mathematics Subject Classification: 53C25, 53D15
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paracontact structure on M

φ2 = I − η ⊗ ξ, η(ξ) = 1, φ(ξ) = 0,

there is a distribution D ∶ p ∈M Ð→ Dp =Kerη. M together with the almost paracontact structure

is said to be an almost paracontact manifold. In addition, if M carries a semi-Riemannian metric

g satisfying

g(φ(x), φ(y)) = −g(x, y) + η(x)η(y),

where X(M) is the set of smooth vector fields on M and x, y ∈ X(M) , then M is called an almost

paracontact metric manifold. The fundamental 2-form of the almost paracontact metric structure

is given as

Φ(x, y) = g(φx, y).

We denote the vector fields and tangent vectors by letters x, y, z .

Consider the tensor F defined by

F (x, y, z) = g((∇xφ)(y), z), (1)

for all x, y, z ∈ TpM , where TpM is the tangent space at p , ∇ is the Levi-Civita covariant derivative

of g . Then F satisfies

F (x, y, z) = −F (x, z, y), (2)

F (x,φy,φz) = F (x, y, z) + η(y)F (x, z, ξ) − η(z)F (x, y, ξ). (3)

The forms below are defined for any almost paracontact metric structure.

θ(x) = gijF (ei, ej , x), θ∗(x) = gijF (ei, φej , x), ω(x) = F (ξ, ξ, x),

where u ∈ TpM , {ei, ξ} is a basis for TpM and the inverse of the matrix gij is gij .

Let F be the set of (0,3) tensors over TpM having properties (2), (3). F is the direct sum

of four subspaces Wi , i = 1, . . . , 4 , where projections FWi we use are

FW1(x, y, z) = F (φ2x,φ2y,φ2z), (4)

FW2(x, y, z) = −η(y)F (φ2x,φ2z, ξ) + η(z)F (φ2x,φ2y, ξ). (5)

In addition, W1 is a direct sum of four subspaces Gi , i = 1, . . . , 4 , W2 = G5⊕ . . .⊕G10 , and

denote W3 and W4 by G11 and G12 , respectively. A manifold with almost paracontact metric

structure is said to be in the class Gi ⊕Gj , etc. if F belongs to Gi ⊕Gj over TpM for all p ∈M .

The defining relations of Gi and projections F i onto each Gi are given in [7, 13]. We only write

the classes and projections we use:

2
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G5 ∶ F (x, y, z) =
θF (ξ)
2n
{g(φx,φz)η(y) − g(φx,φy)η(z)} (6)

G8 ∶ F (x, y, z) = −η(y)F (x, z, ξ) + η(z)F (x, y, ξ), (7)

F (x, y, ξ) = F (y, x, ξ) = −F (φx,φy, ξ), θF (ξ) = 0

G9 ∶ F (x, y, z) = −η(y)F (x, z, ξ) + η(z)F (x, y, ξ),

F (x, y, ξ) = −F (y, x, ξ) = F (φx,φy, ξ) (8)

G10 ∶ F (x, y, z) = −η(y)F (x, z, ξ) + η(z)F (x, y, ξ),

F (x, y, ξ) = F (y, x, ξ) = F (φx,φy, ξ) (9)

G11 ∶ F (x, y, z) = η(x)F (ξ,φy,φz) (10)

G12 ∶ F (x, y, z) = η(x){η(y)F (ξ, ξ, z) − η(z)F (ξ, ξ, y)} (11)

Some of the projections F i onto each subspace Gi are

F 9(x, y, z) = −1
4
η(y) {F (φ2x,φ2z, ξ) + F (φx,φz, ξ) (12)

−F (φ2z,φ2x, ξ) − F (φz,φx, ξ)} + 1

4
η(z) {F (φ2x,φ2y, ξ)

+F (φx,φy, ξ) − F (φ2y,φ2x, ξ) − F (φy,φx, ξ)} ,

F 10(x, y, z) = −1
4
η(y) {F (φ2x,φ2z, ξ) + F (φx,φz, ξ) (13)

+F (φ2z,φ2x, ξ) + F (φz,φx, ξ)} + 1

4
η(z) {F (φ2x,φ2y, ξ)

+F (φx,φy, ξ) + F (φ2y,φ2x, ξ) + F (φy,φx, ξ)} ,

F 11(x, y, z) = η(x)F (ξ,φ2y,φ2z), (14)

F 12(x, y, z) = η(x){η(y)F (ξ, ξ,φ2z) − η(z)F (ξ, ξ,φ2y)}. (15)

Note that ξ is Killing in any direct sum of G1,G2,G3,G4,G5,G8,G9,G11 and ξ is parallel

in G1 , G2 , G3 , G4 , G11 and also in any direct sum of these classes [10].

3
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For any almost paracontact metric sructure (φ, ξ, η, g) on a manifold M , consider the

quadruple (φ̃, ξ̃, η̃, g̃) where

φ̃ = φ, ξ̃ = 1

t
ξ, η̃ = tη, g̃ = −tg + t(t + 1)η ⊗ η (16)

for a positive constant t [11]. The structure (φ̃, ξ̃, η̃, g̃) is called a D-homothetic deformation of

(φ, ξ, η, g) . In [10], the Levi-Civita covariant derivative ∇̃ of metric g̃ is obtained as

g(∇̃xy, z) = g(∇xy, z) +
(t + 1)2

2t
η(z) {−η(x)g(∇ξξ, y) (17)

−η(y)g(∇ξξ, x) + g(∇xξ, y) + g(∇yξ, x)}

−(t + 1)
2
{η(x) (g(∇yξ, z) − g(∇zξ, y))

+η(y) (g(∇xξ, z) − g(∇zξ, x))

+η(z) (g(∇xξ, y) + g(∇yξ, x))} .

Also it is proved that the classes with parallel characteristic vector field does not change after

D-homothetic deformations. Our aim is to study the invariance of remaining basic classes G5 , G6 ,

G7 , G8 , G9 , G10 , G12 . We also write the curvature tensors of the deformed metric when ξ is

Killing and we give examples.

3. Classes of Deformed Structures

Consider a D-homothetic deformation given by (16).

First let ξ be Killing. In this case (17) simplifies into

g(∇̃xy, z) = g(∇xy, z) − (t + 1) {η(x)g(∇yξ, z) (18)

+η(y)g(∇xξ, z)} ,

since g is non-degenerate, (18) gives

∇̃xy = ∇xy − (t + 1) {η(x)∇yξ + η(y)∇xξ} . (19)

The Proposition 3.1 yields from (19).

Proposition 3.1 Let ξ be g -Killing. Then ξ̃ is g̃ -Killing.

Now we write the curvature tensors of the deformed metric g̃ for an almost paracontact metric

structure with Killing characteristic vector field. If {e1, . . . , en, φe1, . . . , φen, ξ} is a g -orthonormal

4
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frame, then {f1, . . . , f2n+1} = { 1√
t
φe1, . . . ,

1√
t
φen,

1√
t
e1, . . . ,

1√
t
en,

1
t
ξ} is g̃ -orthonormal [10] and

g̃ij = gij . We use this basis in calculations.

If ξ is Killing, the Riemannian, the Ricci and the scalar curvatures of the deformed metric

g̃ are evaluated by direct calculation.

R̃(x, y)z = R(x, y)z − (t + 1)η(z)R(x, y)ξ (20)

−(t + 1)η(x)∇∇yzξ + (t + 1)η(y)∇∇xzξ

+(t + 1)2η(x)η(z)∇∇yξξ − (t + 1)2η(y)η(z)∇∇xξξ

+(t + 1)g(∇yξ, z)∇xξ − (t + 1)g(∇xξ, z)∇yξ

−2(t + 1)g(∇xξ, y)∇zξ − (t + 1)η(y)∇x∇zξ

+(t + 1)η(x)∇y∇zξ,

R̃ic(x, y) = Ric(x, y) − (t + 1)η(y)Ric(x, ξ)

+(t + 1)η(x)
n

∑
i=1
{g(∇∇ei

yξ, ei) − g(∇∇φei
yξ,φei)}

+(t + 1)2η(x)η(y)
n

∑
i=1
{−g(∇∇ei

ξξ, ei) + g(∇∇φei
ξξ,φei)}

−(t + 1)η(x)div(∇yξ) + 2(t + 1)g(∇xξ,∇yξ)

and

s̃ = 1

t
{−s + (t + 1)

n

∑
i=1
{g(∇φeiξ,∇φeiξ) − g(∇eiξ,∇eiξ)}}.

Now let ξ be any vector field which is not necessarily Killing. We write the tensor F̃ of the

deformed structure in terms of F defined by (1). Since

(∇̃xφ̃)(y) = ∇̃x(φy) −φ(∇̃xy) (21)

and

F̃ (x, y, z) = g̃ ((∇̃xφ̃)(y), z)

= −tg ((∇̃xφ̃)(y), z)

+t(t + 1)η((∇̃xφ̃)(y))η(z), (22)

5
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replacing (21) in (22) and using (17) and the identity g(∇xξ, y) = −F (x,φy, ξ) yields

F̃ (x, y, z) = −tF (x, y, z) (23)

+ t(t + 1)
2

{η(x) {−F (φy,φz, ξ) + F (z, y, ξ)

−F (y, z, ξ) + F (φz,φy, ξ)}

+η(z) {F (x, y, ξ) − F (φy,φx, ξ)}

+η(y) {−F (x, z, ξ) + F (φz,φx, ξ)}} .

Now we study the invariance of classes Wi , i = 1, . . . , 4 under a D-homothetic deformation.

First note that for any almost paracontact metric structure in a direct sum of W1 ⊕ W3 =

G1 ⊕G2 ⊕G3 ⊕G4 ⊕G11 , since ξ is parallel [10], the equation (23) implies F̃ = −tF and thus a

D-homothetic deformation of any direct sum of W1 ⊕W3 is also in this class.

If ξ is any vector field, not necessarily parallel, from (4) and (23), we have

F̃W1(x, y, z) = F̃ (φ2x,φ2y,φ2z) = −tF (φ2x,φ2y,φ2z) = −tFW1(x, y, z). (24)

Thus F̃W1 is zero if and only if FW1 is zero, that is, a deformed structure contains summands

from the class W1 if and only if the first structure has a summand from W1 .

By (5) and (23), we get

F̃W2 = t(t − 1)
2

FW2(x, y, z) (25)

+ t(t + 1)
2

{η(y)F (φz,φx, ξ) − η(z)F (φy,φx, ξ)} .

Define S as

S(x, y, z) = t(t + 1)
2

{η(y)F (φz,φx, ξ) − η(z)F (φy,φx, ξ)} . (26)

Then it can be easily seen that SW2 = S and thus S ∈W2 . In addition, we have FW2(φx,φy, z) =

η(z)F (φx,φy, ξ) . So FW2 = 0 if and only if S = 0 . Thus a deformed structure has summands

from the class W2 if and only if the first structure has.

Consider the projection FW3 = F 11 . From (14) and (23), we have

F̃ 11(x, y, z) = −tF 11(x, y, z) + t(t + 1)
2

η(x) {−F (φy,φz, ξ) + F (φz,φy, ξ)

+F (φ2z,φ2y, ξ) − F (φ2y,φ2z, ξ)} . (27)

6
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Define

T (x, y, z) = t(t + 1)
2

η(x) {−F (φy,φz, ξ) + F (φz,φy, ξ)

+F (φ2z,φ2y, ξ) − F (φ2y,φ2z, ξ)} . (28)

It can be checked that T satisfies the defining relation (10) of G11 , that is, T 11 = T . Thus if

F 11 = 0 , or equivalently, if the first almost paracontact structure does not contain a summand

from G11 , and if T ≠ 0 , then the deformed structure contains a summand from G11 since T ∈ G11 .

For the projection FW4 = F 12 , by using (23) and (15), we get

F̃ 12(x, y, z) = t2F 12(x, y, z). (29)

Thus the deformed structure belongs to a direct sum containing G12 if and only if the first almost

paracontact structure has summands from this class.

It is known that almost paracontact metric structures which belong to G1 , G2 , G3 , G4 , G11

or one of their direct sums are invariant under D-homothetic deformations. These are structures
with parallel characteristic vector fields [10]. We investigate the invariance of remaining basic

classes G5 , G6 , G7 , G8 , G9 , G10 , G12 .

Theorem 3.2 The classes Gi , where i = 5,6,7,8,10,12 are invariant under a D-homothetic

deformation, G9 is not invariant.

Proof Assume that {e1, . . . , en, φe1, . . . , φen, ξ} is a g -orthonormal frame. Then

{f1, . . . , f2n+1} = { 1√
t
φe1, . . . ,

1√
t
φen,

1√
t
e1, . . . ,

1√
t
en,

1
t
ξ}

is g̃ -orthonormal and g̃ij = gij .

Let (φ, ξ, η, g) ∈ G5 . By (23), for i = 1, . . . , n ,

F̃ (fi, fi, ξ̃) =
1

t2
F̃ (φei, φei, ξ)

= t − 1
2t

F (φei, φei, ξ) −
t + 1
2

F (ei, ei, ξ)

and for i = n + 1, . . . , 2n ,

F̃ (fi, fi, ξ̃) =
1

t2
F̃ (ei, ei, ξ)

= t − 1
2t

F (ei, ei, ξ) −
t + 1
2

F (φei, φei, ξ).

7
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Thus

θ̃F̃ (ξ̃) = g̃ijF (fi, fi, ξ̃)

=
n

∑
i=1

F̃ ( 1√
t
φei,

1√
t
φei, ξ̃) −

n

∑
i=1

F̃ ( 1√
t
ei,

1√
t
ei, ξ̃)

= −θF (ξ).

From (6) and (23), we get that F̃ satisfies the defining relation (6).

Similarly, the class G6 is invariant.

Let (φ, ξ, η, g) ∈ G8 . Then the defining conditions (7) hold. First we evaluate θ̃F̃ (ξ̃) . If

{e1, . . . , en, φe1, . . . , φen, ξ} is a g -orthonormal frame, then

{f1, . . . , f2n+1} = { 1√
t
φe1, . . . ,

1√
t
φen,

1√
t
e1, . . . ,

1√
t
en,

1
t
ξ} is g̃ -orthonormal and g̃ij = gij .

From (7) and (23), we have

F̃ (φei, φei, ξ) = −tF (φei, φei, ξ)

+ t(t + 1)
2
{F (φei, φei, ξ) − F (φ2ei, φ

2ei, ξ)}

= −tF (φei, φei, ξ) + t(t + 1)F (φei, φei, ξ)

= t2F (φei, φei, ξ)

and

F̃ (ei, ei, ξ) = t2F (ei, ei, ξ),

thus

θ̃F̃ (ξ̃) = g̃ijF (fi, fi, ξ̃)

=
n

∑
i=1

F̃ ( 1√
t
φei,

1√
t
φei, ξ̃) −

n

∑
i=1

F̃ ( 1√
t
ei,

1√
t
ei, ξ̃)

= 1

t2
{

n

∑
i=1

t2F (φei, φei, ξ) −
n

∑
i=1

t2F (ei, ei, ξ)}

= −θF (ξ)

= 0.

8
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In addition, from (7) and (23)

F̃ (x, y, z) = −tF (x, y, z)

+ t(t + 1)
2
{2F (x, y, ξ)η(z) − 2F (x, z, ξ)η(y)}

= −tF (x, y, z) + t(t + 1)F (x, y, z)

= t2F (x, y, z)

and

−η̃(y)F̃ (x, z, ξ̃) + η̃(z)F̃ (x, y, ξ̃)

= t2F (x, y, z)

= F̃ (x, y, z).

Also,

F̃ (x, y, ξ̃) = t2F (x, y, ξ̃) = t2F (y, x, ξ̃) = F̃ (y, x, ξ̃),

F̃ (x, y, ξ̃) = t2F (x, y, ξ̃) = −t2F (φy,φx, ξ̃) = −F̃ (φ̃y, φ̃x, ξ̃).

Thus the new structure satisfies (7).

A similar proof can be done for the class G7 . In this case, θ̃∗
F̃
(ξ̃) = 1

t
θ∗F (ξ) .

Let (φ, ξ, η, g) ∈ G10 . Then the defining relations (9) hold. From (23), F̃ = −tF and (13)

implies F̃ 10 = −tF = −tF 10 = F̃ .

Let (φ, ξ, η, g) ∈ G12 . By using the defining relation (11) and (23), F̃ = t2F and from (15),

F̃ 12 = t2F 12 = t2F = F̃ . Since F̃ = F̃ 12 , the deformed structure is in G12 .

Now we show that the class G9 is not invariant.

For an arbitrary structure, using (23), we have

F̃ (φx,φz, ξ) = t(t − 1)
2

{F (φx,φz, ξ)} + t(t + 1)
2

{F (φ2z,φ2x, ξ)} (30)

and

F̃ (φ2x,φ2z, ξ) = t(t − 1)
2

{F (φ2x,φ2z, ξ)} − t(t + 1)
2

{F (φz,φx, ξ)} . (31)

By using equations (12), (30) and (31), we get F̃ 9 = t2F 9 .

Let (φ, ξ, η, g) ∈ G9 . From (8), F̃ 9 = t2F 9 = t2F and also from (8) and (23),

F̃ (x, y, z) = t2F (x, y, z) − 2t(t + 1)η(x)F (y, z, ξ).

9
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The structure is invariant if and only if F̃ = F̃ 9 , that is

t2F (x, y, z) = t2F (x, y, z) − 2t(t + 1)η(x)F (y, z, ξ)

holds. This implies F (y, z, ξ) = 0 . Then the defining relation (8) of G9 implies F = 0 . Thus a

nontrivial structure in G9 is not in the same class after deformation. ◻

In addition, we determine the class of the deformed structure if the first structure is in G9 .

Proposition 3.3 Assume that the first almost paracontact metric structure belongs to the class

G9 . Then the deformed structure is in G9 ⊕G11 .

Proof Since M ∈ G9 , we have FW1 = FW3 = F 11 = FW4 = F 12 = 0 and FW2 = F 9 . From (24)

and (29), we get F̃W1 = F̃W4 = F̃ 12 = 0 . By using the defining relation (8), it can be seen that the

tensor S defined in (26) also satisfies the defining relation of G9 . Thus the equation (25) implies

that F̃W2 = t(t−1)
2

F 9 + S9 , that is, the deformed structure contains a summand from G9 and no

other summand from W2 . In addition, by using (8), the tensor T given in (28) is

T (x, y, z) = 2t(t + 1)η(x){−F (φy,φz, ξ)},

which is nonzero for a nontrivial structure in G9 , otherwise (8) implies F = 0 . From (27),

F̃ 11 = T ≠ 0 .
To sum up, the deformed structure is in G9 ⊕G11 . ◻

Proposition 3.4 Normal almost paracontact manifolds are invariant under D-homothetic defor-

mations.

Proof Let the first almost paracontact metric structure be normal. Then

F (x, y,φz) + F (φx, y, z) + η(z)F (x,φy, z) = 0. (32)

(32) implies

F (x,φy, ξ) = −F (φx, y, ξ), (33)

see [13]. Then by (23), (32) and (33), we get

F̃ (x, y, φ̃z) + F̃ (φ̃x, y, z) + η̃(z)F̃ (x, φ̃y, z) = 0.

As a result, the deformed structure is also normal. ◻

Example 3.5 Let L be Lie algebra having basis {e1, e2, e3} whose only nonzero bracket is

[e1, e2] = αe3,

10
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together with the semi-Riemannian metric satisfying g(e1, e1) = −g(e2, e2) = g(e3, e3) = 1 and

g(ei, ej) = 0 for i ≠ j . Let φ(e1) = e2 , φ(e2) = e1 , φ(e3) = 0 , e3 = ξ and η = e3 , where e3 is the

metric dual of e3 . It is known that (L,φ, ξ, η, g) is an almost paraconact metric manifold of class

G5 . The nonzero covariant derivatives are

∇e1e2 = −∇e2e1 =
α

2
e3, ∇e1e3 = ∇e3e1 =

α

2
e2, ∇e2e3 = ∇e3e2 =

α

2
e1.

The Ricci tensor is

Ric(x, y) = sg(x, y) − 2sη(x)η(y),

where s is the scalar curvature given by s = α2/2 , that is, L is an η -Einstein manifold, see [13].

Then from (20),

R̃ic(x, y) = Ric(x, y) − (t + 1)η(y)Ric(x, e3)

−2(t + 1)α
2

4
{x1y1 − x2y2 − tη(x)η(y)},

where x = x1e1 + x2e2 + x3e3 and y = y1e1 + y2e2 + y3e3 . It can be checked that

R̃ic(x, y) = α2

2
g̃(x, y) − α2η̃(x)η̃(y),

that is the deformed manifold is also η -Einstein.

Example 3.6 Consider the nilpotent Lie algebra g1 given in [4] with basis {e1, . . . , e5} , whose

nonzero brackets are
[e1, e2] = e5, [e3, e4] = e5.

Assume that g is the metric such that {e1, . . . , e5} is orthonormal and ϵi = g(ei, ei) = ±1 . The

nonzero covariant derivatives are evaluated in [8] by Kozsul’s formula:

∇e1e2 =
1

2
e5, ∇e1e5 = −

1

2
ϵ2ϵ5e2,

∇e2e1 = −
1

2
e5, ∇e2e5 =

1

2
ϵ1ϵ5e1,

∇e3e4 =
1

2
e5, ∇e3e5 = −

1

2
ϵ4ϵ5e4,

∇e4e3 = −
1

2
e5, ∇e4e5 =

1

2
ϵ3ϵ5e3,

∇e5e1 = −
1

2
ϵ2ϵ5e2, ∇e5e2 =

1

2
ϵ1ϵ5e1, ∇e5e3 = −

1

2
ϵ4ϵ5e4, ∇e5e4 =

1

2
ϵ3ϵ5e3.

11
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Consider now the structure (φ, ξ, η, g) defined by g(e1, e1) = g(e2, e2) = −g(e3, e3) = −g(e4, e4) =

g(e5, e5) = 1 , ξ = e5 , η = e5 , whose endomorphism is given via basis elements as follows.

φ(e1) = e3 , φ(e2) = e4 , φ(e3) = e1 , φ(e4) = e2 , φ(e5) = 0 . Nonzero structure constants of

F are

F (e1, e4, e5) = −F (e1, e5, e4) = −F (e2, e3, e5) = F (e2, e5, e3) = 1/2,

−F (e3, e5, e2) = F (e3, e2, e5) = −F (e4, e1, e5) = F (e4, e5, e1) = 1/2,

−F (e5, e1, e4) = F (e5, e4, e1) = F (e5, e2, e3) = −F (e5, e3, e2) = 1.

Note that ξ = e5 is Killing [8] and this structure is in the class G9 ⊕G11 [6]. We determine the

class of the deformed structure after a D-homothetic deformation. Proposition 3.1 implies that ξ̃

is Killing, so F̃ 6 = F̃ 7 = F̃ 10 = F̃ 12 = 0 . Also since F̃W1 = −tFW1 and FW1 vanishes, F̃W1 also

vanishes. It can be checked that this structure satisfies

F (φy,φz, ξ) = −F (φz,φy, ξ) = F (φ2y,φ2z, ξ)

and thus

F̃ 11(x, y, z) = −tF 11(x, y, z) + t(t + 1)
2

η(x) {−F (φy,φz, ξ) + F (φz,φy, ξ)

+F (φ2z,φ2y, ξ) − F (φ2y,φ2z, ξ)}

= −2t(t + 1)η(x)F (φy,φz, ξ)

= t(t + 1)x5{y2z3 − y3z2 + y4z1 − y1z4} ≠ 0.

In addition, by direct calculation

F 9(x, y, z) = η(y)F (φz,φx, ξ) − η(z)F (φy,φx, ξ)

= −1
2
y5 {x1z4 − x2z3 + x3z2 − x4z1}

+1
2
z5 {x1y4 − x2y3 + x3y2 − x4y1}

12
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and

F̃W2 = t(t − 1)
2

FW2(x, y, z)

+ t(t + 1)
2

{η(y)F (φz,φx, ξ) − η(z)F (φy,φx, ξ)}

= t(t − 1)
2

F 9(x, y, z)

+ t(t + 1)
2

{−1
2
y5 {x1z4 − x2z3 + x3z2 − x4z1}

+1
2
z5 {x1y4 − x2y3 + x3y2 − x4y1}}

= t2F 9(x, y, z) ≠ 0

As a result the deformed structure is also in G9 ⊕ G11 . So we obtain infinitely many

examples of structures of type G9 ⊕ G11 by D-homothetic deformation. Note that although an

almost paracontact structure of class G9 is not invariant, a direct sum containing the class G9

may be invariant.
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Abstract: We deal with an optimal boundary control problem in a 1-d heat equation with Neumann

boundary conditions. We search for a boundary function which is the minimum element of a quadratic cost

functional involving the H1 -norm of boundary controls. We prove that the cost functional has a unique

minimum element and is Fréchet differentiable. We give a necessary condition for the optimal solution and

construct a minimizing sequence using the gradient of the cost functional.

Keywords: Optimal control problems, heat equation, Fréchet differentiability, adjoint problem.

1. Introduction
Control problems are used to improve efficiency in many fields such as economics, biology, agri-

culture, robotics industry, chemical reactions, and gas dynamics. Mathematical modeling of many

physical phenomena is known to lead to differential equations [1, 6–8, 21, 22, 24–26]. Therefore,

it is important to study the control problems related to PDEs. Optimal control problems for

parabolic equations arise in various areas of science including chemical reactions, heat transfer,

and population dynamics and they have been widely studied due to their importance in the natu-

ral sciences and their applications. The boundary control problem for heat transfer systems is one

of the most addressed control problems for PDEs. Some detailed works of problems in these areas

can be found in [2, 3, 5, 9, 10, 14, 15, 17, 19, 20].

Lions [17] studied the optimal control problem in the parabolic system with the aim of find-

ing a boundary condition that ensures the approach of the solution of the parabolic problem at the

terminal time to the given desired function. He chose the Lebesque space L2 as the space of bound-
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ary controls. Hasanoğlu [12] considered the problem of finding unknown pair {h(t, x), f(t)} in the

equation yt − (a(x)yx)x = h(t, x) with conditions yx(t,0) = 0,−a(L)yx(t,L) = v[y(t,L) − f(t)]

from the final overdetermination. Sadek and Bokhari [23] examined the controlling of Neumann

boundary conditions for the heat conduction equation by minimizing the energy-based performance

measure involving boundary controls.

Şener and Subaşi [27] analyzed the optimal control problem of the boundary function s(t)

in the system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt = ayxx + b(t, x), (t, x) ∈ (0, T ) × (0, L),

y(0, x) = υ(x), 0 < x < L,

yx(t,0) = 0, yx(t,L) = s(t), 0 < t < T.

They obtained the optimal solution as a minimum element of the cost functional

Jα(s) = ∫
L

0
[y(T,x; s) − f(x)]2dx + α∣∣s∣∣2H1(0,T )

for the given target function f(x) ∈ L2(0, L) and α > 0 .

In this study, we consider the following mathematical model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt = awxx + b(t, x), (t, x) ∈ Ω ∶= (0, T ) × (0, L),

w(0, x) = w0(x), 0 < x < L,

wx(t,0) = µ(t), wx(t,L) = 0, 0 < t < T,

(1)

where T is a given final time, a is a positive constant, b(t, x) , w0(x) are given functions and µ(t)

is an unknown function. Physically speaking, a is the heat conductivity, b(t, x) is the heat source,

w0(x) is the initial temperature, and µ(t) is the heat flux.

The aim of this study is to find a boundary function µ ∈H1(0, T ) such that the correspond-

ing solution to the system (1) approaches to the given desired ν(t, x) ∈ L2(Ω) . More precisely, we

want to minimize the cost functional

Jα(µ) = ∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]2dxdt + α∣∣µ − µ+∣∣2H1(0,T ) (2)

in the admissible controls set Mad ⊂ H1(0, T ) . Here the function µ+(t) ∈ H1(0, T ) is an initial

guess for the optimal solution and α > 0 is a regularization parameter. w(t, x;µ) stands for the

dependence of the solution w(t, x) of the system (1) on the boundary control µ(t) .
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This paper differs from existing works in the literature in view of the functional space of

the controls and the choice of the cost functional. Previous studies propose the usage of the space

L2 as the control set [5, 12, 17, 23]. Moreover, this study investigates a different target than the

study in [27]. With the choice of the functional in (2), we use w(t, x;µ) for the boundary control

µ(t) .

This paper is organized as follows: Firstly, we show that the conditions of the Goebel

Theorem are valid for the optimal control problem considered. So, we prove that the optimal

solution exists and is unique by this theorem. Then, we introduce an adjoint problem by the

Lagrange multiplier method and calculate the Fréchet derivate of the cost functional via the adjoint

approach. Finally, we state a necessary optimality condition and establish a minimizing sequence.

2. Existence and Uniqueness of a Minimizer for the Cost Functional

This section is dedicated to proving the conditions for the existence of the unique optimal solution

to the optimal control problem (1)-(2). We denote the set of admissible boundary control functions

with Mad . Let Mad be a non-empty subset of the space H1(0, T ) . Furthermore, we assume that

Mad is closed, convex, and bounded.

We know that for every w0(x) ∈ H1(0, L) , b(t, x) ∈ L2(Ω) and µ(t) ∈ H1(0, T ) , the

parabolic system (1) has a unique solution w ∈H2,1(Ω) satisfies the following estimate:

∣∣w∣∣2H2,1(Ω) ≤ c1(∣∣b∣∣
2
L2(Ω) + ∣∣w0∣∣2H1(0,L) + ∣∣µ∣∣

2
H1(0,T )), (3)

where c1 is a constant independent from b , w0 and µ [18]. We refer to [16] for definitions of the

spaces H2,1(Ω) , H1(0, L) and L2(Ω) .

Let δµ ∈ Mad be an increment of the control at µ ∈ Mad such that µ + δµ ∈ Mad . Let

us denote by wδ = w(t, x;µ + δµ) the solution of the system (1) corresponding to the boundary

condition µ + δµ ∈Mad . Then, the function δw(t, x;µ) = w(t, x;µ + δµ) −w(t, x;µ) = wδ −w is the

solution to the following difference problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δwt = aδwxx, (t, x) ∈ Ω,

δw(0, x) = 0, 0 < x < L,

δwx(t,0) = δµ(t), δwx(t,L) = 0, 0 < t < T.

(4)

Furthermore, the difference problem is of the same type as the problem (1). So, it can be
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proven that the solution δw(t, x;µ) of the problem (4) satisfies the following inequality:

∣∣δw(t, x;µ)∣∣2L2(Ω) ≤ c2∣∣δµ∣∣
2
H1(0,T ), t ∈ [0, T ]. (5)

Here c2 is independent from δµ .

We can use the Goebel Theorem [11] widely referred to for the existence of a minimum

element in optimal control problems. The following theorem states the existence and uniqueness

of the solution to the optimal control problem under consideration.

Theorem 2.1 Let µ+ ∈ H1(0, T ) be a given element. There is a dense subset G ∈ H1(0, T ) such

that the cost functional Jα(µ) has a unique minimum in the set Mad for all µ+ ∈ G and α > 0 .

Proof We know that H1(0, T ) is a uniformly convex Banach space [4] and the admissible set

Mad is a bounded, closed and convex subset of H1(0, T ) . Let’s rewrite the cost functional as

Jα(µ) = J(µ) + α∣∣µ∣∣2H1(0,T ),

where

J(µ) = ∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]2dxdt.

The functional J(µ) is bounded from below in the set Mad since J(µ) ≥ 0 for any µ ∈ Mad . It

is sufficient to show that the functional J(µ) is lower semi-continuous in the set Mad . Let us

evaluate the increment δJ(µ) = J(µ + δµ) − J(µ) for any µ ∈Mad . We obtain

δJ(µ) = ∫
T

0
∫

L

0
[w(t, x;µ + δµ) − ν(t, x)]2dxdt −∫

T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]2dxdt

= 2∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt

+∫
T

0
∫

L

0
[δw(t, x;µ)]2dxdt.

(6)

Taking into account the inequalities (3) and (5), we can write that

∣δJ(µ)∣ ≤ c3(∣∣δµ∣∣H1(0,T ) + ∣∣δµ∣∣2H1(0,T )). (7)

Here c3 is independent from δµ .

(7) implies that the functional J(µ) is lower semi-continuous in the set Mad . According to Goebel

Theorem, there is a dense subset G of H1(0, T ) such that the functional Jα(µ) takes its minimum

value at a unique point for every µ+ ∈ G . ◻
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3. Fréchet Differentiability of the Cost Functional

In this section, we first apply the Lagrange multipliers method to obtain the adjoint problem and

then find the Fréchet derivative of the functional Jα(µ) . In order to construct a minimizing se-

quence, it is important to prove that the cost functional is continuously differentiable.

Lagrange functional is defined by

L(w,µ,φ) = Jα(µ) + ⟨φ,wt − awxx − b⟩L2(Ω)

, where the functional Jα(µ) is the cost functional given in (2) and φ is called the Lagrange

function.
It can be easily seen that the first variation for the Lagrange functional is:

δL = ∫
T

0
∫

L

0
2[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt

−∫
T

0
∫

L

0
[φt + aφxx]δw(t, x;µ)dxdt +∫

L

0
φ(T,x)δw(T,x;µ)dx

+∫
T

0
φx(t,L)δw(t,L)dt −∫

T

0
φx(t,0)δw(t,0)dt,

(8)

where δw(t, x;µ) is the solution to the problem (4).

Using the δL = 0 stationarity condition, we get the following adjoint problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt + aφxx = 2[w(t, x;µ) − ν(t, x)], (t, x) ∈ Ω,

φ(T,x) = 0, 0 < x < L,

φx(t,0) = 0, φx(t,L) = 0, 0 < t < T.

(9)

If we replace t in (9) by new variable τ = T − t , then we obtain a boundary value problem

in the same type as the problem (1). The adjoint problem has a weak solution φ in H2,1(Ω) since

w − ν ∈ L2(Ω) [18].

Lemma 3.1 Let µ,µ+δµ ∈Mad be given elements. If w = w(t, x;µ) is the solution to the problem

(1) and φ(t, x;µ) is the solution to the adjoint problem (9), then the following identity holds:

∫
T

0
∫

L

0
2[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt = a∫

T

0
δµ(t)φ(t,0)dt (10)

for all µ ∈Mad .
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Proof Using the equation (9) and applying integration by parts, we write the left side of (10) as

follows:

2∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt

= ∫
T

0
∫

L

0
[φt(t, x) + aφxx(t, x)]δw(t, x;µ)dxdt

= ∫
L

0
{[aφ(t, x)δw(t, x;µ)]t=Tt=0 −∫

T

0
φ(t, x)δwt(t, x;µ)dt}dx

+∫
T

0
{[aφx(t, x)δw(t, x;µ)]x=Lx=0 −∫

L

0
aφx(t, x)δwx(t, x;µ)dx}dt.

From (4) and (9), we get

2∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt

= −∫
T

0
∫

L

0
φ(t, x)δwt(t, x;µ)dxdt

−∫
T

0
{[aφ(t, x)δwx(t, x;µ)]x=Lx=0 −∫

L

0
aφ(t, x)δwxx(t, x;µ)dx}dt

= −∫
T

0
∫

L

0
[δwt(t, x;µ) − aδwxx(t, x;µ)]φ(t, x)dxdt

+∫
T

0
aφ(t,0)δµ(t)dt.

Considering the equation (4), the integral identity (10) is obtained.

◻

Let’s evaluate the first variation of Jα(µ) . We write

δJα(µ) = Jα(µ + δµ) − Jα(µ)

= 2∫
T

0
∫

L

0
[w(t, x;µ) − ν(t, x)]δw(t, x;µ)dxdt

+∫
T

0
∫

L

0
[δw(t, x;µ)]2dxdt

+ 2α⟨µ − µ+, δµ⟩H1(0,T ) + ∣∣δµ∣∣2H1(0,T ),

(11)

where µ + δµ ∈Mad and δw(t, x;µ) is the solution to the problem (4).

Using the integral identity (10) on the formula (11) we can write the first variation of the
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cost functional Jα(µ) as follows:

δJα(µ) = ∫
T

0
aφ(t,0)δµ(t)dt +∫

T

0
∫

L

0
[δw(t, x;µ)]2dxdt

+ 2α⟨µ − µ+, δµ⟩H1(0,T ) + ∣∣δµ∣∣2H1(0,T ).

(12)

In order to get the Fréchet derivative of the cost functional, the first term on the right-hand

side of (12) must be written as the inner product in the space H1(0, T ) . To do this we define the

following problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ′′(t) − θ(t) = −aφ(t,0), t ∈ (0, T ),

θ′(0) = 0, θ′(T ) = 0.
(13)

Using (13), the formula (12) can be written as

δJα(µ) = ∫
T

0
(θ(t)δµ(t) + θ′(t)δµ′(t))dt +∫

T

0
∫

L

0
[δw(t, x;µ)]2dxdt

+ 2α⟨µ − µ+, δµ⟩H1(0,T ) + ∣∣δµ∣∣2H1(0,T ).

(14)

The estimate (5) yields that the second term on the right-hand side of (14) is of the order

o(∣∣δµ∣∣2H1(0,T )) . The formula (14) becomes

δJα(µ) = ⟨θ + 2α(µ − µ+), δµ⟩H1(0,T ) + o(∣∣δµ∣∣2H1(0,T )).

So, the cost functional is Fréchet differentiable, that is Jα(µ) ∈ C1(Mad) . The operator

J ′α(µ) = θ + 2α(µ − µ+) (15)

is the Fréchet derivative of the cost functional. Here θ(t) is the solution of (13).

4. Necessary Condition for the Optimal Solution and a Minimizing Sequence

We construct a minimizing sequence based on the gradient methods. According to the gradient

method, a minimizer for the cost functional is chosen by the formula

µ(j+1) = µ(j) − βjJ
′
α(µ(j)), j = 0,1,2, ..., (16)

where µ(0) ∈ Mad is a given initial element and J ′α(µ(j)) is the Fréchet derivative corresponding

to µ(j) . The βj is called the relaxation parameter. From the definition of Fréchet differentiability,
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we can obtain that

Jα(µ(j+1)) − Jα(µ(j)) = βj[ − ∣∣J ′α(µ(j))∣∣2 +
o(βj)
βj
] < 0

for sufficiently small βj > 0 [13]. The choice of the relaxation parameter defines various gradient

methods and this choice is very important.

To stop the iteration process, one of the following stopping criterion can be selected:

∣∣µ(j+1) − µ(j)∣∣ < ϵ1, ∣∣Jα(µ(j+1)) − Jα(µ(j))∣∣ < ϵ2, ∣∣J ′α(µ(j))∣∣ < ϵ3. (17)

Now, we can state the optimality condition in view of [28]. Let µ∗ ∈ Mad be the optimal

solution to the problem (1)-(2) and let us denote the solution of the adjoint problem corresponding

to the optimal solution µ∗ with φ∗(t, x) . We know that the cost functional Jα(µ) is a continuously

differentiable in the control set Mad . In this case, the following inequality is provided for all µ ∈Mad

[28]:

⟨J ′α(µ∗), µ − µ∗⟩H1(0,T ) ≥ 0. (18)

The following variational inequality states the necessary condition for the optimal solution:

⟨θ∗ + 2α(µ∗ − µ+), µ − µ∗⟩H1(0,T ) ≥ 0 (19)

for all µ ∈Mad , where θ∗(t) is the solution of the problem (13) corresponding to φ∗(t,0) .

5. Conclusions
In this study, we focus on investigating the optimality conditions in the optimal control problem

governed by the parabolic system and obtaining a minimizer for the chosen cost functional. We

prove that the boundary condition wx(t,0) = µ(t) in the parabolic problem can be controlled

from target w(x, t) = ν(x, t) using H1 -norm. The admissible control set is chosen as a bounded,

convex, and closed subset of the space H1(0, T ) . Using Goebel Theorem, we prove that the optimal

boundary control problem considered has a unique solution. Obtaining the explicit formula for the

gradient of the cost functional allows the usage of the gradient method to construct a minimization

sequence. Fréchet differentiable of the cost functional in the admissible controls set is proved and

the explicit formula of this derivative is obtained by adjoint approach. The obtained results permit

one to acquire the necessary optimality condition. This study provides some results for numerical

research on obtaining the optimal solution.
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Abstract: One of the new suggested prediction methods is the Kibria-Lukman’s prediction approach

under multicollinearity in linear mixed models and in this article, the generalized Kibria-Lukman estimator

and predictor are introduced to combat multicollinearity problem. The comparisons between the proposed

generalized Kibria-Lukman estimator/predictor and several other estimators/predictors, namely the best

linear unbiased estimator/predictor and Kibria-Lukman estimator/predictor are done by using the matrix

mean square error criterion. Lastly, the selection of the biasing parameter is given and to demonstrate the

performance of our new defined prediction method, the greenhouse gases data analysis is made.

Keywords: Linear mixed model, mean square error, generalized Kibria-Lukman predictor, multicollinear-

ity.

1. Introduction

The linear mixed model (LMM) is described the following form for i = 1, . . . ,m ,

yi =Xiβ +Ziui + εi,

where yi is an ni × 1 vector of response variables measured on subject i , β is a p × 1 parameter

vector of fixed effects, Xi and Zi are ni × p and ni × q known design matrices of the fixed and

random effects, respectively, ui is a q × 1 random vector, the components of which are called

random effects and εi is an ni × 1 random vector of errors. LMM mostly has the assumptions

given below

ui
iid∼ Nq (0, σ2F) and εi

iid∼ Nni
(0, σ2Wi) , i = 1, . . . ,m,

where ui and εi are independent, F and Wi are q × q and ni × ni known positive definite (pd)

matrices.
∗Correspondence: ozge.kuran@dicle.edu.tr
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y = (yT1 , . . . , yTm)T , X = (XT
1 , . . . ,X

T
m)T , Z = ⊕m

i=1Zi (⊕ is the direct sum), u = (uT
1 , . . . , u

T
m)T

and ε = (εT1 , . . . , εTm)T is taken. So, the more compact model can be written as

y =Xβ +Zu + ε, (1)

this means (u
ε
) ∼ Nqm+n ((

0qm
0n
) ,(σ

2G 0
0 σ2W

)) , where n =
m

∑
i=1

ni , G = Im ⊗ F , W = ⊕m
i=1Wi (⊗

is the Kronecker product) and Im is the identity matrix of order m . y ∼ N (Xβ,σ2H) is written

under model (1), where H = ZGZT +W . It is assumed that the G and W matrices are known

for ease of theoretical calculations. But, if this assumption is not satisfied, we substitute their

maximum likelihood (ML) or restricted maximum likelihood (REML) estimates for the G and W .

β̂ and û were obtained by [4, 5] as follows

β̂ = (XTH−1X)−1XTH−1y,

û = GZTH−1(y −Xβ̂), (2)

and they were, respectively, named as BLUE (the best linear unbiased estimator of β ) and BLUP

(the best linear unbiased predictor of u).

This article aims to reveal a new prediction method, which is an alternative to the existing

estimators/predictors defined below in the LMM literature under multicollinearity and, for the sake

of actualizing this aim, is to introduce a generalized form of Kibria-Lukman prediction method in

LMMs by following [1] generalized Kibria-Lukman estimator in linear regression models. Thus, the

rest of our study is configured as follows: We give our preliminaries in Section 2. We obtain the

generalized Kibria-Lukman estimator and predictor in LMMs via [1] in linear regression models in

Section 3. Matrix mean square error (MMSE) performances are evaluated in Section 4. We mention

about biasing parameter selection in Section 5 and in Section 6, greenhouse gases data analysis is

ensured to show our theoretical findings. Finally, in Section 7, we discuss some conclusions.

2. Preliminaries
Multicollinearity is defined as the linear dependence between the columns of X . The statistical

consequences of this effect, such as the parameter estimates having large variances and being

different from the true values, are well known in all linear regression models, including LMM.

In order to eliminate the effects of this effect, there are many methods defined in both linear

regression models and LMM, and ridge regression in the linear regression models recommended

by [6] is the most well-known method among these methods. Under LMM, [11, 13] identified the
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ridge estimator and predictor with k > 0 ridge biasing parameter as follows

β̂k = (XTH−1X + kIp)−1XTH−1y,

ûk = GZTH−1(y −Xβ̂k). (3)

In addition to ridge regression, [7, 10] suggested Liu’s approach in linear regression models.

By following [14, 15, 20] proposed the Liu estimator predictor via 0 < d < 1 Liu biasing parameter

under LMM as follows

β̂d = (XTH−1X + Ip)−1(XTH−1y + dβ̂),

ûd = GZTH−1(y −Xβ̂d), (4)

where β̂ is the BLUE in Equation (2).

In linear regression models, [9] proposed a new one-parameter estimator in the class of ridge

and Liu estimators and they called their new estimator as the Kibria-Lukman (KL) estimator. By

following [9] in linear regression models, [12] suggested respectively the KL estimator and the KL

predictor in LMMs as

β̂KL = (XTH−1X + kIp)−1(XTH−1y − kβ̂) = (XTH−1X + kIp)−1(XTH−1X − kIp)β̂

= (Ip + k(XTH−1X)−1)−1(Ip − k(XTH−1X)−1)β̂,

ûKL = GZTH−1(y −Xβ̂KL). (5)

Now, we will introduce a new prediction approximation as an alternative to the estimators/predictors

defined above under multicollinearity.

3. Introduced New Prediction Approximation

Via [1] in linear regression models, a new prediction approximation is handled in LMMs in this

part. With model (1) assumptions, we have

(u
y
) ∼ N (( 0

Xβ
) , σ2 ( G GZT

ZG H
)) , y∣u ∼ N (Xβ +Zu,σ2W) ,

[5] maximize

f (y, u) = f (y∣u)f (u)

= (2πσ2)−(n+qm)/2 ∣W ∣−1/2 ∣G∣−1/2

× exp{− 1

2σ2
[(y −Xβ −Zu)T W −1 (y −Xβ −Zu) + uTG−1u]},
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where ∣.∣ is a matrix determinant and thus, log f (y, u) is obtained

log f (y, u) = log f (y∣u) + log f (u)

= −1
2
{(n + qm) log (2π) + (n + qm) logσ2 + log ∣W ∣ + log ∣G∣

+[(y −Xβ −Zu)T W −1 (y −Xβ −Zu) + uTG−1u]/σ2}.

Our goal is to describe a new prediction method which is resistant to multicollinearity alternative

to ridge, Liu and KL prediction approaches in LMMs. Via [1], log f (y, u) is minimized under

(β + β̂)T (β + β̂) = c with δ = 1
2σ2 ≥ 0 regularization parameter

log f (y, u) − 1

2σ2
K[(β + β̂)T (β + β̂) − c], (6)

where K = diag(k1, . . . , kp) for 0 < ki < 1 , i = 1, . . . , p , as the ridge biasing parameters and c is

a constant. Substituting the log function into Equation (6) and removing the constant term from

the model,

− 1

2σ2
{(y −Xβ)T W −1 (y −Xβ) +K[(β + β̂)T (β + β̂) − c]}

− 1

2σ2
{uT (ZTW −1Z +G−1)u − 2 (y −Xβ)T W −1Zu}, (7)

is written. Initially, we get partial derivatives of Equation (7) corresponding to β and u . Later,

we equalize these derivatives to zero. Thus, we derive the following equations

XTW −1(y −Xβ̂GKL) −Kβ̂ −Kβ̂GKL −XTW −1ZûGKL = 0, (8)

ZTW −1(y −Xβ̂GKL) − (ZTW −1Z +G−1)ûGKL = 0 (9)

and we name as β̂GKL and ûGKL , respectively, as the generalized KL (GKL) estimator and

predictor, respectively.

We present Equations (8) and (9) as

(X
TW −1X +K XTW −1Z
ZTW −1X ZTW −1Z +G−1)(

β̂GKL

ûGKL
) = (X

TW −1y −Kβ̂
ZTW −1y

) . (10)

We write Equation (10) via [3] as follows:

CΨ̂ = ωTW −1y + κ, (11)
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where Ψ̂ = (β̂T
GKL, û

T
GKL)T , ω = (X,Z) , κ = (−Kβ̂T ,0T )T and C = ωTW −1ω+Ģ+ is full rank with

the Moore-Penrose inverse ‘+ ’

Ģ = (
Ip
K

0
0 G

) and Ģ+ = (K 0
0 G−1

) .

After Equation (11) is found, we obtain

Ψ̂ = C−1ωTW −1y +C−1κ, (12)

where C−1 is calculated from the inverse partitioned matrix [18] as

C−1 =
⎛
⎝

Ń −ŃXTH−1ZG

−GZTH−1XŃ Υ +GZTH−1XŃXTH−1ZG

⎞
⎠
,

where Ń = (XTH−1X +K)−1 and Υ = (ZTW −1Z +G−1)−1 . Then, after C−1 puts in Equation

(12), the GKL estimator and the GKL predictor are derived, respectively, as

β̂GKL = (XTH−1X +K)−1(XTH−1y −Kβ̂) = (XTH−1X +K)−1(XTH−1X −K)β̂

= (Ip +K(XTH−1X)−1)−1(Ip −K(XTH−1X)−1)β̂, (13)

ûGKL = GZTH−1(y −Xβ̂GKL). (14)

4. Mean Square Error Performances

Prediction of linear combinations of β and u is explained as µ = LTβ+MTu for specific L ∈ Rp×1

and M ∈ Rq×1 matrices (see [16, 17, 21]). With the help of [19], the MMSEs for µ̂ , µ̂KL and

µ̂GKL are written as

MMSE(µ̂) = QMMSE(β̂)QT + σ2MT (G −GZTH−1ZG)M, (15)

MMSE(µ̂KL) = QMMSE(β̂KL)QT + σ2MT (G −GZTH−1ZG)M, (16)

MMSE(µ̂GKL) = QMMSE(β̂GKL)QT + σ2MT (G −GZTH−1ZG)M, (17)
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where µ̂ = LT β̂ +MT û = Qβ̂ +MTGZTH−1y , µ̂KL = LT β̂KL +MT ûKL = Qβ̂KL +MTGZTH−1y ,

µ̂GKL = LT β̂GKL +MT ûGKL = Qβ̂GKL +MTGZTH−1y , Q = LT −MTGZTH−1X ,

MMSE(β̂) = σ2(XTH−1X)−1, (18)

MMSE(β̂KL) = σ2(Ip + k(XTH−1X)−1)−1(Ip − k(XTH−1X)−1)(XTH−1X)−1

×(Ip − k(XTH−1X)−1)(Ip + k(XTH−1X)−1)−1

+[(Ip + k(XTH−1X)−1)−1(Ip − k(XTH−1X)−1) − Ip]

×ββT [(Ip + k(XTH−1X)−1)−1(Ip − k(XTH−1X)−1) − Ip]T , (19)

MMSE(β̂GKL) = σ2(Ip +K(XTH−1X)−1)−1(Ip −K(XTH−1X)−1)(XTH−1X)−1

×(Ip −K(XTH−1X)−1)(Ip +K(XTH−1X)−1)−1

+[(Ip +K(XTH−1X)−1)−1(Ip −K(XTH−1X)−1) − Ip]

×ββT [(Ip +K(XTH−1X)−1)−1(Ip −K(XTH−1X)−1) − Ip]T . (20)

When we examine Equations (15), (16) and (17), it can be said that the superiority

of MMSE(µ̂GKL) over MMSE(µ̂) and MMSE(µ̂KL) is equivalent to the superiority of

MMSE(β̂GKL) over MMSE(β̂) and MMSE(β̂KL) derived by, respectively, Equations (18),

(19) and (20). Then, via orthogonal transformation, our model (1) is transformed to a canonical

form. Because H is pd, there exists a nonsingular symmetric matrix N such that H = NTN . Our

new model is

y∗ =X∗β +Z∗u + ε∗, (21)

with y∗ = N−1y , X∗ = N−1X , Z∗ = N−1Z , ε∗ = N−1ε and V ar(y∗) = σ2I is derived.

The spectral decomposition of the matrix XTH−1X is PTΛP with Λ = diag(λi) the p × p

orthogonal matrix of the eigenvalues of XTH−1X (λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0) and P = [P1 . . . Pp] the

p × p orthogonal matrix of the standardized eigenvectors corresponding to the eigenvalues. Then,

the model (21) can be written as y∗ = K∗α + Z∗u + ε∗ , where K∗ = X∗PT and α = Pβ . In the

transformed model, MMSE(α̃) = P [MMSE(β̃)]PT for any estimator α̃ is derived. Hence, we
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have the following MMSE formulas via Equations (18), (19) and (20)

MMSE(α̂) = σ2Λ−1, (22)

MMSE(α̂KL) = σ2(Ip + kΛ−1)−1(Ip − kΛ−1)Λ−1(Ip − kΛ−1)(Ip + kΛ−1)−1

+[(Ip + kΛ−1)−1(Ip − kΛ−1) − Ip]ααT [(Ip + kΛ−1)−1(Ip − kΛ−1) − Ip]T , (23)

MMSE(α̂GKL) = σ2(Ip +KΛ−1)−1(Ip −KΛ−1)Λ−1(Ip −KΛ−1)(Ip +KΛ−1)−1

+[(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]ααT [(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]T . (24)

We will define the two theorems given below, respectively, the GKL estimator vs the BLUE and

the GKL estimator vs the KL estimator.

Theorem 4.1 MMSE(α̂) −MMSE(α̂GKL) > 0 iff

αT [(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]T

×[σ2(Λ−1 − (Ip +KΛ−1)−1(Ip −KΛ−1)Λ−1(Ip −KΛ−1)(Ip +KΛ−1)−1)]

×[(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]α < 1.

Theorem 4.2 MMSE(α̂KL) −MMSE(α̂GKL) > 0 iff

αT [(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]T [Ω + [(Ip + kΛ−1)−1(Ip − kΛ−1) − Ip]

×ααT [(Ip + kΛ−1)−1(Ip − kΛ−1) − Ip]T ][(Ip +KΛ−1)−1(Ip −KΛ−1) − Ip]α < 1,

where

Ω = σ2((Ip + kΛ−1)−1(Ip − kΛ−1)Λ−1(Ip − kΛ−1)(Ip + kΛ−1)−1

−(Ip +KΛ−1)−1(Ip −KΛ−1)Λ−1(Ip −KΛ−1)(Ip +KΛ−1)−1).

[1] can be investigated for Theorems 4.1 and 4.2 proofs.

5. About Biasing Parameter Selection

Under our proposed new prediction approximation, an appropriate parameter k calculation is

important. For this purpose, differentiating Equation (24) corresponding to k and then, equating

to zero, we find

ki =
σ2

2α2
i + (σ2/λi)

, i = 1, . . . , p, (25)
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Since the optimal value of k in Equation (25) depends on the unknown parameters σ2 and

α2 , we replace with their unbiased estimate and so, we have

k̂i =
σ̂2

2α̂2
i + (σ̂2/λi)

, i = 1, . . . , p, (26)

and then, we introduce the minimum version of Equation (26) as

k̂min =min [ σ̂2

2α̂2
i + (σ̂2/λi)

] . (27)

6. Gases of Greenhouse Data Example

Greenhouse gases have increased greatly in the last 150 years and the most important reason for

this increase is human activities. The burning of fossil fuels for heat, transportation and electricity

is the largest cause of gas emissions from these human activities [2]. The transportation sector

receives the largest portion of greenhouse gas emissions from these three sectors in the United

States. In this data example, we employ data on 297 fuel combustion in transport from randomly

selected 27 areas for the years including 2006-2016 (see [2]). To identify fuel combustion in transport

(y ), repeated measurements are taken from the cars (x1 ), the light duty trucks (x2 ), the heavy

duty trucks-buses (x3 ), the motorcycles (x4 ) and railways (x5 ). The areas factor effect is random

effect. Thus, our model is yielded

yij = β1xij1 + β2xij2 + β3xij3 + β4xij4 + β5xij5 + u1 + u2tij + εij , i = 1, . . . , 27, j = 1, . . . , 11,

where yij shows the ith observation of the j th area of the response, xijs shows the ith observation

of the j th area of the explanatory variable xs , s = 1, . . . , 5 , tij denotes time corresponding to yij .

In this example, we benefit from Matlab R2014a. Initially, we think covariance structures given

below and then, for comparing these covariance models with ML and REML, we benefit from the

Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) (see Table 1).
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Table 1: Covariance structures 1

Cov. Struc. Est. Met. for
Cov. Par. AIC BIC

Unstructured (UN) ML
REML

337.30
362.03

374.24
398.76

Diagonal (UN(1)) ML
REML

339.42
362.87

372.67
395.93

Variance Components (VC) ML
REML

391.56
416.72

421.11
446.11

Compound Symmetry (CS) ML
REML

393.42
418.60

426.67
451.66

The best models for modeling covariance matrix structure by response variable, which are the

minimum values corresponding to AIC and BIC criteria, are the UN under AIC and UN(1) under

BIC. By following [8] and [13]’s ideas, we choose UN(1) under ML and ĜML = [
2.1913 0

0 0.0755
] ,

ŴML = 0.25451I297 are computed. Therefore, with H = ZGZT +W formula, ĤML is derived.

XT Ĥ−1MLX matrix eigenvalues are computed as (λ1 ,λ2 ,λ3 ,λ4 ,λ5 ) = ( 1.4326 × 10+7 ,1.5085 ×

10+4 ,4.7251 × 10+3 ,247.7243 ,41.5100) . Since condition number λmax/λmin = 345120 > 1000 is

obtained, one can say that severe multicollinearity is appeared.

To derive the GKL estimators/predictors, we get

K = diag(k̂i) = diag(1.03488,5.56847,6.80586,9.04688,0.10696), i = 1, . . . , p,

by using Equation (26) and to get the KL estimators/predictors, we use k̂ = k̂min = 0.10696 where

σ̂2 is computed as 5.17298 given by Equation (27). In Table 2, fixed/random effects parameter

estimates and scalar mean square error (SMSE) values are given. β̂GKL outperforms β̂ and β̂KL

in the sense of SMSE values under Table 2.

Table 2: Fixed/random effects parameter estimates and SMSE values

β1 β2 β3 β4 β5 SMSE u1 u2

β̂ 1.02474 1.05007 0.93304 3.34361 3.67898 0.14693 û 0.54883 −0.07806
β̂KL 1.02549 1.05044 0.93246 3.32847 3.65880 0.14599 ûKL 0.54997 −0.07823
β̂GKL 1.03151 1.06769 0.89854 2.17688 3.65997 0.05558 ûGKL 1.69062 −0.08354

Theorems 4.1 and 4.2 conditions are computed as, respectively, 0.01205 < 1 and 0.01186 < 1 ,

hence β̂GKL is also better than β̂ and β̂KL under the MMSE criterion.

Gases of greenhouse data example confirms that β̂GKL is superior than β̂ and β̂KL when

appropriate k values are employed.
1The abbreviations “ Cov. Struc.” and “ Est. Met. for Cov. Par.” refer to “ Covariance Structures” and “

Estimation Methods for Covariance Parameters”.
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7. Conclusion

The GKL prediction approach is extended to LMMs by using the method given in [1]. We also

perform MMSE comparisons then, we give biasing parameter selection. Eventually, we support

with our findings with gases of greenhouse data example.

This article presents that one can use the GKL estimator/predictor alternative to KL

estimator/predictor in an LMM when multicollinearity problem exists and additionally, this article

has affirmed that the GKL approach usage ensures a smaller MSE than the BLUE and KL estimator

for appropriate selected ridge biasing parameter.
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Abstract: This paper introduces a new algebraic structure called dimodule. This structure is similar to

a module. A dimodule occurs on a semigroup and a dimonoid in place of an additive abelian group and

a ring, respectively. This paper presents some algebraic properties of the dimodules and supplies some of

their examples. We suggest a definition of a distributive dimonoid. This paper includes examples of this

notion that a distributive dimonoid does not have to be a commutative and idempotent dimonoid. We

also have examples of dimonoids and dimonoid homomorphisms.

Keywords: Dimonoid, semigroup, dimodule.

1. Introduction

Jean-Louis Loday introduces the concept of dimonoid [4] as a tool to investigate Leibniz algebras.

Dimonoids are nonempty sets with two associative operations providing some axioms. The di-

monoid becomes a semigroup if the operations are the same.

Anatolii V. Zhuchok has made many contributions to the topics related to dimonoids. Some

of these are to give some properties of commutative dimonoids and examples of commutative di-

monoids, to introduce the notion of the diband of dimonoids, to construct different samples of

dimonoids, to demonstrate that dimonoids are embedded into some dimonoid formed by a semi-

group isomorphically, to set a free commutative dimonoid [5, 6, 8, 9].

This paper introduces a dimodule as a new algebraic structure on a semigroup and a

dimonoid. This structure inspires by the algebraic form of modules. The dimodules are an algebraic

expansion by processing with the dimonoid and semigroups under certain conditions. In this paper,

there are studies of some algebraic properties of dimodule concepts and some dimodule examples.

We have the definition of a distributive dimonoid. We show with examples that a distributive

dimonoid does not have to be a commutative or an idempotent dimonoid. We also have some
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examples of dimonoid and dimonoid homomorphism.

2. Preliminaries

This section contains basic definitions of the semigroups and the modules [1–3]. In this section,

there are definitions of the dimonoids and some concepts of them [4–6, 8, 9]. Moreover, this section

includes the definition of a distributive dimonoid and some new examples of dimonoids.

2.1. Semigroups

Let S be a nonempty set and “ ⋅” be a binary operation on S . Then the algebraic structure

(S, ⋅) is called a semigroup if and only if, for all k, l,m ∈ S , k ⋅ (l ⋅m) = (k ⋅ l) ⋅m . Let P (S) denote

the set of all the subsets of S and K,M ∈ P (S) . If K = ∅ or M = ∅ , then K ⋅M = ∅ . If otherwise,

K ⋅M is the set {k ⋅m ∣ k ∈K,m ∈M} .

If, for all s ∈ S , 0 ⋅ s = 0 (s ⋅ 0 = 0), then an element 0 ∈ S is a left (right) zero element. If

an element 0 ∈ S is both the left and right zero elements, it is a zero element. A semigroup S in

which each element is a left (right) zero element is a left (right) zero semigroup. Let there is an

element 0 ∈ S in a semigroup (S, ⋅) such that x ⋅y = 0 for all x, y ∈ S . Then the semigroup is a zero

semigroup. Let (S, ⋅) and (Y,∗) be semigroups. Then a mapping f ∶ S → Y is a homomorphism

of semigroups if, for all k, l ∈ S , f(k ⋅ l) = f(k)∗f(l) . Let {Si ∣ i ∈ I} be a family of the semigroups.

Then ∏i∈I Si denotes the Cartesian product of the family {Si ∣ i ∈ I} and ∏i∈I Si is a semigroup.

2.2. Dimonoids

Jean-Louis Loday presented the concept of dimonoid in 2001.

Definition 2.1 [4] An arbitrary set D ≠ ∅ on which there are two associative operations “∗” and

“○” is a dimonoid if, for all k, l,m ∈D , provide the axioms in below:

(1) (k ∗m) ∗ l = k ∗ (m ○ l) ,

(2) (k ○m) ∗ l = k ○ (m ∗ l) ,

(3) (k ∗m) ○ l = k ○ (m ○ l) .

Example 2.2 [4] Let D be a nonempty set and let two binary operations “∗” and “○” be defined

by, respectively, k ∗ l = k and k ○ l = l for all k, l ∈D . Then (D,∗, ○) is a dimonoid.
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Example 2.3 Let D = {k, l} . Then (D,∗, ○) is a dimonoid with the following binary operations

“∗” and “○”:

∗ k l
k k k
l k k

○ k l
k k l
l k l

Definition 2.4 [8] If, for all k ∈D , k ∗ k = k = k ○ k , then a dimonoid (D,∗, ○) is an idempotent

dimonoid (or diband).

Example 2.5 Let D = {k, l} . Then (D,∗,∗) is an idempotent dimonoid with the “∗” binary

operation:

∗ k l
k k k
l l l

Example 2.6 Let D = {k, l} . Then (D,∗, ○) is an idempotent dimonoid with the binary operations

“∗” and “○” which are defined by the following table:

∗ k l
k k k
l l l

○ k l
k k l
l k l

Example 2.7 [5] Let (D,∗) be a zero semigroup including fixed elements with a ≠ b, b ≠ 0 and for

all k, l ∈D , a binary relation “○” on D be defined by

k ○ l =
⎧⎪⎪⎨⎪⎪⎩

a, k = l = b
0, otherwise.

Then (D,∗, ○) is a dimonoid.

Example 2.8 [9] Let (S, ⋅) be a semigroup with zero and A be a nonempty set. Then A is both

a left S -act and a right S -act with the following commutative actions:

S ×AÐ→ A ∶ (s, l) = s⊙ l = l,

A × S Ð→ A ∶ (l, s) = l ⊚ s = l.

Consider the S -act morphism ψ ∶ AÐ→ S,xz→ 0 . Then (A,∗, ○) is a dimonoid with the following

binary operations:

m ∗ n ∶=m⊚ ψ(n),

m ○ n ∶= ψ(m)⊙ n.
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Theorem 2.9 Let (D,∗, ○) be a dimonoid and S be a nonempty set. If ϑ ∶ D → S is a bijective

function, then (S,∗1, ○1) is a dimonoid with binary operations defined as follows:

s ∗1 v = ϑ(ϑ−1(s) ∗ ϑ−1(v)),

s ○1 v = ϑ(ϑ−1(s) ○ ϑ−1(v))

for all s, v ∈ S .

Proof For all s, p, z ∈ S ,

(s ∗1 p) ∗1 z = ϑ(ϑ−1(s) ∗ ϑ−1(p)) ∗1 z = ϑ(ϑ−1(ϑ(ϑ−1(s) ∗ ϑ−1(p))) ∗ ϑ−1(z))

= ϑ((ϑ−1(s) ∗ ϑ−1(p)) ∗ ϑ−1(z)) = ϑ(ϑ−1(s) ∗ (ϑ−1(p) ○ ϑ−1(z)))

= ϑ(ϑ−1(s) ∗ ϑ−1(ϑ(ϑ−1(p) ○ ϑ−1(z)))) = ϑ(ϑ−1(s) ∗ ϑ−1(p ○1 z)) = s ∗1 (p ○1 z),

(s ∗1 p) ∗1 z = ϑ(ϑ−1(s) ○ ϑ−1(p)) ∗1 z = ϑ(ϑ−1(ϑ(ϑ−1(s) ○ ϑ−1(p))) ∗ ϑ−1(z))

= ϑ((ϑ−1(s) ○ ϑ−1(p)) ∗ ϑ−1(z)) = ϑ(ϑ−1(s) ○ (ϑ−1(p) ∗ ϑ−1(z)))

= ϑ(ϑ−1(s) ○ ϑ−1(ϑ(ϑ−1(p) ∗ ϑ−1(z)))) = ϑ(ϑ−1(s) ○ ϑ−1(p ∗1 z)) = s ○1 (p ∗1 z),

(s ∗1 p) ○1 z = ϑ(ϑ−1(s) ∗ ϑ−1(p)) ○1 z = ϑ(ϑ−1(ϑ(ϑ−1(s) ∗ ϑ−1(p))) ○ ϑ−1(z))

= ϑ((ϑ−1(s) ∗ ϑ−1(p)) ○ ϑ−1(z)) = ϑ(ϑ−1(s) ○ (ϑ−1(p) ○ ϑ−1(z)))

= ϑ(ϑ−1(s) ○ ϑ−1(ϑ(ϑ−1(p) ○ ϑ−1(z)))) = ϑ(ϑ−1(s) ○ ϑ−1(p ○1 z)) = s ○1 (p ○1 z),

(s ∗1 p) ∗1 z = ϑ(ϑ−1(s) ∗ ϑ−1(p)) ∗1 z = ϑ(ϑ−1(ϑ(ϑ−1(s) ∗ ϑ−1(p))) ∗ ϑ−1(z))

= ϑ((ϑ−1(s) ∗ ϑ−1(p)) ∗ ϑ−1(z)) = ϑ(ϑ−1(s) ∗ (ϑ−1(p) ∗ ϑ−1(z)))

= ϑ(ϑ−1(s) ∗ ϑ−1(ϑ(ϑ−1(p) ∗ ϑ−1(z)))) = ϑ(ϑ−1(s) ∗ ϑ−1(p ∗1 z)) = s ∗1 (p ∗1 z),

(s ○1 p) ○1 z = ϑ(ϑ−1(s) ○ ϑ−1(p)) ○1 z = ϑ(ϑ−1(ϑ(ϑ−1(s) ○ ϑ−1(p))) ○ ϑ−1(z))

= ϑ((ϑ−1(s) ○ ϑ−1(p)) ○ ϑ−1(z)) = ϑ(ϑ−1(s) ○ (ϑ−1(p) ○ ϑ−1(z)))

= ϑ(ϑ−1(s) ○ ϑ−1(ϑ(ϑ−1(p) ○ ϑ−1(z))))ϑ(ϑ−1(s) ○ ϑ−1(p ○1 z)) = s ○1 (p ○1 z).

◻

Definition 2.10 [5] Let (D1,∗1, ○1), (D2,∗2, ○2) be dimonoids. Then a mapping f ∶ D1 → D2

is called a homomorphism of dimonoids if, for all k, l ∈ D1 , f(k ∗1 l) = f(k) ∗2 f(l) and

f(k ○1 l) = f(k) ○2 f(l) .
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Example 2.11 Let D1 and D2 be dimonoids in Example 2.5 and Example 2.6, respectively. Then

all the homomorphisms of dimonoids from D1 to D2 are the functions f(a) = k and g(a) = l for

all a ∈D1 .

Definition 2.12 [8] Let ∅ ≠ T ⊆ D . Then T is called a subdimonoid, if for all k, l ∈ T implies

k ∗ l ∈ T , k ○ l ∈ T .

Definition 2.13 [5] Let (D,∗, ○) be a dimonoid. Then D is called a commutative dimonoid if

both operations are commutative.

Example 2.14 [5] Let A be an arbitrary set such that 0, k, l,m,n ∈ A and k ≠ l , l ≠ m , m ≠ n ,

n ≠ k . The operations “∗” and “○” on the set A be defined as follows:

x ∗ y =
⎧⎪⎪⎨⎪⎪⎩

l, x=y=k
0, otherwise

, x ○ y =
⎧⎪⎪⎨⎪⎪⎩

n, x=y=m
0, otherwise

for all x, y ∈ A . So (A,∗, ○) is a commutative dimonoid.

Theorem 2.15 [5] In a commutative dimonoid (D,∗, ○) , for all k, l,m ∈ D , the following

equalities hold:

(k ∗ l) ∗m = k ∗ (l ○m) = (k ○ l) ∗m = k ○ (l ∗m) = (k ∗ l) ○m = k ○ (l ○m).

Theorem 2.16 [5] Let (D,∗, ○) be a commutative dimonoid with an idempotent operation “∗”.

Then its operations coincide.

Definition 2.17 (D,∗, ○) is a distributive dimonoid if and only if

k ○ (l ∗m) = (k ○ l) ∗ (k ○m),

(l ∗m) ○ k = (l ○ k) ∗ (m ○ k)

for all k, l,m ∈D .

Example 2.18 Let (D,∗, ○) be the dimonoid in Example 2.2. Then (D,∗, ○) is a distributive

dimonoid.

Theorem 2.19 If (D,∗, ○) is a commutative idempotent dimonoid, then it is a distributive

dimonoid.

Proof Let (D,∗, ○) is a commutative idempotent dimonoid. Then according to Theorem 2.16,

“∗” and “○” are the same operations. So (k ○ l) ∗ (k ○m) = (k ∗ l) ∗ (k ∗m) = (k ∗ k) ∗ (l ∗m) =
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k∗(l∗m) = k○(l∗m) for all k, l,m ∈D . Since (D,∗, ○) is a commutative dimonoid, then (D,∗, ○)

is distributive dimonoid. ◻

The dimonoid (D,∗, ○) in Example 2.2 is a distributive and non-commutative. In Example 2.7,

the dimonoid (D,∗, ○) is a distributive and commutative dimonoid but not idempotent since

b ∗ b = 0 ≠ b .

Example 2.20 Let D = {k, l,m} be the commutative dimonoid with the operation “∗” defined by

the following table:

∗ k l m
k k k k
l k l m

m k m l

Then (D,∗,∗) is not distributive since m∗(l∗l) ≠ (m∗l)∗(m∗l) . Also (D,∗,∗) is not idempotent

since m ∗m ≠m .

Example 2.21 Let D = {k, l,m} be an arbitrary set. (D,∗,∗) is a commutative with the operation

“∗”defined in table. Although (D,∗,∗) commutative dimonoid is distributive dimonoid, it is not

idempotent since m ∗m = l ≠m .

∗ k l m
k k k k
l k l l

m k l l

Theorem 2.22 Let (D,∗, ○) be an arbitrary dimonoid, and let S be the dimonoid generated from

D as in the Theorem 2.9. If (D,∗, ○) is distributive, then S is so.

Proof Let k, l,m ∈ S . Then k ○1 (l ∗1 m) = k ○1 (ϑ(ϑ−1(l) ∗ ϑ−1(m))) = ϑ(ϑ−1(k) ○ (ϑ−1(l) ∗

ϑ−1(m))) = ϑ((ϑ−1(k)○ϑ−1(l))∗(ϑ−1(k)○ϑ−1(m))) . Let (ϑ−1(k)○ϑ−1(l)) ∶= ϑ−1(a) and (ϑ−1(k)○

ϑ−1(m)) ∶= ϑ−1(b) . Then k○1(l∗1m) = ϑ(ϑ−1(a)∗ϑ−1(b)) = a∗1b = ϑ(ϑ−1(k)○ϑ−1(l))∗1ϑ(ϑ−1(k)○

ϑ−1(l)) = (k ○1 l) ∗1 (k ○1 m) . Thus S is left distributive since k ○1 (l ∗1 m) = (k ○1 l) ∗1 (k ○1 m) .

Similarly, S is right distributive. ◻

Theorem 2.23 [7] Let {Di ∣ i ∈ I} be a family of dimonoids. Then the Cartesian product of the

family {Di ∣ i ∈ I} , ∏i∈I Di , is a dimonoid.
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3. Dimodules

Let (D,∗, ○) be a dimonoid. A (left) D -dimodule is a semigroup (S, ⋅) together with a function

D×S → S (the image of (u,x) being denoted by ux) such that for all u, v ∈D and for all x, y ∈ S :

(1) u(x ⋅ y) = ux ⋅ uy ,

(2) (u ∗ v)x = ux ⋅ vx ,

(3) u(vx) = (u ○ v)x .

A right D -dimodule is defined similarly via function S×D → S denoted (x,u)↦ xu and satisfying

the obvious of (1) − (3) . In this paper, unless specified otherwise, a D -dimodule means a left D -

dimodule. All theorems about left D -dimodules also hold for right D -dimodules.

Example 3.1 Let (D,∗, ○) be a dimonoid and (S, ⋅) be a semigroup with an idempotent element

a . Then S is a D -dimodule with the operation

D × S Ð→ S

(x, y)z→ a

Example 3.2 Let D = S = {a, b} . Then (D,∗, ○) is dimonoid and (S, ⋅) is a semigroup for the

operations “∗, ○, ⋅” in the following tables:

∗ a b

a a a
b a a

○ a b

a a b
b a b

⋅ a b

a a b
b b b

(i) Let a function D × S → S be defined as (d, s)→ ds = s . Then S is a D -dimodule.

(ii) Let a function D × S → S be defined as (d, s) → ds = d . Then S is not a D -dimodule since

(a ∗ b)a = a ≠ b = aa ⋅ ba .

Example 3.3 Let (D,∗, ○) be the dimonoid and let (N, ⋅) be the semigroup of natural numbers

with the multiplication. Let a function D ×N→ N be defined as follows:

dn =
⎧⎪⎪⎨⎪⎪⎩

0, 2 ∣ n
1, 2 ∤ n.

Then N is a D -dimodule.

Example 3.4 Let (D,∗) be the semigroup in Example 2.20. If the function D×D →D is defined

as (d, s)z→ ds = d∗s , then D is not a D -dimodule since (m∗m)m =m and mm∗mm = l∗ l = l .
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Example 3.5 Let (D,∗, ○) be a dimonoid in which (D,∗) is an idempotent semigroup and let a

function D ×D Ð→D defined as (x, y)z→ xy = y . Then D is a D -dimodule.

Proposition 3.6 Let S1, S2 be semigroups and f be a homomorphism of semigroup from S1 to

S2 . Then S1 is a D -dimodule if S2 is D -dimodule.

Proof Let the semigroup S2 be D -dimodule with the mapping D × S2 → S2 , (u, y) z→ uy .

Thus consider the mapping D × S1 → S1 , (u,x)z→ ux = uf(x) . Then S1 is a D -dimodule. ◻

Proposition 3.7 Let (D,∗, ○) be a distributive dimonoid and a function D ×D Ð→D be defined

as (x, y)z→ xy = x ○ y . Then (D,∗) is a D -dimodule.

Proof Straightforward. ◻

Example 3.8 shows that the Proposition 3.7 may not be correct if (D,∗, ○) is not a distributive

dimonoid, in general.

Example 3.8 Consider the dimonoid D in Example 2.20. Thus (D,∗) is not a D -dimodule

since m ∗ (l ∗ l) =m ≠ l = (m ∗ l) ∗ (m ∗ l) .

Proposition 3.9 Let {SiDi-module ∣ i ∈ I} . Then ∏i∈I Si is a ∏i∈I Di -module.

Proof Consider the mapping ∏i∈I Di ×∏i∈I Si → ∏i∈I Si , ((di)i∈I , (si)i∈I) z→ (di)i∈I .(si)i∈I =

(disi)i∈I . Then ∏i∈I Si is a ∏i∈I Di -module. ◻

Proposition 3.10 Let (D,∗, ○) be a dimonoid and a semigroup S be a D -dimodule with a bijective

mapping D × S → S . Then D is a distributive dimodule.

Proof Let k, l,m ∈ D and x ∈ S . Thus [k ○ (l ∗ m)]x = k[(l ∗ m)x] = k((lx)(mx)) =

(k(lx))(k(mx)) = ((k ○ l)x)((k ○m)x) = [(k ○ l)∗ (k ○m)]x and [(l ∗m) ○ k]x = [(l ○ k)∗ (m ○ k)]x

similarly. Hence D is distributive via bijectivity. ◻

Definition 3.11 Let (S, ⋅) be a D -dimodule and ∅ ≠ E ⊆ S . Then E is called a D -subdimodule

of S if, for all x, y ∈ E and u ∈D , x ⋅ y, ux ∈ E .

Example 3.12 Listed below are some examples of subdimodules:

(i) Each dimodule is a subdimodule of itself.

(ii) Let D be the D -dimodule in Example 3.5. Then each subsemigroup of D is a subdimodule

of D .
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(iii) Let (S, ⋅) be the D -dimodule in Example 3.2-(i) and E = {a} . Then E is a D -subdimodule

of S .

Proposition 3.13 Let S be a D -dimodule and {Ei ∣ i ∈ I} be a family of the D -subdimodules of

S .Then ⋂i∈I Ei is a D -subdimodule of S if ⋂i∈I Ei ≠ ∅ .

Proof Let x, y ∈ ⋂i∈I Ei and u ∈D . Thus x, y ∈ Ei for all i ∈ I . Hence, for all i ∈ I , x ⋅y ∈ Ei and

ux ∈ Ei since Ei is a D -subdimodule. Then x ⋅y ,ux ∈ ⋂i∈I Ei . Therefore ⋂i∈I Ei is a D -dimodule

of S . ◻
Example 3.14 shows that Proposition 3.13 may not be correct for the union of the families

of subdimodules.

Example 3.14 Let D = {a, b, c} and (D,∗) be the semigroup with the table below. If the function

D ×D Ð→D is defined as (u,x)z→ ux = x , then D is a D -dimodule.

∗ a b c
a a a a
b a b a
c a a c

The subsets A = {b} and B = {c} of D are D -subdimodules. However, A ∪B = {b, c} is not a

D -subdimodule since b ∗ c = a ∉ A ∪B .

Proposition 3.15 Let S be a D -dimodule and A ⊆ S .

(i) Let a ∈ A be idempotent element and (A ∶D S)a be the set {u ∈ D ∣ ux = a for all x ∈ A} .

Then (A ∶D S)a is a subdimonoid of D if it is nonempty.

(ii) Let A is a subsemigroup of S and (A ∶D S) = {u ∈ D ∣ uS ⊆ A} . Then (A ∶D S) is a

subdimonoid of D if it is nonempty.

Proof Straightforward. ◻

Proposition 3.16 Let {Si ∣ i ∈ I} be a family of the D -dimodules. Then ∏i∈I Si is a D -dimodule

and it is called direct product of the family {Si ∣ i ∈ I} .

Proof Let the mapping D ×∏i∈I Si → ∏i∈I Si , (d, (si)∈I) z→ d(si)i∈I = (dsi)i∈I . Then ∏i∈I Si

is a D -dimodule. ◻

Definition 3.17 Let S1, S2 be D -dimodules. A function f ∶ S1 Ð→ S2 is called a homomorphism

of D -dimodules if, for all x, y ∈ S1 and u ∈D , f(x ⋅ y) = f(x) ⋅ f(y) and f(ux) = uf(x) .
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Example 3.18 Let S1 be a D -dimodule and S1 be the D -dimodule in Example 3.1. Let a function

f ∶ S1 Ð→ S2 be defined by f(x) = a for all x ∈ S1 . Then f is a homomorphism of D -dimodules.

Example 3.19 Let two binary operations on Z5 be defined as follows:

x̄ ∗ ȳ =
⎧⎪⎪⎨⎪⎪⎩

2̄, x̄=ȳ=1̄

0̄, otherwise
, x̄ ○ ȳ =

⎧⎪⎪⎨⎪⎪⎩

4̄, x̄=ȳ=3̄

0̄, otherwise.

(Z5,∗, ○) is a dimonoid [5]. The semigroup (Z2, ⋅) is a Z5 -dimodule with the operation Z5×Z2 Ð→

Z2 , (ū, x̄) z→ 1̄ and the semigroup (Z4,+) is a Z5 -dimodule with the operation Z5 × Z4 Ð→ Z4 ,

(ū, x̄)z→ 0̄ . Then a function f ∶ Z4 Ð→ Z2 , x̄z→ f(x̄) = 1̄ is a homomorphism of Z5 -dimodules.

Example 3.20 Let D be the dimonoid in Example 3.2 and S be the D -dimodule in the case

(i). Then N is also a D -dimodule since D is an arbitrary dimonoid in Example 3.3. Consider

f ∶ N→ S ,

f(n) =
⎧⎪⎪⎨⎪⎪⎩

b, 2 ∣ n
a, 2 ∤ n.

Then f is a homomorphism of D -dimodules.

Theorem 3.21 Let S and Y be D -dimodules, and f ∶ S Ð→ Y be a homomorphism of D -

dimodules. If E is a subdimodule of S , then f(E) is a subdimodule of Y .

Proof ∅ ≠ f(E) ⊆ Y since E is a subdimodule of S . Let u ∈ D and a, b ∈ f(E) . There

exist x, y ∈ E such that a = f(x), b = f(y) since a, b ∈ f(E) . a ⋅ b = f(x) ⋅ f(y) = f(x ⋅ y) and

ua = uf(x) = f(ux) since f is a homomorphism of D -dimodules. Hence a ⋅ b, ua ∈ f(E) since

x ⋅ y, ux ∈ E . Thus f(E) is a subdimodule of Y . ◻

Theorem 3.22 Let S and Y be D -dimodules, f ∶ S Ð→ Y be a homomorphism of D -dimodules

and X be a subdimodule of Y . Then f−1(X) is a subdimodule of S if f−1(X) ≠ ∅ .

Proof ∅ ≠ f−1(X) ⊆ S since X is a subdimodule of Y . Let u ∈ D and x, y ∈ f−1(X) . Thus

f(x), f(y) ∈ X . f(x) ⋅ f(y) = f(x ⋅ y) ∈ X and uf(x) = f(ux) ∈ X since f is a homomorphism of

D -dimodule. Hence x ⋅ y, ux ∈ f−1(X) . Thus f−1(X) is a subdimodule of S . ◻

Corollary 3.23 Let S and Y be D -dimodules, f ∶ S Ð→ Y be a surjective homomorphism of

D -dimodule and X be a subdimodule of Y . Then f−1(X) is a subdimodule of S .
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Proof X ≠ ∅ since X is a subdimodule of Y . Thus there exists y ∈ X . Hence there exists

x ∈ S such that f(x) = y since f is a surjective function. Hence f−1(X) ≠ ∅ . Thus f−1(X) is a

subdimodule of S as per Theorem 3.22. ◻

Theorem 3.24 Let S be a D -dimodule, a ∈ S and Da = {da ∣ d ∈D} . Then Da is a subdimodule

of S .

Proof ∅ ≠ Da ⊆ S . Thus let x, y ∈ Da and u ∈ D . Hence there exist d1, d2 ∈ D such that x =

d1a, y = d2a . x ⋅y = (d1a) ⋅(d2a) = (d1∗d2)a ∈Da since d1∗d2 ∈D and ux = u(d1a) = (u○d1)a ∈Da

since u ○ d1 ∈D . Therefore Da is a subdimodule of S . ◻

Theorem 3.25 Let (D,∗, ○) be a distributive dimonoid, S be a D -dimodule, a ∈ S and Da =

{da ∣ d ∈D} . Then the map f ∶D Ð→Da, f(d) = da is a surjective homomorphism of D -dimodule.

Proof The surjective map f is a homomorphism of D -dimodule since f(u) ⋅ f(v) = (ua) ⋅ (va) =

(u ∗ v)a = f(u ∗ v) and f(d ○ u) = (d ○ u)a = d(ua) = df(u) for all u, v, d ∈D . ◻

Theorem 3.26 Let D1 and D2 be two dimonoids and let f ∶D1 →D2 be a dimonoid homomor-

phism. Then S is a D1 -dimodule if S is a D2 -dimodule.

Proof Consider D1 × S → S , (u,x)z→ f(u)x . Let u, v ∈D1 and x, y ∈ S . Then

u(x ⋅ y) = f(u)(x ⋅ y) = (f(u)x) ⋅ (f(u)y) = (ux) ⋅ (uy),

(u ∗ v)x = f(u ∗ v)x = (f(u) ∗ f(v))x = (f(u)x) ⋅ (f(v)x) = (ux) ⋅ (vx),

u(vx) = u(f(v)x) = f(u)(f(v)x) = (f(u) ○ f(v))x = f(u ○ v) = (u ○ v)x

since S is a D2 -dimodule and f ∶D1 →D2 be a dimonoid homomorphism. ◻

4. Acknowledgements

The authors would like to express their sincere thanks to Prof. İmdat İşcan (Professor of the

Department of Mathematics, Faculty of Arts and Sciences, Giresun University) for his valuable

suggestions.

Declaration of Ethical Standards
The authors declare that the materials and methods used in their study do not require ethical

committee and/or legal special permission.

46



Ertuğrul Akçay and Canan Akın / FCMS

Authors Contributions

Author [Ertuğrul Akçay]: Collected the data, contributed to research method or evaluation of

data, wrote the manuscript (%50).

Author [Canan Akın]: Thought and designed the research/problem, contributed to completing the

research and solving the problem (%50).

Conflicts of Interest
The authors declare no conflict of interest.

References

[1] Grillet P.A., Semigroups: An Introduction to the Structure Theory, Marcel Dekker, 1995.

[2] Hungerford T.W., Algebra, Springer-Verlag, 1974.

[3] Kilp M., Knauer U., Mikhalev A.V., Monoids, Acts and Categories with Applications to Wreath
Products and Graphs, De Gruyter Expositions in Mathematics, 29, Walter de Gruyter, 2000.

[4] Loday J.L., Dialgebras in “Dialgebras and Related Operads”, 7-66, Lecture Notes in Mathematics,
1763, Springer, 2001.

[5] Zhuchok A.V., Commutative dimonoids, Algebra and Discrete Mathematics, 2, 116-127, 2009.

[6] Zhuchok A.V., Dimonoids, Algebra and Logic, 50(4), 323-340, 2011.

[7] Zhuchok A.V., Free commutative dimonoids, Algebra and Discrete Mathematics, 9, 109-119, 2010.

[8] Zhuchok A.V., Free dimonoids, Ukrainian Mathematical Journal, 63(2), 196-208, 2011.

[9] Zhuchok A.V., On the structure of dimonoids, Semigroup Forum, 94(2), 194-203, 2009.

47



Fundamentals of Contemporary Mathematical Sciences
doi:10.54974/fcmathsci.1303769

(2024) 5(1) 48 – 59
Research Article

A Robust Approach About Compact Operators on Some Generalized
Fibonacci Difference Sequence Spaces

Murat Candan ∗

İnönü University, Faculty of Science, Department of Mathematics
Malatya, Türkiye

Received: 27 May 2023 Accepted: 16 November 2023

Abstract: In this new study, which deals with the different properties of ℓp(F̂ (r, s)) (1 ≤ p < ∞)

and ℓ∞(F̂ (r, s)) spaces defined by Candan and Kara in 2015 by using Fibonacci numbers according to

a certain rule, we have tried to review all the qualities and features that the authors of the previous

editions have found most useful. This document provides everything needed to characterize the matrix

class (ℓ1, ℓp(F̂ (r, s))) (1 ≤ p <∞) . Using the Hausdorff measure of non-compactness, we simultaneously

provide estimates for the norms of the bounded linear operators LA defined by these matrix transformations

and identify requirements to derive the corresponding subclasses of compact matrix operators. The results

of the current research can be regarded as to be more inclusive and broader when compared to the similar

results available in the literature.
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1. Elementary Classical Concepts

As always, our aim is to use the matrix domain and to remind readers about the information they

will need to use calculus effectively in their work in later sections. To achieve this, we retained the

paper’s mathematical level, the orientation of the new sequence space to the Hausdorff measure,

its concentration on previous works, and variety of the theorems, and continued to adapt some of

the methods used in measurement theory. Although many of the presentations in this new paper

are noticeably more general than those in earlier articles, the level of rigor is about the same. As

part of the overall review plan, it is going to be helpful for beginners to review the five notable

books given in [1–5] with accessible material, without sacrificing the standards or scope their users

want to see. Let us start by trying to explain some of the essentials without exaggerating the

obvious. The history of numbers is almost as old as the existence of humanity and was created to
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meet the mathematical needs of all people and scientists. This was true in the beginnings of the

subject, and it is true today. In much of our work, the sequences will have domains and ranges

that are sets of naturel numbers N = {0,1,2, ...} and real numbers R , respectively. We will write

limk , supk , infk and ∑k instead of limk→∞ , supk∈N , infk∈N and ∑∞k=0 , respectively.

We will now consider two related topics that will be used in the next sections: infinite

sequences and infinite series. An infinite sequence of numbers is a function whose domain is the set

of natural numbers. The word series always implies an infinite number of term to be combined by

adding in a definite order. The vector space of all real sequences is expressed by ω . We are quite

familiar with that each subspace of ω is said a sequence space. In order to use in this work, a few

additional notations concerning sequences are needed. The sets of all finite sequences, bounded

sequences, convergent sequences, and null sequences, respectively, should be denoted by, φ, ℓ∞,

c and c0 . For any real number p with 1 ≤ p < ∞ , the sequence space {x ∈ ω ∶ ∑k ∣xk ∣p <∞} is

denoted by the notation ℓp . In addition to these, the sequence (1,1, ...) and for each natural

number n , the sequence with 1 only in the nth term and 0 in all other terms is denoted by the

notations e and e(n) , respectively. The sum ∑n
k=0 xke

(k) is indicated by x[n] and is referred to as

the n -section of any sequence x . Series whose partial sums sequence are convergent and bounded

are also shown with cs and bs notations, respectively.

A complete normed space is referred to as a B − space . A K − space , on the other hand,

is a topological sequence space in which all coordinate functionals πk , given by πk(x) = xk , are

continuous. A BK − space is essentially a Banach space with continuous coordinates, meeting the

requirements of both a K − space and a B − space . If all sequences x = (xk) ∈ X share the same

representation, then a BK − space denoted as X ⊃ φ is said to possess AK , where x = ∑k xke
(k) .

To provide an example, the sequence space ℓp (1 ≤ p < ∞) can be regarded as a BK − space

with the norm ∥x∥p = (∑k ∣xk ∣p)
1/p . Furthermore, c0 , c , and ℓ∞ also qualify as BK − spaces ,

possessing the norm ∥x∥∞ = supk ∣xk ∣ . Additionally, the BK − spaces c0 and ℓp exhibit AK ,

where 1 ≤ p <∞ .

If there exists a singular sequence (αn) consisting of scalars such that x = ∑n αnbn , meaning

that limm ∥x −∑m
n=0 αnbn∥ = 0 , then the sequence (bn) in a normed space X is referred to as a

Schauder basis for all x ∈X .
The β -dual of a sequence space X is defined as follows:

Xβ = {a = (ak) ∈ ω ∶ ax = (akxk) ∈ cs for all x = (xk) ∈X} .

An infinite matrix of real numbers, denoted by A = (ank)∞n,k=0 , where n, k ∈ N , can be

represented as An , which denotes the sequence in the nth row of A . Furthermore, if x = (xk)∞k=0 ∈
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ω , the A -transform of x is defined as the sequence Ax = {An (x)}∞n=0 , where

An(x) =
∞
∑
k=0

ankxk (n ∈ N) , (1)

provided that the series on the right-hand side converges for each n ∈ N .

We denote (X,Y ) as the class of all infinite matrices that map from X to Y , where X

and Y are subsets of ω . In other words, A ∈ (X,Y ) if and only if An ∈ Xβ for every n ∈ N and

Ax ∈ Y for every x ∈X .

One way to create a new sequence space is by utilizing the matrix domain, and a thorough

comprehension of it requires substantial expertise. Let X be any sequence space. Then the domain

XA of an infinite matrix A in X is defined by

XA = {x = (xk) ∈ ω ∶ Ax ∈X} . (2)

Let us also mention here that XA is also a sequence space. The reader can refer to the recent

papers [6–10] on the domains of certain triangles in the classical sequence spaces and related topics.

The following results are fundamental and often used [11, 12].

Lemma 1.1 Let X ⊃ ϕ and Y be a BK –space.

(a) Therefore, for any matrix A ∈ (X,Y ) , we get (X,Y ) ⊂ B(X,Y ) , so indicating that for any

x ∈X , LA(x) = Ax describes an operator LA ∈ B(X,Y ) .

(b) If X has AK , and after that B(X,Y ) ⊂ (X,Y ) , meaning that there is a A ∈ (X,Y ) with any

operator having L ∈ B(X,Y ) and L(x) = Ax for every x ∈X .

2. The Hausdorff Measure of Non-Compactness

In this part, our aim is to describe the Hausdorff measure used in theory and practice that

characterizes compact operators between Banach spaces. For this purpose, this section stars with

clear expressions of relative definitions, guidelines and theorems together with explanatory and

other demonstrative subject. It follows proven and supplementary theorems. The proven theorems

give to demonstrate and magnify the theory, and to reiterate the fundamental principles that are

crucial for effective learning. The concept of Hausdorff measure of non-compactness appears in

some branches of mathematics. Recently, this concept has been used to characterize compact

matrix operators between BK –spaces under certain conditions.

The Hausdorff measure of non-compactness χ concept stems largely from the investigations

of Goldenštein, Gohberg and Markus [13] and in the following years this concept was taken up and

studied by Goldenštein and Markus [14]. Yet some of its ideas date back to the time of Kuratowski
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[15]. Later, Darbo [16] took this measure and generalized another concept besides the classical

Schauder fixed point principle.

In the context of infinite-dimensional Banach spaces X and Y , it is important to restate

the definition of a compact operator. A linear operator L that maps from X to Y is considered

compact if it encompasses the entire domain of X and, in addition, if the sequence (L(xn))

representing the images of all bounded sequences (xn) in X under L has a convergent subsequence.

In the field of functional analysis, the collection of all compact operators in B(X,Y ) is denoted

by C(X,Y ) .

Let (X,d) be a metric space. We define the open ball B(x, r) as the set {x ∈X ∶ d(x,x0) <

r} , where r represents the radius and x0 denotes the center. Furthermore, let M(X) denote

the collection of all bounded subsets of X . If Q ∈ M(X) , then the Hausdorff measure of non-

compactness of the set Q , denoted by χ(Q) , is defined as follows:

χ(Q) = inf {ϵ > 0 ∶ Q ⊂
n

⋃
k=1

B(xk, rk), xk ∈X, rk < ϵ (k = 1,2, ...), n ∈ N} .

The Hausdorff measure of non-compactness is defined as the function χ ∶MX → [0,∞) .

In previous works such as [11, 17–20], the applications of the Hausdorff measure theorems

to condensing operators, compact matrix operators on some BK -spaces, and measures of non-

compactness in Banach spaces are further explored.

The objective of this paragraph is to provide a concise description of the Hausdorff measure

of non-compactness operators between Banach spaces. Let X and Y be Banach spaces, and let χ1

and χ2 be the Hausdorff measures of non-compactness on X and Y , respectively. If L(Q) ∈M(Y )

for all Q ∈ M(X) , and if there exists C ≥ 0 such that χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈ M(X) ,

then the operator L ∶X → Y is referred to as (χ1 ,χ2)-bounded. The quantity

∣L∣(χ1, χ2) = inf{C ≥ 0 ∶ χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈MX }

is defined as the (χ1, χ2)–measure of non-compactness of L if the operator L is (χ1 , χ2)-bounded.

It is important to note that if both χ1 and χ2 are denoted as χ , then ∣L∣(χ1, χ2) = ∣L∣χ .

Our primary objective in this context is to provide a comprehensive explanation of the

applications of the Hausdorff measure of non-compactness in characterizing compact operators

between Banach spaces. Let X and Y be Banach spaces, and let L be an element of B(X,Y ) ,

indicating that L is a bounded linear operator from X to Y . If L is non-compact, the Hausdorff

measure of non-compactness of L , denoted as ∥L∥χ , is defined as follows ([20, Theorem 2.25]):

∥L∥χ = χ(L(SX)). (3)
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Furthermore, L is characterized as a compact operator if and only if the Hausdorff measure of

non-compactness ∥L∥χ is equal to zero, as expressed in ([20, Corollary 2.26]):

∥L∥χ = 0. (4)

The determination of the Hausdorff measure of non-compactness, denoted as χ(Q) , for

bounded sets Q in a Banach space X is based on the identities presented in (3) and (4). These

identities simplify the characterization of compact operators L ∈ B(X,Y ) . Estimates, or even

identities, for χ(Q) can be obtained when X possesses a Schauder basis.

Theorem 2.1 ([13] or [20, Theorem 2.23]) Let X be a Banach space with a Schauder basis

(bk)∞k=0 , Q ∈ MX , Pn ∶ X → X will be the projectors onto the linear span of {b0, b1, . . . , bn} and

Rn = I −Pn for n = 0,1, . . . , in which I indicates the identity map on X . Under these conditions,

the following inequality is satisfied

1

a
⋅ lim sup

n→∞
(sup
x∈Q
∥Rn(x)∥) ≤ χ(Q) ≤ lim sup

n→∞
(sup
x∈Q
∥Rn(x)∥) ,

in which a = lim supn→∞ ∥Rn∥ .

The following result, in especially, demonstrates how to calculate the Hausdorff measure of

non-compactness in the BK -spaces with AK , c0 and ℓp (1 ≤ p <∞) .

Theorem 2.2 ([20, Theorem 2.15]) A bounded subset of the normed space X , in which X is ℓp

for 1 ≤ p <∞ or c0 , is defined as Q . We can have

χ(Q) = lim
n→∞

(sup
x∈Q
∥Rn(x)∥) (5)

if Pn ∶X →X is the operator described by Pn(x) = x[n] for every x = (xk)∞k=0 ∈X and Rn = I −Pn

for n = 0,1, . . . .

It is highly reasonable to deduce both necessary and sufficient criteria for matrix operators

between a Schauder basis and a BK -space by employing the aforementioned discoveries, as well

as the Hausdorff measure of non-compactness. Matrix mappings across BK -spaces give rise to

bounded linear operators between these Banach spaces, rendering AK as compact operators.

Presently, numerous researchers have embraced this approach in multiple research publications

(see, for instance, [21–31]. The significance of these concepts will become evident in subsequent

discussions. In this work, we provide a description of the matrix classes (ℓ1, ℓp(F̂ (r, s))) (1 ≤

p <∞) . Moreover, we establish conditions for deriving the relevant subclasses of compact matrix
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operators through the utilization of the Hausdorff measure of non-compactness. Additionally, we

derive an identity for the norms of the bounded linear operators LA that are determined by these

matrix transformations.

3. The Fibonacci Difference Sequence Spaces

ℓp(F̂ (r, s)) and ℓ∞(F̂ (r, s))

Although infinite sequences were used extensively in the early history of the calculus, especially,

they have appeared in the history of mathematics since antiquity. In the middle ages the mathe-

matician Fibonacci, in his work Liber Abaci (1202) used sequences of numbers 1,1,2,3,5, . . . . You

may already be familiar with Fibonacci sequences, but if not, you will understand the following

formula easy follow. For convenience, the steps in the sequence are usually labeled 1,1,2,3,5, . . .

and so on. In a much clearer way, the Fibonacci sequences f = (fn) starts with f0 = f1 = 1 and

uses the recursion formula
fn = fn−1 + fn−2; n ≥ 2.

The use of Fibonacci sequences is widely available and give opportunity for hands-on expe-

rience. When the most striking differences in art and architecture, plants and some living things in

nature were carefully examined, it was seen that they were related to the Fibonacci numbers. Let

me also point out here that, many applications of Fibonacci sequences are beyond the scope of this

work, but the material in this section can prepare you for later study as well as provide knowledge

that you can use as needed. Reference number [32] can be examined for a lot of information about

Fibonacci numbers, including the Golden ratio.

Let 1 ≤ p ≤ ∞ and q represent the conjugate of p throughout, that is, q = p/(p − 1) for

1 < p <∞ , that is, q = p/(p − 1) for 1 < p <∞ , q =∞ for p = 1 or q = 1 for p =∞.

In 2015, right after Kara [33], Candan and Kara [34] introduced the generalized Fibonacci

difference sequence spaces ℓp(F̂ (r, s)) and ℓ∞(F̂ (r, s)) , as follows;

ℓp(F̂ (r, s)) = {x = (xn) ∈ ω ∶∑
n

∣r fn
fn+1

xn + s
fn+1
fn

xn−1∣
p

<∞} ; 1 ≤ p <∞

and

ℓ∞(F̂ (r, s)) = {x = (xn) ∈ ω ∶ sup
n∈N
∣r fn
fn+1

xn + s
fn+1
fn

xn−1∣ <∞} .

When we use the equivalent notation of (2) for the sequence spaces ℓp(F̂ (r, s)) and

ℓ∞(F̂ (r, s)) , related sequence spaces becomes

ℓp(F̂ (r, s)) = (ℓp)F̂ (r,s) (1 ≤ p <∞) and also ℓ∞(F̂ (r, s)) = (ℓ∞)F̂ (r,s), (6)
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in which the matrix F̂ (r, s) = (f̂nk(r, s)) is described by

f̂nk(r, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s fn+1
fn

(k = n − 1)
r fn
fn+1

(k = n)
0 (0 ≤ k < n − 1) or (k > n)

(n, k ∈ N). (7)

To signal the fact that the sequence spaces ℓp(F̂ (r, s)) and ℓ∞(F̂ (r, s)) are BK -spaces according

to the

∥x∥ℓp(F̂ (r,s)) = (∑
n

∣yn(x)∣p)
1/p

(1 ≤ p <∞) and ∥x∥ℓ∞(F̂ (r,s)) = sup
n∈N
∣yn(x)∣ , (8)

norms defined on them, respectively, in which the sequence y = (yn) = (F̂ (r, s)n(x)) which is the

F̂ (r, s)-transform of any sequence x = (xn) , is used. That is

yn = F̂ (r, s)n(x) =
⎧⎪⎪⎨⎪⎪⎩

r f0
f1
x0 = rx0 (n = 0)

r fn
fn+1

xn + s fn+1
fn

xn−1 (n ≥ 1)
(n ∈ N). (9)

It should be emphasized that the findings of this study are more comprehensive than those

of Alotaibi et al. [35] in 2015.

4. Main Results
Many applications of compact operators are beyond the scope of this paper, but the material in

this section can prepare you to understand the subject and help you remember information you

can use when needed. From a historical perspective, the current concept of the Hausdorff measure

represents a culmination of the collective efforts of numerous individuals. However, the notion of

non-compactness’ Hausdorff measure was originally introduced in 1957 by Goldenštein, Gohberg,

and Markus, and was subsequently further explored by Goldenštein and Markus. In the study [36],

the sequence spaces Y , ℓ∞ , c0 and c were considered, enabling the characterization of the classes

(ℓp(F̂ ), Y ) , (ℓ∞(F̂ ), Y ) , (ℓ1(F̂ ), Y ) , as well as the compact operators (ℓp(F̂ ), ℓ1) and (ℓ1(F̂ ), ℓp) .

In this study, we introduce the classes B(ℓ1, ℓλp) for 1 ≤ p <∞ and compute the operator norms in

B(ℓ1, ℓλp) . Furthermore, leveraging the findings from the previous section, we describe the classes

C(ℓ1, ℓp) for 1 ≤ p <∞ and determine the Hausdorff measure of non-compactness for operators in

B(ℓ1, ℓλp) .

Let 1 ≤ p < ∞ . We now provide a characterization of B(ℓ1, ℓp(F̂ (r, s))) , along with the

computation of the operator norms in B(ℓ1, ℓp(F̂ (r, s))) . Additionally, we can utilize the results

presented in the previous section to both specify the Hausdorff measure of non-compactness for

operators in B(ℓ1, ℓp(F̂ (r, s))) and characterize the classes C(ℓ1, ℓp(F̂ (r, s))) for 1 ≤ p <∞ .

The following result is particularly advantageous in certain proofs.
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Lemma 4.1 ([20, Theorem 3.8]) T is a triangular matrix and with it X and Y being any two

sequence spaces; for the matrix A to be an element of the (X,YT ) class, the necessary and sufficient

condition is that C = T ⋅A and the matrix C belongs to the class (X,Y ) . In addition, if the X

and Y are BK -spaces, and also if the matrix A is an element of the class (X,YT ) , then

∥LA∥ = ∥LC∥. (10)

We then define the identities for the operator norm and the characterizations of the classes

B(ℓ1, ℓp(F̂ (r, s))) for 1 ≤ p <∞ .

Theorem 4.2 Let 1 ≤ p <∞ .

(a) We have L ∈ B(ℓ1, ℓp(F̂ (r, s))) if and only if there exists an infinite matrix A ∈ (ℓ1, ℓp(F̂ (r, s)))

such that

∥A∥ = sup
k
(∑

n

∣r fn
fn+1

ank + s
fn+1
fn

an−1,k∣
p

)
1/p

<∞ (11)

and

L(x) = Ax for all x ∈ ℓ1. (12)

(b) If L ∈ B(ℓ1, ℓp(F̂ (r, s))) , then

∥L∥ = ∥A∥. (13)

Proof For (a), when we keep in mind that ℓ1 is a BK -space with AK , for L ∈ B(ℓ1, ℓp(F̂ (r, s)))

from Lemma 1.1 under the condition 1 ≤ p <∞ hypothesis condition; the necessary and sufficient

condition is that there is an infinite matrix A such that A ∈ (ℓ1, ℓp(F̂ (r, s))) provided that the

condition (12) is met. If we denote the product of the matrices F̂ (r, s) = (f̂nk(r, s)) and A = (ank)

by C = (cnk) , that is, we can express it clearly as follows

cnk = r
fn
fn+1

ank + s
fn+1
fn

an−1,k.

Now it is quiet easy to say that from Lemma 4.1 (a) that the necessary and sufficient condition

A ∈ (ℓ1, ℓp(F̂ (r, s))) is C ∈ (ℓ1, ℓp) . If the Example 8.4.1D in the reference [12] is used at this stage

of the proof, it is seen that the necessary and sufficient condition for C ∈ (ℓ1, ℓp) is

∥C∥ = sup
k
(
∞
∑
n=0
∣cnk ∣p)

1/p

<∞,

which proves the claim. ◻
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(b) First, we show that ∥L∥ ≤ ∥A∥ . Let L ∈ B(ℓ1, ℓλp) . It is seen from (10) that ∥L∥ = ∥LC∥

for LC ∈ B(ℓ1, ℓp) is presented by the equation LC(x) = Cx for every x ∈ ℓ1 . Now, we can write

by the Minkowsky’s inequality that, we can write the following expressions

∥LC(x)∥p = (
∞
∑
n=0
∣
∞
∑
k=0

cnkxk∣
p

)
1/p

≤
∞
∑
k=0
∣xk ∣ (

∞
∑
n=0
∣cnk ∣p)

1/p

≤ ∥C∥ ⋅ ∥x∥

= ∥A∥ ⋅ ∥x∥

and from here we can write the following inequality

∥L∥ ≤ ∥A∥ (14)

for the norms of L and A . Now, let us prove the other side of the inequality. For this, when

e(k) ∈ Sℓ1 (k ∈ N) is taken, it is seen that

∥L∥ ≥ ∥A∥ (15)

from the equation below

∥LC(e(k))∥ = (
∞
∑
n=0
∣cnk ∣p)

p

.

When (14) and (15) are considered together, it is proved that (13).

The Hausdorff measure of the non-compactness of operators in B(ℓ1, ℓp(F̂ (r, s))) will be

established in the expression below. Another closely related result to be used in the first come

proof is given below.

Lemma 4.3 ([37, Theorem 4.2]) Let T be a triangle and χ and χT be the Hausdorff measures

of non-compactness on MX and MXT
, respectively. Assume that X is a linear metric space with

a translation invariant metric. If Q ∈MXT
, then χT (Q) = χ(TQ) .

Theorem 4.4 Let L ∈ B(ℓ1, ℓp(F̂ (r, s))) with 1 ≤ p < ∞ and A demonstrate the matrix which

stands for L . In that case we get

∥L∥χℓp(F̂ (r,s))
= lim

m→∞
(sup

k

∞
∑
n=m
∣r fn
fn+1

ajk + s
fn+1
fn

aj−1,k∣
p

)
1/p

.
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Proof First of all, we briefly write S = Sℓ1 , also C[m] (m ∈ N) for the matrix with the rows

C
[m]
n = 0 for 0 ≤ n ≤m and C

[m]
n = Cn for n ≥m + 1 . In this case, if we use both Lemma 4.3 and

together with (3), (5), (11) and (13) the following equations can easily be calculated

∥L∥χℓp(F̂ (r,s))
= χℓp(F̂ (r,s))(L(S))

= χℓp(LC(S))

= lim
m→∞

(sup
x∈S
∥Rm(Cx)∥p)

= lim
m→∞

(sup
x∈S
∥C[m]x∥p)

= lim
m→∞

∥C[m]∥

= lim
m→∞

(sup
k

∞
∑
n=m
∣r fn
fn+1

ajk + s
fn+1
fn

aj−1,k∣
p

)
1/p

.

◻
This is the desired result.
We are now ready to give the following theorem, which obtains the characterization of

C(ℓ1, ℓp(F̂ (r, s))) by coordinating the condition given in (4) and Theorem 4.4.

Theorem 4.5 If L ∈ B(ℓ1, ℓp(F̂ , 1 ≤ p < ∞(r, s))) and at the same time the matrix A is the

matrix representing L , a necessary and sufficient condition for L to be compact is that the following

limit is equal to zero, that is

lim
m→∞

(sup
k

∞
∑

n=m
∣r fn

fn+1
ajk + s fn+1

fn
aj−1,k∣

p
) = 0.
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