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Research Article

Elementary proof of Funahashi’s theorem

MITSUO IZUKI, TAKAHIRO NOI, YOSHIHIRO SAWANO*, AND HIROKAZU TANAKA

ABSTRACT. Funahashi established that the space of two-layer feedforward neural networks is dense in the space of
all continuous functions defined over compact sets in n-dimensional Euclidean space. The purpose of this short survey
is to reexamine the proof of Theorem 1 in Funahashi [3]. The Tietze extension theorem, whose proof is contained in
the appendix, will be used. This paper is based on harmonic analysis, real analysis, and Fourier analysis. However,
the audience in this paper is supposed to be researchers who do not specialize in these fields of mathematics. Some
fundamental facts that are used in this paper without proofs will be collected after we present some notation in this
paper.

Keywords: Neural network, activation function, Funahashi’s theorem, Fourier analysis, uniform approximation.

2020 Mathematics Subject Classification: 42B35, 47B33, 46E30.

1. INTRODUCTION

The goal of this survey is to prove the following theorem due to Funahashi using theorems
on uniform convergence in harmonic analysis and real analysis:

Theorem 1.1 (Theorem 1 in Funahashi [3]). Let ϕ(t) be a non-constant, bounded, increasing, and
continuous function on R, and let K ⊂ Rn a compact set. Let ε > 0 and f(x) be a continuous
real-valued function on K. Then there exists a natural number N1 and real constants ck, θk, wkj

(1 ≤ k ≤ N1, 1 ≤ j ≤ n) such that

(1.1) max
x∈K

∣∣∣f(x)− f̃(x)
∣∣∣ < ε

holds, where

f̃(x) =

N1∑
k=1

ckϕ

 n∑
j=1

wkjxj − θk

 , (x = (x1, x2, . . . , xn) ∈ Rn).

Mathematically, Theorem 1.1 can be understood as a theorem on uniform approximation.
Uniform approximation is important when we consider the change of the limit and integration
over compact sets. It is also important in the field of numerical analysis.

We say that f̃(x) belongs to the space of two-layer feedforward neural networks generated
by ϕ(t). In the branch of the neural network, ϕ(t) is called (0-)sigmoidal.

The field of artificial neural networks (or neural networks in short) began in 1943 when Mc-
Culloch and Pitts demonstrated that a combination of neuron-like computational units could
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Elementary proof of Funahashi’s theorem 31

perform any logical operations [8]. Following this seminal work, in 1958, Rosenblatt formu-
lated a single-layer neural network called a perceptron inspired by information processing in
the central nervous system [11]. As a neuron emits an action potential when the sum of synap-
tic inputs exceeds the threshold, a perceptron performs a classification task by computing its
activation according to a weighted sum of multiple inputs. Two notable theoretical analyses
of the perceptron included the convergence theorem and the counting theorem; the former
guarantees that a perceptron can learn a decision boundary when a training set is linearly sep-
arable [10], and the latter estimates the number of training points that a perceptron can learn
[2]. Despite these conceptual and theoretical developments, interest in neural networks waned
in the 1970s after Minksy and Pepert suggested that a perceptron cannot perform non-linear
operations as simple as exclusive or (XOR) [9]. A multilayer neural network could realize such
non-linear functions, but no learning algorithms were known to train a multilayer neural net-
work.

The field of neural networks was revived in the early 1980s when the backpropagation algo-
rithm was invented to train multilayer neural networks [13]. Errors in the output units propa-
gate backward to hidden units, and the weights connected to hidden units are updated accord-
ing to the backpropagated errors. The backpropagation algorithm allows a multilayer network
to learn from any training set of non-linear relations. Introducing hidden units in a multilayer
network resulted in two significant consequences. First, the multilayer neural network can find
latent representations in hidden layers related to, but not the same as, network inputs and out-
puts. Such latent representations allow for abstraction and dimensional reduction of network
input. Second, a multilayer network with hidden layers approximates arbitrary continuous
mapping from input to output. The universal approximation theorem states that a multilayer
network composed of at least one hidden layer can approximate any continuous function if
the number of hidden units is large enough and the parameters (weights and thresholds) are
appropriately adjusted.

A future historian might call the 21st century the century of neural networks. Since the sem-
inal work of Krizhevsky et al. outperformed conventional image classification approaches in
the ImageNet classification competition [7], deep neural networks prevail in various practical
applications. Despite empirical success, the deep-network approach is counterintuitive from
the point of view of conventional machine learning [14]. Although deep neural networks have
billions or trillions of tunable weight parameters, the networks hardly overfit to training data
and can generalize well to test data not used for training. Also, we do not understand theoret-
ically the advantages of stacking many layers, so designing a deep neural network is still an
art of trial and error rather than science. The lack of theoretical understanding of deep neural
networks impedes a systematic and optimal network structure design for a given application.

This survey revisits Funahashi’s proof of the universal approximation theorem [3]. The
theorem justified the training of neural networks using arbitrary input-output mappings and
played a crucial role in developing neural networks in the 1980s. We think it is essential to
reexamine Funahashi’s proof for multilayer neural networks with a single hidden layer to gain
insight into how we can generalize the theorem to the case of deep neural networks. The the-
orem is also instrumental in guiding recent physiological experiments. A single neuron is not
like a perceptron of linear separation as previously hypothesized, but can operate as a multi-
layer neural network that takes advantage of the non-linearity of synaptic input in dendritic
trees [4, 1]. By depositing Funahashi’s theorem in an accessible way, this survey aims to medi-
ate a deeper understanding of deep neural networks and the brain.

Theorem 1.1 seems to cover bounded functions. However, if we use some linear combina-
tions, then Theorem 1.1 can cover more functions. Let ReLU(t) = max(0, t) be the rectified
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linear unit. Although ReLU(t) is not a bounded function, the function ϕ(t) = ReLU(t − 1) −
ReLU(t) falls within the scope of Theorem 1.1. Therefore, the conclusion of Theorem 1.1 is true
even for the case of ϕ(t) = ReLU(t). The same applies to the function ϕ(t) = ReLU(t)k. In [5, 6],
the authors replaced the max-norm with Banach lattices and generalized the condition on ϕ(t).
Going through a similar argument, one can generalize the results in [5, 6] to the n-dimensional
case.

Here, we collect the notation and the preliminary facts in this paper.
(1) The set N0 consists of all non-negative integers.
(2) Given x,w ∈ Rn, we write the Euclidean inner product by x · w. We also write ∥x∥ =√

x · x.
(3) Given R > 0, we write B(R) = {x ∈ Rn : ∥x∥ < R}.
(4) Let E ⊂ Rn be a measurable set. The characteristic function χE(x) is defined by

χE(x) =

{
1, (x ∈ E)

0, (x /∈ E)
.

Furthermore, |E| is the Lebesgue measure of E.
(5) Let E ⊂ Rn be a measurable set that satisfies |E| > 0 and 1 ≤ p ≤ ∞. The Lebesgue

space Lp(E) consists of all measurable functions f(x) on E satisfying ∥f∥Lp(E) < ∞,
where

∥f∥Lp(E) =


(∫

E

|f(x)|p dx
)1/p

, (1 ≤ p <∞)

ess.supx∈E |f(x)|, (p = ∞)

.

If f(x) ∈ L1(E), then we say that f(x) is integrable over E. If E = Rn, then we merely
say that f(x) is integrable.

(6) Let f(x) be a function defined in Rn. The closure of the set {x ∈ Rn : f(x) ̸= 0} is said
to be the support of f(x) and denoted by suppf .

(7) The set C(Rn) is the set of all continuous functions in Rn. In addition, the set Cc(Rn) is
the set of all f ∈ C(Rn) satisfying that suppf is compact.

(8) The set C∞(Rn) is the set of all infinitely differentiable functions on Rn. In addition,
the set C∞

c (Rn) is the set of all f ∈ C∞(Rn) whose support is compact.
(9) The Schwartz class S(Rn) consists of all functions f ∈ C∞(Rn) satisfying∑

α∈Nn
0 ,j∈N0,|α|+j≤N

sup
x∈Rn

(1 + |x|)j |∂αf(x)| <∞

for all N ∈ N0, where we write

|α| = α1 + α2 + · · ·+ αn, ∂αf(x) =
∂|α|f

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

(x)

for α = (α1, α2, . . . , αn) ∈ Nn
0 .

(10) Given a complex number z, we can uniquely write z = x+ iy, where x, y ∈ R. We write
Re(z) = x with this in mind.

(11) Given a function f(x) on Rn, we formally define the Fourier transform by

F [f ](w) = f̂(w) =

∫
Rn

f(x)e−ix·w dx (w ∈ Rn).

Then the inverse Fourier transform is defined by

F−1[f ](x) = (2π)−n

∫
Rn

f(w)eix·w dw (x ∈ Rn).
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Let f(x) ∈ C∞
c (Rn). A fundamental result on Fourier analysis is that the convergence of the

limits

F [f ](w) = lim
R→∞

∫
B(R)

f(x)e−ix·w dx, F−1[f ](x) = (2π)−n lim
R→∞

∫
B(R)

f(w)eix·w dw

take places uniformly over w ∈ Rn and that these operators satisfies

F−1[Ff ](x) = f(x).

In the rest of this section, we recall a famous theorem in general topology, which plays a
vital role in proving the main theorem.

Theorem 1.2 (Tietze extension theorem). Let f : K → R be a continuous function defined over a
compact set K ⊂ Rn. Then there exists g(x) ∈ Cc(Rn) such that g(x) = f(x) on K.

We will give a self-contained proof of Theorem 1.2 as an appendix in Section 3. See [12] for
the proof of the theorem in general topological spaces.

2. PROOF OF THE MAIN THEOREM

The next lemma is used to get some information from the function ϕ(t).

Lemma 2.1 (Lemma 1 in Funahashi [3]). Let ϕ(t) be the same function as Theorem 1.1. Then there
exist constants δ, α > 0 such that ψ(t) ∈ L1(R) and that ψ̂(1) ̸= 0, where

ψ(t) = ϕ(t/δ + α)− ϕ(t/δ − α).

In particular, ψ(t) is real-valued because ϕ(t) is real-valued.

Proof. Let L,L′ > 0 be large numbers. Note that ψ(t) is non-negative since ϕ(t) is increasing.
Furthermore,∫ L

−L′
ψ(t) dt = δ

∫ L/δ+α

−L′/δ+α

ϕ(s) ds− δ

∫ L/δ−α

−L′/δ−α

ϕ(s) ds

= δ

∫ L/δ+α

L/δ−α

ϕ(s) ds− δ

∫ −L′/δ+α

−L′/δ−α

ϕ(s) ds ∈ [0, 4δα sup |ϕ|].

Thus, since L,L′ > 0 are arbitrary, ψ(t) is integrable.
It remains to show that ψ̂(1) ̸= 0 for some suitable choice of δ > 0. If ψ̂(1) = 0 for all δ > 0,

then we would have F [ϕ(· + α) − ϕ(· − α)] = 0. Thus, ϕ(t + α) = ϕ(t − α). Putting u = t − α,
we have ϕ(u) = ϕ(u + 2α). This means that ϕ(t) is a periodic function with period 2α. From
the periodicity and the assumption that ϕ(t) is increasing, ϕ(t) is a constant on [0, 2α]. Again,
from the periodicity, ϕ(t) is a constant on R. But this contradicts the assumption that ϕ(t) is not
constant. □

Roughly speaking, the idea of Funahashi is to apply the Fourier inversion forumula to have
information on ϕ(t). Since Theorem 1.1 is stated in discrete form, while the Fourier inversion
concerns the continuous representation, the integral over the whole space Rn. Therefore, we
need a tool that transforms continuous representations into discrete representations. Lemma
2.2 below serves this purpose.
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Lemma 2.2 (Lemma 2 in Funahashi [3]). Let A > 0, K ⊂ Rn be a compact set, and let h(w, x) be a
continuous function on [−A,A]n ×K. Define the functions H(x) and HN (x) (N ∈ N) on K by

H(x) =

∫
[−A,A]n

h(w, x) dw,

HN (x) =

(
2A

N

)n N−1∑
k1,k2,...,kn=0

h

(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N
, x

)
.

Then for all ε > 0, there exists N0 ∈ N such that max
x∈K

|H(x)−HN (x)| < ε for all N ≥ N0.

Proof. First, we abbreviate 1 = (1, 1, . . . , 1) ∈ Rn to shorten the equations under calculation.
On the other hand, k ∈ {1, 2, . . . , N − 1}n means that k = (k1, k2, . . . , kn) with every integer
kj ∈ {0, 1, . . . , N − 1} (j = 1, 2, . . . , n). Thus we write∑

k∈{1,2,...,N−1}n

=

N−1∑
k1,k2,...,kn=0

.

Then, for any k = (k1, k2, . . . , kn) ∈ {0, 1, . . . , N − 1}n,(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N

)
= −A1+

2A

N
k

and

HN (x) =

(
2A

N

)n N−1∑
k1,k2,...,kn=0

h

(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N
, x

)

=

(
2A

N

)n ∑
k∈{1,2,...,N−1}n

h

(
−A1+

2A

N
k, x

)
.(2.2)

We estimate

|H(x)−HN (x)| =

∣∣∣∣∣∣
∫
[−A,A]n

h(w, x) dw −
(
2A

N

)n ∑
k∈{1,2,...,N−1}n

h

(
−A1+

2A

N
k, x

)∣∣∣∣∣∣ .(2.3)

By the uniform continuity of h(w, x), for any ε > 0, there exists δ > 0 such that

|h(w, x)− h(w′, x)| < ε

(2A)n

for any w,w′ ∈ Rn satisfying |w−w′| < δ. We fixN0 ∈ N such that
2A

N0
·
√
n < δ and letN > N0.

Then we have∣∣∣∣w −
(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N

)∣∣∣∣ < 2A

N
·
√
n < δ

for each (k1, k2, . . . , kn) ∈ {0, 1, . . . , N − 1}n and

w ∈
n∏

j=1

[
−A+

2kjA

N
,−A+

2(kj + 1)A

N

]
.

So, we obtain ∣∣∣∣h(w, x)− h

(
−A1+

2A

N
k, x

)∣∣∣∣ < ε

(2A)n
(2.4)
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for any

w ∈
n∏

j=1

[
−A+

2kjA

N
,−A+

2(kj + 1)A

N

]
,

where k = (k1, k2, · · · , kn). For each k = (k1, k2, . . . , kn) ∈ {0, 1, . . . , N − 1}n, we put

C(k) =

n∏
j=1

[
−A+

2kjA

N
,−A+

2(kj + 1)A

N

]
.

Then, by (2.2) and (2.4), we see that

|H(x)−HN (x)| ≤
∑

k∈{1,2,...,N−1}n

∣∣∣∣∣
∫
C(k)

h(w, x) dw −
∫
C(k)

h

(
−A1+

2A

N
k, x

)
dw

∣∣∣∣∣
=

∑
k∈{1,2,...,N−1}n

∣∣∣∣∣
∫
C(k)

{
h(w, x)− h

(
−A1+

2A

N
k, x

)}
dw

∣∣∣∣∣
=

N−1∑
k1,k2,...,kn=0

∣∣∣∣∣
∫
C(k)

{
h(w, x)− h

(
−A1+

2A

N
k, x

)}
dw

∣∣∣∣∣
≤

N−1∑
k1,k2,...,kn=0

ε

(2A)n

(
2A

N

)n

≤ε.
This completes the proof. □

By the use of the Fourier transform in the real line, we approximate the Fourier inverse
transform of the Fourier transform.

Lemma 2.3. Assume that f(x) ∈ L1(Rn) satisfies F [f ](w) ∈ L1(Rn). For all 0 < A < ∞ and
all x ∈ Rn, we have I∞,A(f)(x) = JA(x), where I∞,A(f)(x) and JA(f)(x) are defined by (2.7) and
(2.8) below, respectively. In addition, both {JA(f)(x)}A>0 and {I∞,A(f)(x)}A>0 converge uniformly
in Rn.

Proof. Let ψ(t) be a function as in Lemma 2.1. By the Lebesgue dominated convergence theo-
rem, we see that

lim
A′→∞

∫ ∞

−∞
ψ(t)e−itχ[x·w−A′,x·w+A′](t) dt = ψ̂(1).

Thus, to prove that I∞,A(f)(x) = JA(f)(x) for all x ∈ Rn, it suffices to prove that

lim
A′→∞

∫
[−A,A]n

f̂(w)eix·w
(∫ ∞

−∞
ψ(t)e−itχ[x·w−A′,x·w+A′](t) dt

)
dw

=

∫
[−A,A]n

f̂(w)eix·wψ̂(1) dw.(2.5)

Fix A > 0 for the time being. We remark that

(2.6)
∣∣∣∣f̂(w)eix·w (∫ ∞

−∞
ψ(t)e−itχ[x·w−A′,x·w+A′](t) dt

)∣∣∣∣ ≤ ∣∣∣f̂(w)∣∣∣ ∥ψ∥L1(R)

and that
∣∣∣f̂(w)∣∣∣ ∥ψ∥L1(R) is independent of A′ and integrable on [−A,A]n. Therefore, applying

the Lebesgue dominated convergence theorem again, we obtain (2.5). Furthermore, we show
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that {JA(f)(x)}A>0 converges to F−1
[
f̂
]
(x) uniformly in Rn. Since f̂(w) is integrable, we see

that

sup
x∈Rn

∣∣∣F−1
[
f̂
]
(x)− JA(f)(x)

∣∣∣
=(2π)−n sup

x∈Rn

∣∣∣∣∫
Rn

f̂(w)eix·w
(
1− χ[−A,A]n(w)

)
dw

∣∣∣∣
≤(2π)−n

∫
Rn

∣∣∣f̂(w)∣∣∣ (1− χ[−A,A]n(w)
)
dw → 0 (A→ ∞).

This finishes the proof of the lemma. □

We now refer back to the proof of Theorem 1.1.

Proof of Theorem 1.1. Take ε > 0 arbitrarily. Let ψ(t) be the function defined by Lemma 2.1.
(I) First, suppose that f(x) ∈ C∞

c (Rn). Here f(x) need not be supported on K. Let 0 < A <
∞ and 0 < A′ <∞. We define

IA′,A(f)(x) =

∫
[−A,A]n

(∫ A′

−A′
ψ(x · w − w0) ·

1

(2π)nψ̂(1)
f̂(w)eiw0 dw0

)
dw

=
1

(2π)nψ̂(1)

∫
[−A,A]n

f̂(w)eix·w
(∫ ∞

−∞
ψ(t)e−itχ[x·w−A′,x·w+A′](t) dt

)
dw,

(2.7) I∞,A(f)(x) = lim
A′→∞

IA′,A(f)(x),

and

JA(f)(x) = (2π)−n

∫
[−A,A]n

f̂(w)eix·w dw.(2.8)

So far, we know that I∞,A(f)(x) = JA(f)(x) for all x ∈ Rn and A > 0 due to Lemma 2.3.
Because f ∈ C∞

c (Rn) ⊂ S(Rn), we see that

(2.9) f(x) = F−1
[
f̂
]
(x) = lim

A→∞
JA(f)(x) = lim

A→∞
I∞,A(f)(x),

where the convergence in (2.9) takes place uniformly in Rn. Thus, there exists A0 > 0 such that
for all A > A0,

(2.10) max
x∈Rn

|f(x)− I∞,A(f)(x)| <
ε

3
.

Below we take A > A0 arbitrarily. Now we approximate I∞,A(f)(x) on K using IA′,A(f)(x)
with A′ <∞. We fix x ∈ K and 0 < A′ <∞. Then we have

|I∞,A(f)(x)− IA′,A(f)(x)|

≤ 1

(2π)n
∣∣∣ψ̂(1)∣∣∣

∫
[−A,A]n

∣∣∣f̂(w)∣∣∣{∫
R\[−A′,A′]

|ψ(x · w − w0)| dw0

}
dw

=
1

(2π)n
∣∣∣ψ̂(1)∣∣∣

∫
[−A,A]n

∣∣∣f̂(w)∣∣∣ {∫ ∞

−∞
|ψ(t)|χR\[x·w−A′,x·w+A′](t) dt

}
dw.
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Because the set K is bounded, there exists R > 0 such that K ⊂ B(R). Let w ∈ [−A,A]n. Then
we have |x · w| ≤ ∥x∥ ∥w∥ ≤ R ·

√
nA and

R \ [x · w −A′, x · w +A′] =(−∞, x · w −A′) ∪ (x · w +A′,∞)

⊂
(
−∞,

√
nRA−A′) ∪ (−√

nRA+A′,∞
)

= : J.

We remark that the set J is independent of x and w. Hence we obtain

(2π)n
∣∣∣ψ̂(1)∣∣∣max

x∈K
|I∞,A(f)(x)− IA′,A(f)(x)|

≤
∫
[−A,A]n

∣∣∣f̂(w)∣∣∣ dw ·
(

max
x∈K,w∈[−A,A]n

∫ ∞

−∞
|ψ(t)|χR\[x·w−A′,x·w+A′](t) dt

)
≤
∫
[−A,A]n

∣∣∣f̂(w)∣∣∣ dw ·
∫ ∞

−∞
|ψ(t)|χJ(t) dt.

We note that lim
A′→∞

|ψ(t)|χJ(t) = 0, |ψ(t)| ∈ L1(R) and |ψ(t)|χJ(t) ≤ |ψ(t)|. Therefore, by

virtue of the Lebesgue dominated convergence theorem, we have lim
A′→∞

∫ ∞

−∞
|ψ(t)|χJ(t) dt = 0.

Namely there exists A′
0 > 0 such that for all A′ > A′

0,

(2.11) max
x∈K

|I∞,A(f)(x)− IA′,A(f)(x)| <
ε

3
.

Combining (2.10) and (2.11), we obtain

(2.12) max
x∈K

|f(x)− IA′,A(f)(x)| <
2

3
ε.

(II) Next, we consider the general case: f(x) is merely a continuous function defined over
K. We prove that a modified estimate of (2.12) is true. We take a real-valued extension g(x) ∈
Cc(Rn) of f(x). This is possible due to the Tietze extension theorem (Theorem 1.2). Let ρ(x) ∈
C∞

c (Rn) be such that 0 ≤ ρ(x) ≤ χB(1)(x) for all x ∈ Rn and ∥ρ∥L1(Rn) = 1. Write ρβ(x) =

β−nρ(β−1x). Define the convolution ρβ ∗ g(x) by ρβ ∗ g(x) =
∫
Rn

ρβ(x− y)g(y) dy. We employ

the operation g(x) 7→ ρβ ∗ g(x), which is called the mollifier. Applying the mollifier to g(x), we
find β ∈ (0, 1) such that

∥g − ρβ ∗ g∥L∞(Rn) <
ε

3
.

A geometric observation shows that suppg ⊂ supp(ρβ ∗ g) and that supp(ρβ ∗ g) is contained
in a fixed compact set L, the set of all points x whose distance from x does not exceed 1. Since
ρβ∗g(x) ∈ C∞

c (Rn), we can apply (2.12) to the function ρβ∗g(x). That is, there exist 0 < A0 <∞
and 0 < A′

0 <∞ such that for all A0 < A <∞ and A′
0 < A′ <∞,

max
x∈supp(ρβ∗g)

|ρβ ∗ g(x)− IA′,A(ρβ ∗ g)(x)| < 2

3
ε.

Recall that g(x) is an extension of f(x). Hence,

max
x∈K

|f(x)− IA′,A(ρβ ∗ g)(x)| = max
x∈K

|g(x)− IA′,A(ρβ ∗ g)(x)| .
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Therefore, we get

max
x∈K

|f(x)− IA′,A(ρβ ∗ g)(x)|

≤ max
x∈suppg

|g(x)− IA′,A(ρβ ∗ g)(x)|

≤ max
x∈suppg

|g(x)− ρβ ∗ g(x)|+ max
x∈suppg

|ρβ ∗ g(x)− IA′,A(ρβ ∗ g)(x)|

≤∥g − ρβ ∗ g∥L∞(Rn) + max
x∈supp(ρβ∗g)

|ρβ ∗ g(x)− IA′,A(ρβ ∗ g)(x)|

<ε.(2.13)

(III) Finally, we prove the conclusion of the theorem applying (2.13). We note that f(x) is real-
valued but that IA′,A(ρβ∗g)(x) is complex-valued. This means thatH(x) = Re (IA′,A(ρβ ∗ g)(x))
is a more suitable candicate of the approximation of f :

|f(x)− IA′,A(ρβ ∗ g)(x)| ≥ |Re (f(x)− IA′,A(ρβ ∗ g)(x))|
= |f(x)−H(x)| ,

that is, max
x∈K

|f(x)−H(x)| < ε. Meanwhile, applying Lemma 2.2 to H(x), there exists a natural

number N0 such that max
x∈K

|H(x)−HN (f)(x)| < ε holds for all N ≥ N0, where

HN (f)(x) =

(
2A

N

)n N−1∑
k1,k2,...,kn=0

h

(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N
, x

)
,

h(w, x) =

∫ A′

−A′
ψ(x · w − w0)γ(w,w0) dw0,

γ(w,w0) = Re

(
1

(2π)nψ̂(1)
F [ρβ ∗ g](w)eiw0

)
.

Hence we have

(2.14) max
x∈K

|f(x)−HN (f)(x)| < 2ε

using the triangle inequality. At this moment, we could manage to find HN (f)(x) which ap-
proximates f(x). However, HN (f)(x) does not satisfy the requirement of the statement. So, we
apply Lemma 2.2 to HN (f)(x) once again to construct the desired function f̃(x).

This can be achieved as follows: Using the same notation as in Lemma 2.2, then(
2A

N

)−n

HN (f)(x)

=

N−1∑
k1,k2,...,kn=0

h

(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N
, x

)

=
∑

k∈{0,1,...,N−1}n

h

(
−A1+

2A

N
k, x

)

=

∫ A′

−A′

∑
k∈{0,1,...,N−1}n

ψ

(
x ·
(
−A1+

2A

N
k

)
− w0

)
γ

(
−A1+

2A

N
k, w0

)
dw0.
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To approximate
(
2A

N

)−n

HN (f)(x) by a Riemann sum, abbreviate

2A′

M

M−1∑
m=0

∑
k∈{0,1,...,N−1}n

ψ

(
x ·
(
−A1+

2A

N
k

)
−
(
−A′ +

2mA′

M

))

×γ
(
−A1+

2A

N
k,−A′ +

2mA′

M

)

to RM (f)(x), where M ∈ N. Using Lemma 2.2, we can find M0 ∈ N such that for any M > M0,

max
x∈K

∣∣∣∣∣
(
2A

N

)−n

HN (f)(x)−RM (f)(x)

∣∣∣∣∣ <
(
2A

N

)−n

ε.

Estimate (2.14) and the above inequality lead the estimate

(2.15) max
x∈K

∣∣∣∣f(x)− (2A

N

)n

RM (f)(x)

∣∣∣∣ < 3ε.

We prove that
(
2A

N

)n

RM (f)(x) is the desired function f̃(x). Note that RM (f)(x) can be ex-

pressed as

RM (f)(x)

=
2A′

M

M−1∑
m=0

∑
k∈{0,1,...,N−1}n

ψ

(
(x,−1) ·

(
−A1+

2A

N
k,−A′ +

2mA′

M

))

×γ
(
−A1+

2A

N
k,−A′ +

2mA′

M

)
.

To deform this expression, we put

Ω(m,k) =

(
−A1+

2A

N
k,−A′ +

2mA′

M

)
∈ Rn+1

for every m, k. The set {Ω(m,k) : m = 0, 1, . . . ,M − 1, k ∈ {0, 1, . . . , N − 1}n} consists of
NnM vectors. Thus every Ω(m,k) can be expressed as Ω(m,k) = Ω(ℓ) (ℓ = 1, 2, . . . , NnM ).
Because Ω(ℓ) ∈ Rn+1, we write

Ω(ℓ) = (Ωℓ,1,Ωℓ,2, . . . ,Ωℓ,n+1).
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Then, by the definition of ψ, we have

RM (f)(x) =
2A′

M

NnM∑
ℓ=1

ψ ((x,−1) ·Ω(ℓ)) γ(Ω(ℓ))

=
2A′

M

NnM∑
ℓ=1

γ(Ω(ℓ))ψ

 n∑
j=1

xjΩℓ,j − Ωℓ,n+1


=

2A′

M

NnM∑
ℓ=1

γ(Ω(ℓ))ϕ

 n∑
j=1

xjΩℓ,j

δ
−
(
Ωℓ,n+1

δ
− α

)
− 2A′

M

NnM∑
ℓ=1

γ(Ω(ℓ))ϕ

 n∑
j=1

xjΩℓ,j

δ
−
(
Ωℓ,n+1

δ
+ α

) .

By rearranging the right-hand side, we can find real constants cℓ, θℓ, wℓj , ℓ = 1, 2, . . . , 2NnM ,
j = 1, 2, . . . , n such that(

2A

N

)n

RM (f)(x) =

2NnM∑
ℓ=1

cℓϕ

 n∑
j=1

wℓjxj − θℓ

 (x = (x1, x2, . . . , xn) ∈ Rn).

Since (2.15) is nothing but (1.1) with ε replaced by 3ε, it follows that
(
2A

N

)n

RM (f)(x) is the

desired function f̃(x). □

If a function f(x) is continuous in a compact set K, then we see that

∥f∥L2(K) =

(∫
K

|f(x)|2 dx
)1/2

≤ |K|1/2 ·max
x∈K

|f(x)|.

Thus we easily obtain the following corollary:

Corollary 2.1. In Theorem 1.1, one has∥∥∥f − f̃
∥∥∥
L2(K)

< |K|1/2ε.

3. APPENDIX–PROOF OF THE TIETZE EXTENSION THEOREM

Let ReLU(t) = max(0, t). We write

µ(t) = ReLU(t+ 1)− 2ReLU(t) + ReLU(t− 1) (t ∈ R).

Note that µ(t) vanishes outside (−1, 1) and that µ(t) = 1− |t| for t ∈ [−1, 1]. We set

ν(x) = ν(x1, x2, . . . , xn) =

n∏
j=1

µ(xj),

so that ∑
k∈Zn

ν(x− k) = 1.
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Lemma 3.4. Let K ⊂ Rn be a compact set and f(x) be a continuous function on K. Write M =
max
y∈K

|f(y)|. There exists a continuous function g(x) defined on Rn such that

sup
x∈K

|f(x)− g(x)| ≤ 2

3
M

and that

sup
y∈Rn

|g(y)| ≤ 2

3
M.

Proof. Since f(x) is continuous in the compact setK, f(x) is uniformly continuous onK. Thus,
we can find δ > 0 such that |f(x)− f(y)| < 1

12M for all x, y ∈ K such that |x− y| < δ. Set

h(x) = min

(
max

(
−2

3
M,f(x)

)
,
2

3
M

)
(x ∈ K).

Note that

(3.16) h(x) =


− 2

3M (f(x) ≤ − 2
3M),

f(x) (− 2
3M ≤ f(x) ≤ 2

3M),
2
3M ( 23M ≤ f(x)).

Since f(x) is continuous in K, h(x) is also continuous in K. By (3.16) and −M ≤ f(x) ≤ M , it
is easy to see that

|f(x)− h(x)| ≤ 1

3
M.

Next, we prove

(3.17) |h(x)− h(y)| < 1

3
M

for all x, y ∈ K such that |x− y| < δ. Note that if h(x) = 2
3M , then

− 1

12
M < f(y)− f(x) <

1

12
M and

2

3
M ≤ f(x)

yield
7

12
M = − 1

12
M +

2

3
M ≤ − 1

12
M + f(x) < f(y).

This implies that 7
12M < h(y) ≤ 2

3M = h(x). Therefore, we have

|h(x)− h(y)| ≤ 1

12
M <

1

3
M.

From the symmetry, we see that (3.17) holds if h(x) = 2
3M or h(y) = 2

3M . To complete the
proof of (3.17), it remains to handle the following case:

h(x) = max

(
−2

3
M,f(x)

)
and h(y) = max

(
−2

3
M,f(y)

)
.

Note that

max(a, b) =
1

2
(a+ b+ |a− b|) , ||a| − |b|| ≤ |a− b|



42 Mitsuo Izuki, Takahiro Noi, Yoshihiro Sawano and Hirokazu Tanaka

for a, b ∈ R. Hence, we obtain

|h(x)− h(y)| ≤ 1

2
· |f(x)− f(y)|+ 1

2

∣∣∣∣∣∣∣∣f(x) + 2

3
M

∣∣∣∣− ∣∣∣∣f(y) + 2

3
M

∣∣∣∣∣∣∣∣
≤ 1

2
· 1

12
M +

1

2
|f(x)− f(y)|

≤ 1

12
M <

1

3
M.

Finally, we construct g(x). Choose an integer A large enough so that 2Aδ > 1. Denote by U the
set of all k ∈ Zn such that {x ∈ Rn : x− A−1k ∈ [−A−1, A−1]n} ∩K ̸= ∅. From the definition
of U , it follows that ∑

k∈U

ν(Ax− k) = 1 (x ∈ K).

For each k ∈ U , choose yk ∈ {x ∈ Rn : x−A−1k ∈ [−A−1, A−1]n} ∩K. We put

g(x) =
∑
k∈U

h(yk)ν(Ax− k) (x ∈ Rn).

Then g(x) vanishes outside the set {w ∈ Rn : w = y+z, y ∈ K, z ∈ [−A−1, A−1]n} and satisfies

g(x)− h(x) =
∑
k∈U

(h(yk)− h(x))ν(Ax− k) (x ∈ K).

This equality implies that

|g(x)− h(x)| ≤ 1

3
M.

Since |f(x)− h(x)| ≤ 1
3M , it follows that |f(x)− g(x)| ≤ 2

3M . Furthermore, since |h(x)| ≤ 2
3M

for all x ∈ K, it follows that |g(x)| ≤ 2
3M for all x ∈ Rn. Thus, the proof is complete. □

With Lemma 3.4 in mind, let us prove Theorem 1.2. Let M = max
x∈K

|f(x)|. Without loss of

generality, assume M = 1. We define the sequence of functions {gk(x)}∞k=1 as follows. First,
we choose g1(x) as in Lemma 3.4. That is,

|f(x)− g1(x)| ≤
2

3
on K

and |g1(x)| ≤ 2
3 hold. Then define l1(x) = f(x)− g1(x). Next apply Lemma 3.4 to the function

l1(x) to have a function g2(x) satisfying

|l1(x)− g2(x)| ≤
2

3
max
y∈K

|l1(y)| =
(
2

3

)2

(x ∈ K)

and

|g2(x)| ≤
2

3
max
y∈K

|l1(y)| =
(
2

3

)2

(x ∈ Rn).

Next, define l2(x) = f(x)− g1(x)− g2(x) and use Lemma 3.4 for the function l2(x). We repeat
this procedure to have the functions {gk(x)}∞k=1 and {lk(x)}∞k=1 satisfying

lk(x) = f(x)− g1(x)− g2(x)− · · · − gk(x) = f(x)−
k∑

s=1

gs(x) (x ∈ K),

(3.18) |lk(x)− gk+1(x)| =

∣∣∣∣∣f(x)−
k+1∑
s=1

gs(x)

∣∣∣∣∣ ≤ 2

3
max
y∈K

|lk(y)| ≤
(
2

3

)k+1
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and

(3.19) |gk+1(x)| ≤
2

3
max
y∈K

|lk(y)| ≤
(
2

3

)k+1

(x ∈ Rn).

From (3.18) and (3.19), we conclude that

g(x) =

∞∑
k=1

gk(x)

converges uniformly over x ∈ Rn and that g(x) agrees with f(x) over K. Thus, the proof is
complete.
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A comparison among a fuzzy algorithm for image rescaling
with other methods of digital image processing

DANILO COSTARELLI AND ANNA RITA SAMBUCINI*

ABSTRACT. The aim of this paper is to compare the fuzzy-type algorithm for image rescaling introduced by Jurio et
al., 2011, quoted in the list of references, with some other existing algorithms such as the classical bicubic algorithm and
the sampling Kantorovich (SK) one. Note that the SK algorithm is a recent tool for image rescaling and enhancement
that has been revealed to be useful in several applications to real world problems, while the bicubic algorithm is
widely known in the literature. A comparison among the abovementioned algorithms (all implemented in the MatLab
programming language) was performed in terms of suitable similarity indices such as the Peak-Signal-to-Noise-Ratio
(PSNR) and the likelihood index S.

Keywords: Fuzzy-type algorithm, SK algorithm, bicubic algorithm, PSNR, S index, image magnification.
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1. INTRODUCTION

Images are indispensable tools in concrete life, as well as in various fields of research and
they have a concrete impact on daily life. The most common scientific applications of image
processing are in medicine, in which some instrumental tests such as CT and MRI, are helpful
for the diagnosis of various diseases, remote sensing, in which the use of satellite images allows
the study of phenomena (climatic, tectonic, etc) linked to natural events; astronomy, biology
and many other fields. In real world applications digital images are essential tools for studying
concrete problems since they provide visual and numerical representations of an observation
or a measurement. Namely, they constitute a synthesis of information concerning one or more
characteristics of the problem under consideration. The acquisition of a digital image from
a camera or a diagnostic device is a physical process that allows the conversion of measured
data into two or three dimensional discrete signals/images. During this phase, the acquisition
tools, which are obviously endowed with their own sensitivity and by their own procedure of
data conversion, allow the reconstruction of a digital image that is obviously characterized by
a natural degree of approximation and therefore of uncertainty, i.e., it is not always possible to
establish the gray levels of a region of pixels perfectly or to precisely detect geometric shapes
characteristics, such as edges of particular interest.

These facts can be translated into the construction of a matrix of pixels in which the value
of each element represents a “good approximation” of the real gray level (luminance) in the
gray scale. When situations of this type are present, it is possible to use fuzzy set theory to
represent and elaborate vague and imprecise concepts and apply a fuzzy algorithm for digital
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image processing, as in, for example [16, 25, 35, 42, 45]. Moreover, we also know that fuzzy
theory is a fundamental tool for several topics, such as probability (see, e.g., [6, 36, 49]) and
many others, hence it is not surprising to find a close connection between digital images and
their processing. Recently multifunctions have also been applied for convergence results in
this setting see also [37–39].

On the other hand, it is also known that any image is a multivariate discontinuous signal,
where the possibility of visualizing the contours and edges in the figures is due to the presence
of meaningful jumps of gray levels in the grayscale; this is the motivation why Signal Theory
has been successfully applied to process digital images. Indeed, in the last ten years, several
models for concrete applications in the field of medicine and engineering have been developed
thanks to the use of the SK algorithm ( e.g., [24, 32, 47]). The main purpose of the SK algorithm
is to rescale images, by acting as low-pass filter and hence contrasting the appearance of noise.
The SK algorithm is the numerically optimized implementation of the sampling Kantorovich
operators (from which the acronym SK), widely studied in Approximation Theory, since it is
very suitable for reconstructing non-necessarily continuous signals (hence images, see [31,33]).

The aim of this paper is to compare the fuzzy-type algorithm introduced in [42] with the
classical bicubic interpolation method, widely used in the literature e.g., [46] and the above
described SK algorithm. The above algorithms were implemented in the MatLab programming
language, and comparisons were performed by means of several numerical tests performed
on a suitable dataset of images of different types. To quantitatively evaluate the results, we
introduced two similarity indices known in the literature. We considered the Peak-Signal-to-
Noise-Ratio (PSNR) [50], and the likelihood index S considered in [17]. Finally, a comparison
in terms of CPU time employed by the three considered algorithms was also carried out for the
best approximations.

2. THE INTERVAL VALUED FUZZY POINT OF VIEW

A grayscale digital image of dimensions n×m (i.e., with n rows and m columns) is a matrix
Q of dimensions n × m, where the element of position (i, j) in the matrix, denoted by qi,j ,
represents the intensity of the pixel in the gray scale (luminance). We observe that it is not
restrictive to work only with grayscale images, since operating on a color image is similar to
doing so on 3 grayscale images. For colour images three matrices are used which, for each
pixel, assume integer values in the range [0, 255] with respect to the red, green and blue colours
(RGB channels, see, for example, [41]).

The luminance values qi,j at point (i, j) are normalized to obtain values in the range [0, 1].
To simplify the notation, we will always indicate them with the same symbol.
In [42], Jurio, Paternain, Lopez-Molina, Bustince, Mesiar and Beliakov proposed a model as-
sociated to a grayscale image and an interval valued fuzzy set to construct a magnification
algorithm that considers the luminance values in a neighbourhood of each pixel of the image.

The type of operator they use is of spatial type, namely, to determine the value of the des-
tination pixels, not only the value of the pixel in the original image but also the value of some
pixels close to it (in a neighbourhood of it) will be considered.

The key idea of this rescaling algorithm (proposed by Jurio et al.) is to associate an interval
membership to each pixel. The parameter δ is fixed a priori; when δ increases the length of the
interval increases, so more values of the intensities of the pixels close to the assigned intensity
are considered. In this way, a new block is constructed for each pixel of the image, and the
central pixel of the block maintains the luminance of the original pixel. To fill the rest of the
pixels in the newly generated block, the relationship between the luminance of the pixel in the
original image and that of the pixels "near" to the pixel was used.
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To define the interval-valued membership of qi,j , let L([0, 1]) be the family of all closed in-
tervals in [0, 1], namely

L([0, 1]) := {x = [x⋆, x
⋆] : (x⋆, x

⋆) ∈ [0, 1]2 & x⋆ ≤ x⋆ },

with the following partial order relation: x ≤L y if x⋆ ≤ y⋆ and x⋆ ≤ y⋆ (this is a lattice order
between closed intervals; see, for example, [42]). For every closed interval x := [x⋆, x

⋆] in
L([0, 1]), let W (x) := x⋆ − x⋆ be its length.

Therefore, an interval-valued membership of qi,j is an interval valued fuzzy set (IVFS for
short) A, namely a map A : Q → L([0, 1)] that assigns to each position (i, j) an interval xi,j (see
next formula (2.4)).

Let α ∈ [0, 1] be fixed, and let Kα : L[0, 1] → [0, 1] be a function, given in [7, 14, 15, 34], such
that for every x ∈ L([0, 1]) and α ∈ [0, 1],

k.1): K0(x) = x⋆, K1(x) = x⋆, Kα(x) = x⋆ if x⋆ = x⋆;
k.2): for every α ∈ [0, 1] Kα(x) = K0(x) + α(K1(x)−K0(x));
k.3): if x ≤L y, x,y ∈ L([0, 1]) then Kα(x) ≤ Kα(y) for every α ∈ [0, 1];
k.4): α ≤ β if and only if Kα(x) ≤ Kβ(x) for every x ∈ L([0, 1]).

The operator Kα is known in the literature as Atanassov’s operator.
Using Kα, it is possible to associate an interval-valued fuzzy set with a fuzzy set in the

following way:

Kα(x) = Kα([x⋆, x
⋆]) = x⋆ + α(x⋆ − x⋆) = x⋆ + αW (x).(2.1)

In practice, Atanassov’s operator of order α is a convex combination of the end points of its
argument x = [x⋆, x

⋆] ∈ L[0, 1].

Remark 2.1. There are other possible constructions of the multifunction Kα, and the choice
of the previous operator is motivated by the length of the interval being fundamental in the
magnification process given in [42], since the length of each interval membership is fixed a
priori.

2.1. Interval-valued fuzzy model. We provide a description of the algorithm based on the
above interval-valued fuzzy model. For the sake of brevity, we often refer to such an algorithm
with the term "fuzzy-type algorithm".

As previously mentioned let Q be an n × m matrix associated with a grayscale image. Let
δ ∈ [0, 1] and p ∈ N. For every i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n} let qi,j be the value of
element (i, j) in Q.
For every i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, let Vi,j = (v

(i,j)
k,l )k,l a (2p+ 1)× (2p+ 1) square

matrix (also named block) centered at the position (i, j), namely the value v
(i,j)
p+1,p+1 coincides

with qi,j , and is used to obtain the magnification of Q.
Let v(i,j)k,l be the elements of Vi,j with k, l ∈ {1, 2, . . . , 2p+ 1};

v
(i,j)
k,l =

 qi−p+k−1,j−p+l−1 if i− p+ k − 1 ∈ {1, 2, . . . , n},
j − p+ l − 1 ∈ {1, 2, . . . ,m}

0 elsewhere.
(2.2)

This means that if there are positions (k, l) in Vi,j that are not covered by elements of Q (i.e.,
if in the superposition of the block Vi,j with the matrix Q there are some elements that do not
belong to Q), the corresponding values in the matrix Vi,j are set to zero.
To define a neighborhood of qi,j , the oscillation ωi,j of the values in Vi,j is calculated without
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considering the possible presence of the added null values in the block , namely,

ωi,j =

 max
i−p+k−1∈{1,2,...,n},
j−p+l−1∈{1,2,...,m}

qi−p+k−1,j−p+l−1


−

 min
i−p+k−1∈{1,2,...,n},
j−p+l−1∈{1,2,...,m}

qi−p+k−1,j−p+l−1

 ,(2.3)

and a closed interval F (qi,j , ωi,j , δ) ∈ L([0, 1]) is assigned to each qi,j , as follows:

F (qi,j , ωi,j , δ) = [qi,j(1− δωi,j), qi,j(1− δωi,j) + δωi,j ].(2.4)

Therefore the intensities of the pixels in this generated block provide information for obtaining
the length of the interval-valued membership built using F . For this interval-valued member-
ship in L([0, 1]), Atanassov’s operator (2.1) is applied to construct a new square matrix

V ′
i,j = (v′k,l)k,l, k, l ∈ {1, 2, . . . , 2p+ 1},

whose elements are obtained in the following way:

v′k,l :=K
v
(i,j)
k,l

(F (qi,j , ωi,j , δ))

=K
v
(i,j)
k,l

([qi,j(1− δωi,j), qi,j(1− δωi,j) + δωi,j ])

=v
(i,j)
k,l ·

(
qi,j(1− δωi,j) + δωi,j

)
+ (1− v

(i,j)
k,l ) · qi,j(1− δωi,j)

=v
(i,j)
k,l δωi,j + qi,j(1− δωi,j).

Finally, in the new rescaled image, each element qi,j is replaced by the new block V ′
i,j . We

can observe that if δ = 0 the information on the boundary is lost since F (qi,j , ωi,j , δ) = qi,j .

3. OTHER METHODS

To evaluate the performance of the considered fuzzy-type algorithm, in the numerical tests
performed in Section 5, we consider the rescaling of a given dataset of images with the well-
known bicubic method, which is very classical in digital image processing, and is already im-
plemented in several software and dedicated commands are available in most used program-
ming languages) and we compare it with the SK algorithm which will be recalled in the next
subsection.

3.1. The Sampling Kantorovich algorithm for image rescaling. An algorithm that has been
widely applied in the field of image rescaling is known for its name, the sampling Kantorovich
(SK) algorithm; see, e.g., [8, 47]. The above tool arises as an optimized implementation of a
family of sampling-type operators, that is, the multivariate SK operators, defined through the
following formula:

(3.5) (Swf)(x⃗) :=
∑
k⃗∈Z2

χ(wx⃗− k⃗)

[
w2

∫
Rw

k⃗

f(u⃗) du⃗

]
, x⃗ ∈ R2, w > 0,

where f : R2 → R is a locally integrable function (signal/image) such that the above series is
convergent for every x⃗ ∈ R2, and

Rw
k⃗

:=

[
k1
w
,
k1 + 1

w

]
×

[
k2
w
,
k2 + 1

w

]
,
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are the squares in which we consider the averaged values of the sampled signal f (see for
example [20, 21]).

Sw, w > 0, are approximation operators that can pointwise reconstruct continuous and
bounded signals, and to uniformly reconstruct signals that are uniformly continuous and boun-
ded, as w → +∞. Moreover, the Sw operator can also be used to reconstruct not-necessarily
continuous signals, e.g., signals belonging to the Lp-spaces, 1 ≤ p < +∞ ( [2–5, 8–10, 12, 13,
19, 29, 30, 33, 40, 43, 44, 52]). The function χ : R2 → R, given in (3.5), is called a kernel and it
satisfies the following suitable assumptions, very typical in this situation, which are the usual
conditions assumed by discrete approximate identities (for more details, see, e.g., [1]). Below,
we present a list of functions that can be used as kernels in the formula recalled in (3.5).

First, we recall the definition of the one-dimensional central B-spline of order N (for example
see [18]):

(3.6) βN (x) :=
1

(N − 1)!

N∑
i=0

(−1)i
(
N

i

)(
N

2
+ x− i

)N−1

+

, x ∈ R.

The corresponding bivariate version of the central B-spline of order N is given by:

(3.7) BN
2 (x⃗) :=

2∏
i=1

βN (xi), x⃗ = (x1, x2) ∈ R2.

Other important kernels are given by the so-called Jackson type kernels of order N , defined in
the univariate case by:

(3.8) JN (x) := cN sinc2N
( x

2Nπ

)
, x ∈ R,

with N ∈ N and cN is a nonzero normalization coefficient, given by:

cN :=

[∫
R

sinc2N
( u

2Nπ

)
du

]−1

.

For the sake of completeness, we recall that the well-known sinc-function is defined as sin(πx)/πx,
if x ̸= 0, and 1 if x = 0; see e.g., [43, 44]. As in the case of the central B-splines, the bivariate
Jackson type kernels of order N are defined by:

(3.9) J 2
N (x⃗) :=

2∏
i=1

JN (xi), x⃗ = (x1, x2) ∈ R2.

In particular, Jackson type kernels have been revealed to be very useful, e.g., for applications in
the biomedical field, [47]. For the numerical tests given in this paper, we consider the bivariate
Jackson-type kernel with N varying from 2 to 12. This choice will be motivated later. For
several examples of kernels, see, e.g., [23, 26–28]; for more details about the SK operators and
the corresponding SK algorithm, see e.g., [24], where a pseudo-code is also available. For some
applications of the SK algorithm to real world problems involving images, see, e.g., [31, 47].

4. COMPARISONS AND EVALUATION OF THE NUMERICAL RESULTS: LIKELIHOOD INDEX S
AND PSNR

To compare the considered algorithms for image rescaling, we use the following indices that
are known in the literature. The first tool is the Peak Signal-to-Noise Ratio (PSNR), which is a
well known index in the literature and is often used to quantify the rate of similarity between
two general signals.
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The PSNR is defined as the Mean Square Error (MSE): MSE =
N∑
i=1

M∑
j=1

|I(i, j)− Ir(i, j)|2

NM
,

where I is the original image, Ir is the reconstructed version of the original image I , N and
M are the dimensions of the images. Therefore the PSNR is generally defined as follows:

PSNR = 10 · log10
(

f2
max

MSE

)
, where fmax represents the maximum value of the consid-

ered pixel’s scale. For 8-bit gray scale images fmax = 255, while for images with pixel values
between 0 and 1 ( such as those considered in our fuzzy algorithm) fmax = 1. Hence, the PSNR
formula used in this paper is expressed as follows:

(4.10) PSNR = 10 · log10
(

1

MSE

)
.

It is clear from the above definition that, the similarity between two images is greater for the
highest values of the PSNR.

Furthermore, we use another useful similarity index, called the likelihood index S, which
was introduced by Bustince, et al. ( [17]), and is defined as follows:

(4.11) S :=
1

N ×M

N∑
i=1

M∑
j=1

[1− |I(i, j)− Ir(i, j)|] ,

where the notations used in (4.11) are the same as those employed in the definition of the PSNR
(4.10). It is clear from the above definition that, the parameter S can assume values between 0
and 1, and that for closer images S should be as close as possible to 1.

5. NUMERICAL EXPERIMENTS

In this section, we provide a numerical comparison among the algorithms considered in the
previous sections, namely the fuzzy-type algorithm, the classical bicubic and the SK algorithm.
Such a comparison will be carried out thanks to the similarity indices previously recalled, i.e.,
the PSNR and the likelihood index S.

For the numerical tests, we proceed as follows. We first consider a set of original images of
a given dimension N × M , which will be used as a reference. Such images will be reduced
without interpolation (using the nearest neighbor method [11]) to the dimension N

3 × M
3 . Fi-

nally, the reduced images will be rescaled to the original dimension by using the methods
mentioned above. In this way, we dispose of a reference image (the original image), and three
reconstructed images generated by the three different methods mentioned above. With respect
to the application of the algorithm based on sampling Kantorovich operators, in view of the
accurate experimental analysis given in [31], the SK algorithm has been applied using the pa-
rameters that have been seen to be the best possible under certain qualitative criteria (for more
details see [31] again). More precisely, we consider the bivariate Jackson-type kernel J 2

N with
N ∈ {2, 3, . . . 12}.

Concerning the parameter w in the SK algorithm, we consider the following values: w =
5, 10, 15, 20, and 25 only for the baboon image ∗.

The image dataset (the source files are contained in the repository https://links.uwater-
loo.ca/Repository.html or in [22]) is composed of the four different grayscale images shown
in Figure 1. There are the classical "baboon" and "boat", which are commonly used in image
analysis, and two pictures of a "city" and a "mountain", respectively.

∗ Note that, as stated in [31], in the case of the rescaling of images with double dimensions, it is sufficient to choose
w = 15 when N = 12.
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FIGURE 1. Reference images: baboon (255 × 255 pixel resolution); boat (504 × 504 pixel reso-
lution); city (675× 900 pixel resolution); mountain (450× 600 pixel resolution).

The choice of the four images is motivated by the fact that we want to compare images
of different sizes, brightness levels and textures. Finally the boat image was also considered
in the quoted paper [42], but we do not know if it has the same dimension or resolution. The
histograms of the four images show that the distributions of the grayscale of the various images
are very different from each other (see Figure 2).

FIGURE 2. Histograms of the original images in the dataset: baboon, boat, city, mountain.
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The empirical simulation of the two algorithms is performed on Windows 11 operating sys-
tem with an Intel Core i7 8th gen. Moreover, all the programs are written and compiled on
MATLAB version R2014b.

Concerning the application of the fuzzy-type algorithm, we provide the rescaled images for
values of the parameter δ running between 0 and 1, with a step-size equal to 0.01, for each of
the images given in Figure 1. The corresponding results of the PSNR and likelihood index S
are plotted in Figure 3.

FIGURE 3. The plots of the values of the PSNR and likelihood index S computed for the whole
dataset of reconstructed images by the fuzzy-type algorithm when the parameter δ varies from 0

to 1 with step-size of 0.01.
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Similarly we rescaled the dataset images using the Sampling Kantorovich algorithm and we
examined the values of the similarity indices corresponding to the parameters N and w given in
(3.5) and (3.8). The w parameter determines the amount of the sample values that are involved
in the reconstruction process, while 2N represents the order of decay of the considered kernel
function. In particular, we examined the parameter N varying in the set {2, 3, . . . , 12} and the
parameter w ∈ {5, 10, 15, 20, 25}. Here there are plots of the values of the PSNR and likeli-
hood S indices computed for the reconstructed dataset images with the Sampling Kantorovich
algorithm for the considered values of the parameter N of the bivariate Jackson kernel (3.8).

FIGURE 4. The plots of the values of the computed indices for the reconstructed baboon images.

FIGURE 5. The plots of the values of the computed indices for the reconstructed boat images.

FIGURE 6. The plots of the values of the computed indices for the reconstructed city images.
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FIGURE 7. The plots of the values of the computed indices for the reconstructed mountain
images.

For a more detailed version of these numerical outputs, see the Appendix 6 where all indices
are calculated for the SK algorithm.

To provide a more detailed comparison of the numerical results shown in Figures 3, 4, 5, 6
and 7, we also provide additional and useful data in the following tables.

In Table 1, the values of the PSNR are listed and analysed in the case of the fuzzy-type
algorithm, together with a comparison with the bicubic method and the SK algorithm. In
particular

• in the first column : "δmax
Psnr" denotes the minimum value of the parameter δ for which

the maximum PSNR is reached, when the images processed by the fuzzy-type algo-
rithm are considered;

• "PSNR max - Fuzzy" denotes the maximum value of the PSNR reached by implement-
ing the fuzzy-type algorithm for δmax

Psnr;
• "PSNR - bicubic" denotes the values of the PSNR achieved by the image processed by

the bicubic algorithm;
• “(N,w)max

Psnr” denotes the value of the pair (N,w) for which the best value of the PSNR
is reached when the image is processed using the SK algorithm;

• "PSNR - SK" denotes the values of the PSNR achieved by the image processed by the
SK algorithm for (N,w)max

Psnr.
Note that, in all the above cases the PSNR is computed using the original image of dimension
N ×M as the reference image.

TABLE 1. The numerical values of the PSNR.

Image δmax
PSNR

PSNR
δmax
Psnr

Fuzzy

PSNR
bicubic (N,w)max

Psnr

PSNR
(N,w)max

Psnr

SK

Baboon 0.86 22.0121 22.2143 (2,10) (see Table 5) 22.43814

Boat 0.72 29.6480 28.0849 (4,20) (see Table 7) 29.3667

City 0.58 24.9440 24.4878 (4,20) (see Table 9) 25.08078

Mountain 0.55 22.4655 21.4886 (6,20) (see Table 11) 23.35247

Moreover, in Table 2, which has the same meaning as in Table 1, the values of the likelihood
index S are listed and analysed, for the case of the fuzzy-type, bicubic and SK algorithms.
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TABLE 2. The numerical values of the likelihood index S.

Image δmax
S

S index
δmax
S

Fuzzy

S index
bicubic (N,w)max

S

S index
(N,w)max

S

SK

Baboon 0.86 0.9456 0.9449 (7,25) (see Table 6) 0.947694

Boat 0.78 0.98051 0.9771 (4,20) (see Table 8) 0.980565

City 0.58 0.9735 0.9711 (4,20) (see Table 10) 0.974093

Mountain 0.61 0.9523 0.9455 (5,20) (see Table 12) 0.955541

In Tables 1 and 2, we observe a similar trend in performances with respect to the two indices
with the exception of the boat image in which the fuzzy algorithm performs better than the SK
at least with respect to the PSNR index and in the baboon image where the best resolutions for
the SK algorithm are obtained for (N,w)max

Psnr and (N,w)max
S which are very distant from each

other.
Finally, an analysis concerning the CPU time employed by each of the considered algorithms

to process any single image can be performed. The CPU times are listed in Table 3. Since it is
not the purpose of the present study to determine all the CPU times, we consider and compare
only the times of the best reconstructions. Therefore in Table 3, the values of CPU times are
considered for the reconstructed images obtained for δmax

Psnr, δmax
S , for the fuzzy algorithm and

(N,w)max
Psnr, (N,w)max

S , for the SK algorithm and quoted in Tables 2 and 3.

TABLE 3. The CPU for the rescaled images of the best approximations for the PSNR
and the likelihood index S.

The CPU time for the best approximations
with respect to PSNR and S indices

Case n=3 dim
image bicubic Fuzzy

δmax
Psnr

SK
(N,w)max

Psnr

Fuzzy
δmax
S

SK
(N,w)max

S

Baboon 255 × 255 0.054889 2.532010 192.986372 2.532010 5.350619

Boat 504 × 504 0.091244 0.694429 40.098191 0.585434 40.098191

City 675 × 900 0.100341 1.137932 192.654707 1.137932 192.654707

Mountain 450 × 600 0,084561 0.690313 22.639233 0.595628 17.945265

Remark 5.1. Note that as the parameter N increases, the order of decay of the Jackson ker-
nel increase as well and therefore the CPU time of the SK algorithm decreases; however, the
similarity indices worsen. The SK algorithm is the most expensive from the point of view of
CPU time. If, however, instead of considering its best approximation, we take into account the
values of (N, k) so that N is large enough and the SK algorithm performs better than the fuzzy
one, we can strongly reduce the CPU time. For example if we consider the reconstructed image
of Baboon with N = 12 and w = 15, we need 2.857455s and we obtain, accordingly to Table
5, a better result with respect to the fuzzy algorithm in a much shorter time than (N,w)max

Psnr.
However if we look at Tables 5-12, in the Appendix,we can see that, except for the boat, the
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values of the PSNR or S-index for the SK algorithm are better than those of the fuzzy algorithm
when N is quite large, so, in this case, the CPU times of the SK algorithm decrease, continuing
to achieve better performances.

For the sake of completeness, we also considered the case of the application of the above-
mentioned rescaling algorithms by a resize factor R = (2k + 1), k = 2, 3. In practice, we
repeated the above experiments reducing the considered original images to have dimension of
N

2k+1 ×
M

2k+1 , k = 2, 3. Consequently, by the above methods, they have been processed in order
to reobtain images scaled to the original dimension. Due to the compatibility between the am-
plitude of the scale factor and the dimensions of the original images, in this case we considered
the images "baboon" and "mountain" for k = 2 and "boat" for k = 3, for the application of the
SK algorithm. The corresponding numerical results of this case are presented in Figures 8 and
9. Additionally here, the fuzzy-type algorithm is applied for every δ between 0 and 1, with the
same step-size of 0.01.

FIGURE 8. R = 5: the plots of the values of the PSNR and likelihood index S computed for
of the reconstructed images of baboon and mountain with the fuzzy-type algorithm when the
parameter δ varies from 0 to 1 with step-size of 0.01.

FIGURE 9. R = 7: the plots of the values of the PSNR and likelihood index S computed for the
reconstructed images of boat with the fuzzy-type algorithm when the parameter δ varies from 0

to 1 with step-size of 0.01.
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Remark 5.2. The performances of the fuzzy-type algorithm are dependent on the value of the
parameter δ. In all the considered cases, it seems that the curves of the PSNR and S index plots
are both concave and achieve a maximum approximatively in the middle zone of the interval
[0, 1], if we consider the experiments with a scaling factor equal to 3. This fact seems to be more
evident in the figures: for Boat, City, and Mountain. When the scaling factor is equal to 5 or 7,
the point of the maximum shifts toward the left, as shown in the following Figures 10 and 11.

FIGURE 10. R = 3, 5: the left shift of the maximum in the plots of the values of the likelihood
index S computed for the reconstructed images of the baboon and the mountain with the fuzzy-
type algorithm when the parameter δ varies from 0 to 1 with step-size of 0.01.

FIGURE 11. R = 3, 7: the left shift of the maximum in the plots of the values of the likelihood
index S computed for the reconstructed images of the boat with the fuzzy-type algorithm when
the parameter δ varies from 0 to 1 with step-size of 0.01.
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FIGURE 12. The plots of the values of the computed indices for the reconstructed baboon and
mountain images when the magnification is 5

Remark 5.3. From the plots of Figure 12 and the data of the subsequent Tables 14 - 17, it seems
clear that globally the values of the considered indices are smaller than those achieved in the
corresponding cases with magnification factor equal to 3.
This seems quite natural since, we are starting the reconstructions from images that are sensi-
bly smaller than those used in the previous reconstructions, and this can be translated into a
process that is based on much less starting information, with respect to the previous case, that
can difficulty produce accurate results. Following this reasoning, we can also justify the fact
that increasing the value of w the quality of the reconstruction does not improve.

TABLE 4. The numerical values of the PSNR and the likelihood index S, when the
images are rescaled by a factor equal to 5. The values must be interpreted as in the
previous tables.

The numerical values of the PSNR and the likelihood index S

PSNR index S index

Case
n=5 δmax Fuzzy

δmax (N,w)max SK δmax Fuzzy
δmax (N,w)max SK

Baboon 0.30 21.897 (2,25) 22.0775 0.15 0.9407 (2,25) 0.94178

Mountain 0.30 19.05169 (7, 20) 20.55734 0.21 0.92854 (5, 20) 0.93822
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6. APPENDIX

6.1. magnification 3.
We report here the values of the two similarity indices for the rescaled images (magnification
3) using the SK algorithm depending on the values of the two parameters N and w. Each table
refers to a single image and a single index of similarity. The values of (N,w)PSNR and (N,w)S
for which the maximum of the similarity indices are reached appear in the tables in bold.

TABLE 5. The numerical values of the PSNR for the baboon image

N w=5 w=10 w=15 w=20 w=25

2 21,85016 22,43814 22,32794 22,10527 21,83349

3 21,48853 22,37021 22,41231 22,28217 22,08483

4 21,20701 22,26074 22,43747 22,36078 22,2281

5 20,97893 22,14198 22,42497 22,40758 22,30682

6 20,78909 22,02888 22,39183 22,4312 22,35847

7 20,61677 21,91724 22,35921 22,43585 22,38839

8 20,47379 21,81542 22,29998 22,43023 22,41282

9 20,34389 21,7138 22,24579 22,41857 22,42535

10 20,22084 21,62172 22,19483 22,40215 22,43644

11 20,11594 21,5353 22,13739 22,38263 22,43331

12 20,01313 21,452 22,09212 22,36252 22,43133

TABLE 6. The numerical values of the S-index for the baboon image

N w=5 w=10 w=15 w=20 w=25

2 0,940944 0,947122 0,947393 0,94603 0,944384

3 0,937897 0,945927 0,947648 0,947146 0,945926

4 0,935421 0,944679 0,947305 0,94758 0,946816

5 0,933376 0,943534 0,946765 0,947678 0,947299

6 0,931641 0,942475 0,946223 0,947527 0,947564

7 0,930041 0,94149 0,945736 0,94727 0,947694

8 0,928687 0,940611 0,945117 0,946969 0,947649

9 0,927407 0,939758 0,944554 0,946683 0,947556

10 0,926217 0,938982 0,944042 0,94636 0,947444

11 0,925169 0,938254 0,9435 0,946073 0,947228

12 0,924114 0,937539 0,943055 0,945802 0,947034
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TABLE 7. The numerical values of the PSNR for the boat image

N w=5 w=10 w=15 w=20

2 26,1264 28,88491 29,33233 29,1455

3 25,10887 28,2995 29,25153 29,35566

4 24,39938 27,69831 29,01746 29,3667

5 23,8721 27,18115 28,73699 29,29081

6 23,45101 26,74578 28,4665 29,16879

7 23,11319 26,36313 28,18154 29,02029

8 22,82393 26,03003 27,90549 28,86864

9 22,57538 25,73335 27,65742 28,70946

10 22,35332 25,46989 27,4174 28,5503

11 22,15799 25,23723 27,20233 28,39299

12 21,98237 25,02072 26,99476 28,23009

TABLE 8. The numerical values of the S-index for the boat image

N w=5 w=10 w=15 w=20

2 0,971368 0,979557 0,980425 0,979874

3 0,967317 0,978083 0,980413 0,98041

4 0,964053 0,976406 0,979877 0,980565

5 0,961385 0,974849 0,979184 0,980472

6 0,95908 0,973451 0,978483 0,980232

7 0,957091 0,972149 0,97776 0,979876

8 0,955326 0,970935 0,97699 0,97951

9 0,953716 0,969804 0,976281 0,979102

10 0,952239 0,968759 0,975565 0,978695

11 0,950878 0,96779 0,97491 0,978308

12 0,949631 0,966857 0,974246 0,97789
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TABLE 9. The numerical values of the PSNR for the city image

N w=5 w=10 w=15 w=20

2 23,54893 24,94082 25,04948 24,86407

3 22,9495 24,68724 25,06223 25,03318

4 22,51778 24,40862 24,99417 25,08078

5 22,18384 24,1397 24,89032 25,07869

6 21,91455 23,89762 24,76533 25,0469

7 21,68927 23,68611 24,64658 25,00216

8 21,49285 23,50061 24,51943 24,94458

9 21,31981 23,32962 24,39139 24,87755

10 21,16648 23,17378 24,26777 24,80927

11 21,02844 23,03034 24,15284 24,74202

12 20,90149 22,90277 24,03818 24,67353

TABLE 10. The numerical values of the S-index for the city image

N w=5 w=10 w=15 w=20

2 0,966276 0,973093 0,974044 0,973677

3 0,963224 0,971649 0,973883 0,974052

4 0,96082 0,970291 0,973345 0,974093

5 0,958814 0,969054 0,972696 0,973956

6 0,957099 0,967914 0,972007 0,973693

7 0,955605 0,966908 0,971388 0,973352

8 0,95425 0,965991 0,970786 0,972984

9 0,953023 0,965129 0,970177 0,972603

10 0,951876 0,964339 0,9696 0,972217

11 0,950819 0,963593 0,969084 0,971851

12 0,949828 0,962915 0,968562 0,971497
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TABLE 11. The numerical values of the PSNR for the mountain image

N w=5 w=10 w=15 w=20

2 21,76631 23,27749 23,1204 22,68569

3 21,03285 23,07359 23,31022 23,05427

4 20,47727 22,76765 23,33451 23,23154

5 20,04889 22,47274 23,2664 23,31831

6 19,69711 22,19207 23,1556 23,35247

7 19,40644 21,93179 23,03366 23,34492

8 19,15224 21,70653 22,89272 23,31629

9 18,93389 21,50075 22,75439 23,26504

10 18,7375 21,30299 22,61814 23,19806

11 18,55898 21,12716 22,4842 23,13559

12 18,40131 20,96599 22,35643 23,06147

TABLE 12. The numerical values of the S-index for the mountain image

N w=5 w=10 w=15 w=20

2 0,943975 0,954693 0,955022 0,953237

3 0,938593 0,952793 0,955499 0,954773

4 0,934135 0,950659 0,95508 0,955388

5 0,930443 0,948655 0,954247 0,955541

6 0,927252 0,946779 0,953304 0,955412

7 0,92449 0,945008 0,952377 0,955075

8 0,921978 0,943414 0,951415 0,954651

9 0,919735 0,941943 0,950494 0,954142

10 0,917661 0,940508 0,949581 0,953597

11 0,915726 0,939196 0,948674 0,953094

12 0,913969 0,93795 0,947829 0,952548
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TABLE 13. The numerical values of the S-index for the boat image.

[0.01; 0.97616558969266853] [0.02; 0.97626759036948307] [0.03; 0.97637292571349765] [0.04; 0.97646385714780093]

[0.05; 0.97656766410268026] [0.06; 0.97666971109431622] [0.07; 0.97676601504799732] [0.08; 0.97684976768485399]

[0.09; 0.97693415329094790] [0.10; 0.97701875503287983] [0.11; 0.97711845540685693] [0.12; 0.97720917070532198]

[0.13; 0.97730444029463814] [0.14; 0.97739659135259349] [0.15; 0.97748522248405789] [0.16; 0.97758537056798234]

[0.17; 0.97766006093795910] [0.18; 0.97775185691560795] [0.19; 0.97785212850572534] [0.20; 0.97793807337750072]

[0.21; 0.97803451627564830] [0.22; 0.97809214735277061] [0.23 ; 0.97817858624931775] [0.24; 0.97825302960690674]

[0.25; 0.97833929868243896] [0.26; 0.97840464889659817] [0.27; 0.97848502055143227] [0.28; 0.97855926321145992]

[0.29; 0.97862980068570926] [0.30; 0.97869913397458064] [0.31; 0.97876408279361438] [0.32; 0.97883939069455217]

[0.33; 0.97889325483279954] [0.34; 0.97895463741052202] [0.35; 0.97901327197545851] [0.36; 0.97907199917004073]

[0.37; 0.97913480206897852] [0.38; 0.97920757809296877] [0.39; 0.97925580726117856] [0.40; 0.97932396724121917]

[0.41; 0.97938342003468337] [0.42; 0.97944120549454572] [0.43; 0.97948467967434194] [0.44; 0.97954373107267778]

[0.45; 0.97959954043346009] [0.46; 0.97964355495284927] [0.47; 0.97968756947223590] [0.48; 0.97973988978307669]

[0.49; 0.97977845459171642] [0.50; 0.97983410956975669] [0.51; 0.97987651850864055] [0.52; 0.97992034776874026]

[0.53; 0.97998287277874474] [0.54; 0.98001592612353894] [0.55; 0.98006724294656333] [0.56; 0.98011216832412273]

[0.57; 0.98013869127898290] [0.58; 0.98018823270049082] [0.59; 0.98021707139646241] [0.60; 0.98024144843122751]

[0.61; 0.98026273781117690] [0.62; 0.98028804114238566] [0.63; 0.98031082803491987] [0.64; 0.98034139581758906]

[0.65; 0.98037344567456941] [0.66; 0.98037471161304368] [0.67; 0.98039501294345210] [0.68; 0.98042110362663826]

[0.69; 0.98044646871094343] [0.70; 0.98045438854554323] [0.71; 0.98046409921993705] [0.72; 0.98048478650719761]

[0.73; 0.98048520334059863] [0.74; 0.98049466700260646] [0.75; 0.98049752308331006] [0.76; 0.98050144440492548]

[0.77; 0.98050379102258456] [0.78; 0.98050913266541517] [0.79; 0.98050024021954696] [0.80; 0.98050201562106531]

[0.81; 0.98049942199102114] [0.82; 0.98049304598382936] [0.83; 0.98048345881562826] [0.84; 0.98046934823312271]

[0.85; 0.98045710568178235] [0.86; 0.98045168684758111] [0.87; 0.98042429934937170] [0.88; 0.98042289446643149]

[0.89; 0.98040929334697202] [0.90; 0.98039153933178547] [0.91; 0.98037545265019832] [0.92; 0.98036875243925059]

[0.93; 0.98033790676764754] [0.94; 0.98032297795661794] [0.95; 0.98029230210603036] [0.96; 0.98025315064297591]

[0.97; 0.98021506442083295] [0.98; 0.98019269436169787] [0.99; 0.98015337307762984] [1.00; 0.98012437999891566]

In each cell of Table 13, the δ and the corresponding S-index value appear inside the square
brackets.

As already mentioned in Section 5, the Boat image was one of those examined in [42] which
is the paper that originated the comparison.
If we examine the shapes of the graphs of the [42, Figure 12] and that of Figure 3.(4) we can
observe that the qualitative curves are analogous. The maximum in the present paper is ob-
tained for a larger value of the parameter δ, but this may depend both on the floating-point
number format and on the fact that in this study we assume that the pixels outside the image
have costant value equal to zero, in fact they do not provide additional information (no bound-
ary conditions), while in [42] this is not specified. In any case the difference of the S-index, in
Table 13, in the interval between the “δmax

S ” of the two papers is less than 3 · 10−4 thus we can
conclude that the results obtained here confirm those in [42].
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6.2. magnification 5.
In this subsection, the tables of the two similarity indices are presented for the baboon and
the mountain images; as we said before, due to the size of the images, only these two could
be taken into consideration for the magnification R = 5. In this case the values for which the
maximum of the similarity indices is reached are not highlighted.

TABLE 14. The numerical values of the PSNR-index for the baboon image R=5

N w=5 w=10 w=15 w=20 w=25

2 20,7329147502973 21,7161082496651 21,979365824288 22,0558557949496 22,0775418477414

3 20,3467942537683 21,4828541953169 21,8662212638324 22,0074149690313 22,0615063203985

4 20,0415812414765 21,2811780337 21,7516133283618 21,9493699991135 22,021982797865

5 19,8011752130362 21,1064969190485 21,6437660594206 21,8788040512415 21,9870684510821

6 19,5936090626771 20,9560372953294 21,5387139742664 21,8223810785381 21,9529653869713

7 19,4110677834914 20,8227533041516 21,4372167850169 21,7502537170246 21,9079647824159

8 19,2550258194904 20,7062361523255 21,3526599132005 21,6877191556461 21,8689832613072

9 19,1092740466907 20,5972670626762 21,2666457824789 21,6286366213533 21,8290361881159

10 18,974699199968 20,4979200147237 21,1894189563848 21,5703646320501 21,7851824151841

11 18,8531097177987 20,403559417055 21,113408433493 21,5085279324257 21,7433900697263

12 18,7426431897043 20,3176158516323 21,0436294630194 21,4509224927457 21,7015964927653

TABLE 15. The numerical values of the S-index for the baboon image R=5

N w=5 w=10 w=15 w=20 w=25

2 0,931130741569984 0,939363412262253 0,941239854957746 0,941674318324023 0,941778411018386

3 0,92756891391697 0,937563742451998 0,940480870856609 0,941408538194208 0,941715991586946

4 0,924526946649478 0,935899284588883 0,939632268132166 0,941022804200496 0,941476867871331

5 0,922040482167492 0,934411108849537 0,938786801456453 0,940544194917489 0,941288343095793

6 0,919811897384866 0,933090651408584 0,937969317984786 0,940145615185713 0,941051511108095

7 0,917812666319892 0,931922835108668 0,937176983211585 0,939616527579889 0,94074592728287

8 0,916027108728919 0,930876540697016 0,936484760763205 0,939115604104002 0,940463622588597

9 0,914360238520628 0,929858832575705 0,935755026347333 0,938689704563101 0,940181438511583

10 0,912790043045284 0,928941839865511 0,935106346729387 0,938211517440502 0,939881885549299

11 0,91133539890389 0,928051202026371 0,934448982668807 0,937729832417396 0,939541986113938

12 0,910025374855824 0,927229798493791 0,933838599030538 0,937278603252143 0,939234834264347
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TABLE 16. The numerical values of the PSNR-index for the mountain image R=5

N w = 5 w = 10 w = 15 w = 20

2 19,4878493801042 20,5194643201115 20,3445774937346 20,0352078339142

3 18,8959966960253 20,4106079549201 20,5078456050646 20,2861784442023

4 18,4349923092873 20,2165121177552 20,5479617447969 20,4262893816383

5 18,0690123314328 20,0065933263976 20,5227982717099 20,5094371835843

6 17,7658779676526 19,8011176515348 20,4630175378557 20,54521178183

7 17,5141848124694 19,6066833837114 20,3843693694262 20,557343052487

8 17,2973630657787 19,4295932034864 20,2978171756184 20,5473046959311

9 17,1092673976789 19,2613049769722 20,2016656072662 20,5215375241213

10 16,9415207481794 19,1093674672082 20,1054519195362 20,4886717646383

11 16,7911714644458 18,9661225386627 20,0125175550292 20,4462480907923

12 16,655095783726 18,8313407159141 19,9169980743677 20,402755638215

TABLE 17. The numerical values of the S-index for the mountain image R=5

N w = 5 w = 10 w = 15 w = 20

2 0,926103965141612 0,937437124183007 0,937670007262164 0,935860958605665

3 0,919899927378358 0,935601263616558 0,938177777777779 0,937387596223674

4 0,914731169208424 0,933381859114015 0,937776441539579 0,938012273057373

5 0,910410399419027 0,931204371822803 0,937041626724764 0,938218997821352

6 0,906666129266522 0,929122004357298 0,936115889615106 0,938098634713145

7 0,903401045751634 0,927175061728395 0,935151154684096 0,93781179375454

8 0,900529339143064 0,925371082062454 0,934170806100217 0,937403877995643

9 0,8979444734931 0,9236483805374 0,933156165577341 0,936923384168482

10 0,895572127814088 0,922042527233116 0,932153972403777 0,936412549019608

11 0,893384836601306 0,920517618010166 0,931215003631082 0,935867494553378

12 0,891373623819897 0,919074669571532 0,930259288307916 0,935333710965867

7. CONCLUSIONS

In this article, we compared a construction method of an interval-valued fuzzy set starting
from fuzzy sets, introduced in [42] with the SK algorithm and the well-known bicubic method
for digital image processing. These algorithms were compared with the use of the PSNR and
the likelihood S indices, as well as, by analysing the corresponding processing CPU time.
From the numerical results provided in Section 5, it seems to be clear that:
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• Based on the analysis of Tables 1 and 2, it seems that the maximum values of the PSNR
and likelihood index S are both substantially better in the case of the application of
the SK method with sufficiently high w, with respect to other two considered methods.
Only when the scaling factor is equal to 3, and we consider the "boat", does the fuzzy-
algorithm seem to provide better reconstruction results, at least for the PSNR index.
The same consideration can also be applied when the scaling factor is equal to 5.
The fuzzy-type algorithm seems to perform substantially better than the bicubic method.

• The CPU analysis given in Table 3, performed only for the best approximations, shows
that the bicubic method has the most rapid execution, the mean CPU time employed
by the fuzzy-type algorithm is reasonable in term of applicability of the method, while,
as we already known, the CPU time is the weak point of the SK algorithm. The higher
CPU time seems to be the price to pay to obtain more accurate results.
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ABSTRACT. There are different methods available in literature to construct a new operator. One of the methods to
construct an operator is the composition method. It is known that Baskakov operators can be achieved by composition
of Post Widder Pn and Szász-Mirakjan Sn operators in that order, which is a discretely defined operator. But when
we consider different order composition namely Sn ◦ Pn, we get another different operator. Here we study such and
we establish some convergence estimates for the composition operators Sn ◦ Pn, along with difference with other
operators. Finally, we found the difference between two compositions by considering numeric values.
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1. SZÁSZ-MIRAKJAN AND POST-WIDDER COMPOSITION

In the last few decades, many new operators have been introduced by the researchers using
different methods, some were generalizations of existing operators while some using generat-
ing functions, we mention here some of the recent studies [2, 3, 4, 6, 7, 9, 14, 18, 22] etc. . Here,
we discuss a composition method to achieve a new operator. The present article is continuation
in series of earlier recent papers [1, 15, 16]. The composition of Post-Widder operators and the
Szász operators, i.e. (Pn ◦ Sn) provide us the Baskakov operators Vn (see [17]) in that order.
But, when we change the order of composition it is not necessary to have same operator. Here,
we discuss reverse order composition. The Szász-Mirakjan operators are given as follows:

(Snf) (x) =

∞∑
k=0

sk(nx)f

(
k

n

)
, x ≥ 0

where sk(nx) = e−nx (nx)k

k! . The Post Widder operator is defined as

(Pnf)(x) =
nn

xnΓ(n)

∫ ∞

0

e−nt/xtn−1f(t)dt, x > 0

and (Pnf)(0) = f(0). Now composition operator An = Sn ◦ Pn is defined by

(Sn ◦ Pnf)(x) =

∞∑
k=1

sk(nx)
n2n

knΓ(n)

∫ ∞

0

e−n
2t/ktn−1f(t)dt.
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In above k ≥ 1 as for k = 0 above is not defined. In order to satisfy normalizer condition, our
operators take the following form:

(Anf)(x) =

∞∑
k=1

sk(nx)
n2n

knΓ(n)

∫ ∞

0

e−n
2t/ktn−1f(t)dt+ s0(nx)f(0)

=

∞∑
k=1

sk(nx)

∫ ∞

0

n2

k
sn−1

(
n2t

k

)
f(t)dt+ s0(nx)f(0)(1.1)

which is a new approximation operator. These operators preserve constant function. In this
article, we discuss some approximation properties of the operators An.

2. MOMENT GENERATING FUNCTION AND MOMENTS

The moment generating functions with the notation expA(t) = eAt are given by

(Sn expA) (x) =e
nx(eA/n−1),

(Pn expA)(x) =

(
1− Ax

n

)−n

,

(Vn expA)(x) =(Pn ◦ Sn expA)(x)

=(Pn expn(eA/n−1)) =
(
1− xe

A
n + x

)−n
which is the moment generating function of the Baskakov operators Vn. But when we take
reverse order composition i.e. Sn ◦ Pn, then moment generating is not achieved in the close
form and we have the same in summation form

(An expA)(x) = (Sn ◦ Pn expA)(x) =
∞∑
k=0

sk(nx)

(
1− Ak

n2

)−n

.

Lemma 2.1. The moments satisfy the representation

(Aner)(x) =

∞∑
k=1

sk(nx)
n2n

knΓ(n)

∫ ∞

0

e−n
2t/ktn+r−1dt

=
Γ(n+ r)

Γ(n)n2r

∞∑
k=1

sk(nx)k
r.

In particular

(Ane1)(x) =

∞∑
k=1

sk(x)
k

n
= x

(Ane2)(x) =
(n+ 1)

n

∞∑
k=1

sk(x)
k2

n2
= x2 +

x(1 + x)

n
+

x

n2

(Ane3)(x) =

(
1 +

3

n
+

2

n2

)[
x3 +

3x2

n
+

x

n2

]
(Ane4)(x) =

(
1 +

6

n
+

11

n2
+

6

n3

)[
x4 +

6x3

n
+

7x2

n2
+

x

n3

]
.

The proof of this lemma follows by using the moments of Szász operators, which can be
obtained from (Sn expA)(x).



Convergence estimates for some composition operators 71

Lemma 2.2. If the central moments are denoted by µn,r(x) = (An(e1−xe0)r)(x), r = 0, 1, 2, ..., then

µn,0(x) =1

µn,1(x) =0

µn,2(x) =
x(1 + x)

n
+

x

n2
.

The proof follows by Lemma 2.1 and linearity of An.

3. APPROXIMATION ESTIMATIONS

Let C̃[0,∞) denotes the space of all real-valued bounded and uniformly continuous func-
tions f on [0,∞) with the norm ||f || = supx∈[0,∞) |f(x)|.

Theorem 3.1. For f ′ ∈ C̃[0,∞) and x ∈ [0,∞), we have

|(Anf)(x)− f(x)| ≤ 2

√
x(1 + x)

n
+

x

n2
ω

(
f ′,

√
x(1 + x)

n
+

x

n2

)
,

where ω (f, δ) is the modulus of continuity of first-order.

Proof. For f ′ ∈ C̃[0,∞) and x, t ∈ [0,∞), we can write

(An(f(u)− f(x)))(x) = f ′(x)(An(u− x))(x) +

(
An

∫ u

x

(f ′(v)− f ′(x))dv

)
(x).

Also, for δ > 0, we have∣∣∣∣∫ u

x

(f ′(v)− f ′(x))dv

∣∣∣∣ ≤ ω(f ′, δ)

(
(u− x)2

δ
+ |u− x|

)
.

Thus using Schwarz inequality and Lemma 2.2, we get

|[(Anf)− f ](x)| ≤ |f ′(x)| · |µn,1(x)|+ ω(f ′, δ)

[√
µn,2(x)

δ
+ 1

]√
µn,2(x),

selecting δ =
√
µn,2(x), the result follows at once. □

Theorem 3.2. For f ∈ CB [0,∞) ( denoting the class of continuous and bounded function on the
interval [0,∞)), there exists a positive constant C, such that

|[(Anf)− f ](x)| ≤ Cω2

(
f,

√
x(1 + x)

n
+

x

n2

)
.

Proof. The operatorsAn preserve linear functions. By Taylor’s expansion, for g ∈ C2
B [0,∞) and

x, t ∈ [0,∞), we have

|[(Ang)− g](x)| =
∣∣∣∣An(∫ t

x

(t− u)g′′(u)du, x

)∣∣∣∣ .
Also, we have |

∫ t
x
(t− u)g′′(u)du| ≤ (t− x)2||g′′||. Therefore by Lemma 2.2, we have∣∣∣∣An(∫ t

x

(t− u)g′′(u)du, x

)∣∣∣∣ ≤ ||g′′||
(
x(1 + x)

n
+

x

n2

)
.

Next

|(Anf)(x)| =
∞∑
k=1

sk(nx)

∫ ∞

0

n2

k
sn−1

(
n2t

k

)
|f(t)|dt+ s0(nx)|f(0)| ≤ ||f ||.
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Thus, we have

|(Anf)(x)− f(x)| = |[(An(f − g))− (f − g)](x)|+ |[(Ang)− g](x)|

≤2∥f − g∥+
(
x(1 + x)

n
+

x

n2

)
∥g′′∥.

Taking the infimum over all g ∈ C2
B [0,∞) and using the inequality

Cω2(f,
√
η) ≥ K2(f, η), η > 0

(see [10]), we get the required result. □

If we denote
B2[0,∞) = {g : |g(x)| ≤ cg(1 + x2),∀x ∈ [0,∞)},

where cg is certain absolute constant that depends on g, but free from x. Let C2[0,∞) =
C[0,∞) ∩ B2[0,∞). For each g ∈ C2[0,∞), the weighted modulus of continuity (see [23]) is
defined as

Ω(g, δ) = sup
|h|<δ,x∈R+

|g(x+ h)− g(x)|
(1 + h2)(1 + x2)

.

Also, C∗
2 [0,∞) denotes the subspace of continuous functions g ∈ B2[0,∞) for which

lim
x→∞

|g(x)|(1 + x2)−1 <∞.

We consider the norm by

||g||2 = sup
0≤x<∞

|g(x)|
(1 + x2)

.

Following Gadjiev [13], we have:

Theorem 3.3. If f ∈ C∗
2 [0,∞) satisfying

lim
n→∞

∥(Anei)− ei∥2 = 0, i = 0, 1, 2,

then we have
lim
n→∞

∥(Anf)− f∥2 = 0.

Proof. To prove the result, we use Lemma 2.1, as the operators preserve constant and linear
functions, the result is true for i = 0, 1. Next

lim
n→∞

∥(Ane2(x)− e2∥2 = lim
n→∞

1

(1 + x2)

[
x(1 + x)

n
+

x

n2

]
= 0.

The proof is complete. □

Theorem 3.4. If f ′′ ∈ C∗
2 [0,∞), then for x ∈ [0,∞), we have∣∣∣∣(Anf)(x)− f(x)−

(
x(1 + x)

n
+

x

n2

)
f ′′(x)

∣∣∣∣
≤8(1 + x2)O(n−1)Ω(f ′′, 1/

√
n).

Proof. By applying Taylor’s formula, with h(t, x) a continuous function defined by h(t, x) :=
1
2 (f

′′(ξ)− f ′′(x)), x < ξ < t, on the operators (Anf)(x), we obtain

(Anf)(x)− f(x) = µn,1(x)f
′(x) +

µn,2(x)

2
f ′′(x) + (Anh(t, x)(t− x)2)(x),
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where h(t, x) vanishes when t→ x. Now applying Lemma 2.2, we have∣∣∣∣(Anf)(x)− f(x)− µn,1(x)f
′(x) +

µn,2(x)

2
f ′′(x)

∣∣∣∣ ≤ (Anh(t, x)(t− x)2)(x).

Following [19, Thm. 2.1] the remainder term for An has the form:

|(Anh(t, x)(t− x)2)(x)| ≤ 8(1 + x2)O(n−1)Ω(f ′′, 1/
√
n).

The proof of the theorem is complete. □

Corollary 3.1. If f ′′ ∈ C∗
2 [0,∞), then we have

lim
n→∞

n [[(Anf)− f ](x)] =
x(1 + x)

2
f ′′(x).

The moduli of continuity with weights (see [24]) is considered:

ωψ(f, δ) = sup{|f(u)− f(v)| : |u− v| ≤ δψ ((u+ v)/2) ;u, v ≥ 0},

where ψ(u) =
√
u/(1 + um),m = 2, 3, 4, ...

Following [20], supposeWψ[0,∞) denotes the subspace of all real-valued functions such that
f ◦ e2 and f ◦ e2/(2m+1) are uniformly continuous in the intervals [0, 1] and [1,∞), respectively.

Following [20, Th. 6.3] and references therein below quantitative estimate of error holds:

Theorem 3.5. Let f ∈ C2[0,∞) ∩ E, where E is the subspace of positive real axis also if f ′′ ∈
Wψ[0,∞), then we have∣∣∣∣(Anf)(x)− f(x)−

(
x(1 + x)

n
+

x

n2

)
f ′′(x)

∣∣∣∣
≤
(
x(1 + x)

n
+

x

n2

)[
1 +

1√
2x
Cn,r,2(x)

]
ωψ
(
f ′′, δ1/2

)
,

where

Cn,r,2(x) = 1 +
1

(An|t− x|3)(x)

r∑
s=0

(
r

s

)
xr−s

(An|t− x|r+s)(x)
2s

and δ := µn,4(x)/µn,2(x), where the moments are given in Lemma 2.2.

For proof of above theorem, we use Lemma 2.2 and follow the steps as in [21].
Below we find the difference between our new composition operator An and the Szász-

Mirakjan operators.

Theorem 3.6. If n ∈ N and f ∈ CB [0,∞), then we get

|(Anf)(x)− (Snf) (x)| ≤ 2ω

(
f,

(
x2

n
+

x

n2

)−1/2
)
.

Proof. We prove the first inequality as follows

|(Anf)(x)− (Snf) (x)| = |(Sn ◦ Pnf)(x)− (Snf) (x)|

≤
∑
k≥0

sk(nx)

∣∣∣∣(Pnf)(kn
)
− f

(
k

n

)∣∣∣∣ dt.
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In the following inequality using (Pn(e1 − xe0)
2)(x) = x2

n , we can write

| (Pnf) (x)− f(x)| ≤
(
1 +

(Pn(e1 − xe0)
2)(x)

δ2

)
ω(f, δ)

=

(
1 +

x2

nδ2

)
ω(f, δ).

Thus using the fact that of (Sne2)(x) = x2 + x
n , we have

|(Sn ◦ Pnf)(x)− (Snf) (x)| ≤
∑
k≥0

sk(nx)

(
1 +

k2

n3δ2

)
ω(f, δ) =

[
1 +

1

nδ2

(
x2 +

x

n

)]
ω(f, δ).

Choosing δ =
(
x2

n + x
n2

)−1/2

, the result follows.
□

The Post-Widder operator Pn can be written as

(Pnf) (x) =
1

Γ(n)

∫ ∞

0

e−uun−1f
(xu
n

)
du, u ≥ 0.

It is easy to observe that,

(Pnf) (x) = E

[
f

(
xU(n)

n

)]
, x ≥ 0,

where {U(n) : n > 0} is gamma process.

Proposition 3.1. For f ∈ C[0,∞), ω (f, δ) <∞ and δ ≥ 0, we have

ω (Pnf, δ) ≤ 2ω (f, δ) .

Proof. Following the notations of [5], since E
[
xU(n)
n

]
= (Pne1) (x) = x, therefore

a1(δ, n) = sup
x,x+δ∈[0,∞)

E

∣∣∣∣ (x+ δ)U(n)

n
− xU(n)

n

∣∣∣∣ = δ,

and since U(n) has zero density at origin, therefore

b(δ, n) = sup
x,x+δ∈[0,∞)

P

(∣∣∣∣ (x+ δ)U(n)

n
− xU(n)

n

∣∣∣∣ > 0

)
= 1.

Following [5, Corollary 2], we have

ω (Pnf, δ) ≤
(
a1(δ, n)

δ
+ b(δ, n)

)
ω (f, δ) .

Substituting above values, the result is immediate. □

Theorem 3.7. If n ∈ N and f ∈ CB [0,∞), then we get

|(Anf)(x)− (Pnf) (x)| ≤ 4ω

(
f,

√
x

n

)
.
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Proof. We prove the first inequality by considering g = Pnf as follows

|(Anf)(x)− (Pnf) (x)| = |(Sn ◦ g)(x)− g(x)|

≤
(
1 +

(Sn(e1 − xe0)
2)(x)

η2

)
ω(g, η)

=

(
1 +

x

nη2

)
ω(g, η).

Choosing η =
(
x
n

)−1/2 and applying Proposition 3.1, the result follows. □

4. COMPARISON

The operator (Sn ◦ Pnf) provide a discrete operator namely Baskakov operator Vn and the
composition (Pn◦Snf) provide a summation-integral type operatorAn. Both have the different
moments but their asymptotic formula are same and given by

lim
n→∞

n[(Sn ◦ Pnf)− f(x)] = lim
n→∞

n[(Pn ◦ Snf)− f(x)] =
x(1 + x)

2
f ′′(x).

In the following table, we give the error for the two compositions of operators.

TABLE 1. Upper bound for error between the two composition operators An
and Vn

n
Operator

An (x ∈ [0, 2]) Vn (x ∈ [0, 2]) An (x ∈ [0, 9]) Vn (x ∈ [0, 9])

5 1.28 1.2 18.36 18
10 0.62 0.6 9.09 9.0
50 0.1208 0.12 1.8036 1.8

100 0.0602 0.06 0.9009 0.90
1000 0.006002 0.006 0.090009 0.09

We observe here from the above table that the error is less in case we consider the discrete
operator viz. Vn := Sn ◦ Pn and it increases slightly by taking the reverse order composition
An := Pn ◦ Sn.

One may study the composition of Mihesan and BBH operators discussed in [8], [11] and
also the King type approach of our operators along the lines of [12]. We may discuss them
elsewhere.
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ABSTRACT. The paper presents a detailed analysis of control and observation of generalized Caputo proportional
fractional time-invariant linear systems. The focus is on identifying controllable states and observable systems within
the controllable subspace, null space, and unobservable subspace of the proposed system. The necessary conditions for
the controllable subspace and the necessary and sufficient conditions for observability criteria are firmly established.
The controllable subspace is treated geometrically as the set of controllable states, while the observable system is char-
acterized by a zero unobservable subspace. The results are reinforced by examples and will immensely benefit future
studies on fractional-order control systems.

Keywords: Controllable subspace, unobservable subspace, controllability, observability, fractional proportional con-
trol system.
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1. INTRODUCTION

Control theory is a crucial field that directs the behavior of engineered processes and ma-
chines towards a desired state, all while guaranteeing stability and reducing errors. Its ultimate
goal is to identify the optimal solution to control problems. When appraising a solution, two
factors must be taken into account: the capability to transition from any starting state to any
desired state by using the appropriate control inputs, and the capacity to establish the initial
state of the system when the output is known, with knowledge of the input. In 1960, Kalman
[15] proposed controllability and observability concepts that are now fundamental in control
theory.

Fractional derivatives are crucial in various fields like control theory, finance, and nanotech-
nology. For further interest, we refer to [4]. Li et al. [18] discussed the use of a proportional
derivative controller for controlling the output, denoted as u, at a given time t. The algorithm
is defined with two shape control parameters is given by

u (t) = kpE (t) + kd
d

dt
E (t) .

In this context, E, kp, and kd represent the error, proportional gain, and derivative gain, respec-
tively. Anderson et al. [1] introduced the proportional derivative of order θ as:

Dθϕ (ϑ) = k1 (θ, ϑ)ϕ (ϑ) + k0 (θ, ϑ)ϕ
′
(ϑ) .
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In the given equation, the variable ϕ represents a differentiable function, while k0 and k1 are
continuous functions defined on the interval [0, 1] × R with values in the interval [0,∞). The
parameter θ belongs to the interval [0, 1] and satisfies the following conditions ∀ ϑ ∈ R:

lim
θ→0+

k0 (θ, ϑ) = 0, lim
θ→1−

k0 (θ, ϑ) = 1, k0 (θ, ϑ) ̸= 0, θ ∈ (0, 1] ,

lim
θ→0+

k1 (θ, ϑ) = 1, lim
θ→1−

k1 (θ, ϑ) = 0, k1 (θ, ϑ) ̸= 0, θ ∈ [0, 1) .

As the order θ approaches 0, this local derivative converges to the original function. This prop-
erty enhances the effectiveness of conformable derivatives. The findings presented in above
result have enabled Dawei et al. [7] to demonstrate the control of complex network models.
Jarad et al. [12] introduced a novel result concerning fractional operators derived from en-
hanced conformable derivatives. In a subsequent work, Jarad et al. [11] further improved and
modified the aforementioned result.

Various studies have explored the controllability and observability properties of mathemat-
ical models in different fields. Several researchers [3, 6, 9, 10, 19, 24, 25, 26, 28] have studied
various aspects of controllability and observability in different types of dynamic systems, in-
cluding time-fractional, heat equation, conformable fractional, robotic arms, fractional-order
differential, and stochastic singular systems.

This paper outlines critical geometric criteria that are essential for determining the control-
lability and observability of Caputo proportional fractional linear control systems:

(1.1)
cDθ,ϱ,ϕx(ϑ) = Ax(ϑ) +Bu(ϑ),

y(ϑ) = Cx(ϑ) +Du(ϑ), ϑ ∈ [0, T ],

with the initial condition x(b) = xb. Geometric properties provide valuable insights into linear
fractional control systems for engineers and researchers. These insights can guide the analysis,
design, and optimization processes of the system. Geometric methods are also employed in
the design of feedback control systems. Techniques such as pole placement and linear qua-
dratic regulator (LQR) control involve manipulating the system’s poles in the complex plane
to achieve desired performance and stability objectives.

The paper is structured in the following manner: Section 2 presents crucial definitions and
lemmas. Section 3 establishes the property of the matrix Mittag-Leffler function in the context
of the generalized Caputo proportional fractional derivative. Subsection 3.1 derives geometric
criteria for controllability using the Gramian controllability matrix and discusses the necessary
controllability condition for Caputo proportional fractional linear time-invariant system (1.1).
Subsection 3.2 discusses the necessary and sufficient observability conditions for the system
(1.1). Section 4 provides pertinent examples that support the presented results. Lastly, Section
5 concludes the paper.

2. BASIC NOTIONS

Definition 2.1 ([11]). For ϱ ∈ (0, 1] & θ ∈ C with Re (θ) ≥ 0, Caputo type’s left derivative, defined
as:

(2.2)

(
cDθ,ϱ,ϕh

)
(ϑ) =a Im−θ,ϱ,ϕ

(
Dm,ϱ,ϕh

)
(ϑ)

=
1

ϱm−θΓ (m− θ)

ϑ∫
a

e
ϱ−1
ϱ (ϕ(ϑ)−ϕ(τ)) (ϕ (ϑ)− ϕ (τ))

m−θ−1

×
(
Dm,ϱ,ϕh

)
(τ)ϕ

′
(τ) dτ.

Remark 2.1 ([11]). Consider ϱ = 1 in Definition 2.1,
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(1) If ϕ (ϑ) = ϑ in (2.2), we get the Riemann-Liouville fractional operators.

(2) If ϕ (ϑ) =
ϑµ

µ
in (2.2), we get the Katugampola fractional operators.

(3) If ϕ (ϑ) = lnϑ in (2.2), we get the Hadamard fractional operators.

(4) If ϕ (ϑ) =
(ϑ− a)

µ

µ
in (2.2), we get the fractional operators mentioned in [12].

The Mittag-Leffler functions have significant importance in the field of fractional calculus
[17, 21, 29].

Definition 2.2 ([17, 21, 29]). The Mittag-Leffler function is given by

Eθ (z) =

∞∑
j=0

zj

Γ (jθ + 1)
, z ∈ C, Re (θ) > 0.

The Mittag-Leffler function is defined by two parameters, θ and β [17, 21, 29]

Eθ,β (z) =

∞∑
j=0

zj

Γ (jθ + β)
, z ∈ C, Re (θ) > 0, Re (β) > 0.

Theorem 2.1 ([5]). Consider a linear system of generalized Caputo proportional fractional derivative
with parameters ϱ and θ, where ϱ and θ are in the interval (0, 1). Let ϕ be a continuous, strictly
increasing function. The system is represented as follows:

(2.3)

{(
cDθ,ϱ,ϕx

)
(ϑ) = Ax (ϑ) +Bu (ϑ) ,

x (b) = xb.

Here, x : [b, T ] → Rn, u : [b, T ] → Rm, A ∈ Rn×n, B ∈ Rn×m are matrices, and A satisfies the
condition that det(λI −A) ̸= 0. Then the solution of equation (2.3) for the time-invariant case is given
by:

(2.4)

x (ϑ) = e
ϱ−1
ϱ (ϕ(ϑ)−ϕ(b))Eθ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
xb

+ ϱ−θ

ϑ∫
b

e
ϱ−1
ϱ (ϕ(ϑ)−ϕ(τ)) (ϕ (ϑ)− ϕ (τ))

θ−1

× Eθ,θ

(
ϱ−θA (ϕ (ϑ)− ϕ (τ))

θ
)
Bu (τ)ϕ

′
(τ) dτ.

Definition 2.3 ([23]). The controllable subspace for the linear state equation (1.1) is defined as the
subspace of X , denoted by ⟨A|B⟩, where B = Im(B), as follows:

⟨A|B⟩ = B+AB+ · · ·+An−1B.

Definition 2.4 ([23]). System (1.1) is called state controllable on [b, tf ], tf > 0; ∃ an input signal
u (·) : [b, tf ] → Rm proposed solution of (2.3) fulfills x (tf ) = 0.

Let us consider the controllability Gramian matrix from [5]:

(2.5)

Wc [b, tf ] : = ϱ−θ

∫ tf

b

e
ϱ−1
ϱ (ϕ(tf )−ϕ(τ)) (ϕ (tf )− ϕ (τ))

θ−1

× Eθ,θ

(
ϱ−θA (ϕ (tf )− ϕ (τ))

θ
)
(B)

× (B)
∗
E∗

θ,θ

(
ϱ−θA (ϕ (tf )− ϕ (τ))

θ
)
ϕ

′
(τ) dτ,
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where the matrix transpose is represented as ∗.
The geometric approach to analyzing observability for the linear state equation (1.1) initiates

from a reversed concept as:

Definition 2.5 ([23]). The unobservable subspace N for the linear state equation (1.1) is defined as the
subspace of X

N = ∩∞
i=0 ker

[
CAi

]
.

Remark 2.2 ([23]). N is an invariant subspace for A.

Definition 2.6 ([23]). System (1.1) is called state observable on [b, tf ] for any initial condition x (b) =
xb ∈ Rn the system’s uniqueness is found by its corresponding input u(ϑ) and output y(ϑ), ϑ ∈ [b, tf ];
tf ∈ [b, T ].

Let us consider the observability Gramian matrix from [5]:

(2.6)
Wo [b, tf ] : =

tf∫
b

e
ϱ−1
ϱ (ϕ(ϑ)−ϕ(b))E∗

θ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
C∗

× CEθ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
dϑ,

where the matrix transpose is represented as ∗.

Theorem 2.2 ([5]). System (1.1) is observable on [b, tf ] iff |Wo [b, tf ]| ≠ 0 for some tf > 0.

Let us recall the Cayley-Hamilton theorem for fractional continuous-time linear systems.

Theorem 2.3 ([13]). Let Ψ(λ) = det [Inλ− f (A)] = λn + an−1λ
n−1 + · · · + a1λ + a0 be the

characteristic polynomial of the matrix f (A). Then the matrix f (A) satisfies its characteristic equation,
i.e.

[f (A)]
n
+ an−1 [f (A)]

n−1
+ · · ·+ a1 [f (A)] + a0In = 0.

3. MAIN RESULTS

We first establish a preliminary result.

Proposition 3.1. There exist analytic functions θo (t) , θ1 (t) , . . . , θn−1 (t) such that

(3.7) Eθ

(
A

(
ϕ (t)− ϕ (0)

ϱ

)θ
)

=

n−1∑
k=0

θk (t) [f (A)]
k
.

Proof. The n× n matrix generalized Caputo proportional fractional differential equation(
cDθ,ϱ,ϕx

)
(t) = Ax (t) , x (0) = I ,

has the unique solution

x (t) = e
ϱ−1
ϱ (ϕ(t)−ϕ(0))Eθ

(
A

(
ϕ (t)− ϕ (0)

ϱ

)θ
)
.
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The matrix generalized Caputo proportional fractional differential equation characterizing the
Mittag-Leffler function, we can establish (3.7) by showing that there exist scalar analytic func-
tions θo (t) , θ1 (t) , . . . , θn−1 (t) such that

(3.8)

n−1∑
k=0

cDθ,ϱ,ϕθk (t) [f (A)]
k
=

n−1∑
k=0

θk (t) [f (A)]
k+1

,

n−1∑
k=0

θk (0) [f (A)]
k
= I.

The Cayley-Hamilton Theorem 2.3 implies

[f (A)]
n
= −a0I − a1 [f (A)]− · · · − an−1 [f (A)]

n−1
.

Then (3.8) can be completely formulated using I, A, . . . , An−1 as

n−1∑
k=0

cDθ,ϱ,ϕθk (t) [f (A)]
k
=

n−2∑
k=0

θk (t) [f (A)]
k+1 − θn−1 (t) [f (A)]

n

=

n−2∑
k=0

θk (t) [f (A)]
k+1 −

n−1∑
k=0

akθn−1 (t) [f (A)]
k

=

n−1∑
k=1

θk−1 (t) [f (A)]
k − a0θn−1 (t) I

−
n−1∑
k=1

akθn−1 (t) [f (A)]
k
.

Therefore,

(3.9)

n−1∑
k=0

cDθ,ϱ,ϕθk (t) [f (A)]
k
= −a0θn−1 (t) I +

n−1∑
k=1

[θk−1 (t)− akθn−1 (t)] [f (A)]
k ,

n−1∑
k=0

θk (0) [f (A)]
k
= I .

An insightful point to recognize is that addressing (3.9) involves approaching it through the
consideration of coefficient equations for individual powers of A

cDθ,ϱ,ϕθo (t)
cDθ,ϱ,ϕθ1 (t)

...
cDθ,ϱ,ϕθn−1 (t)

 =


0 · · · 0 −a0
1 · · · 0 −a1
... · · ·

...
...

0 1 −an−1




θo (t)
θ1 (t)

...
θn−1 (t)

 ,


θo (0)
θ1 (0)

...
θn−1 (0)

 =


1
0
...
0

 .

This show existence of analytic functions implies an exact solution to this linear state equation.
θo (t) , θ1 (t) , . . . , θn−1 (t) that satisfy (3.9), and hence (3.8). □

3.1. Controllability. The subsequent Proposition furnishes the necessary instrument to demon-
strate that ⟨A|B⟩ precisely constitutes the collection of states that can be controlled.

Proposition 3.2. For any ta > 0, ⟨A|B⟩ = Im [Wc (0, ta)] .
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Proof. For any n× 1 vector xo, setting ta > 0

Wc [b, ta]xo = ϱ−θ

∫ ta

b

e
ϱ−1
ϱ (ϕ(ta)−ϕ(τ)) (ϕ (ta)− ϕ (τ))

θ−1

× (B)Eθ,θ

(
ϱ−θA (ϕ (ta)− ϕ (τ))

θ
)

× (B)
∗
E∗

θ,θ

(
ϱ−θA (ϕ (ta)− ϕ (τ))

θ
)
ϕ

′
(τ)xodτ.

Since Eθ,θ

(
ϱ−θA (ϕ (ta)− ϕ (τ))

θ
)
=

n−1∑
k=0

kp̃k (t) (A)
k
, θ > 0 [20]. Therefore,

Wc [b, ta]xo =

n−1∑
k=0

(A)
k
Bϱ−θ

∫ ta

b

p̃k (t) e
ϱ−1
ϱ (ϕ(ta)−ϕ(τ)) (ϕ (ta)− ϕ (τ))

θ−1

× (B)
∗
E∗

θ,θ

(
A

(
ϕ (ta)− ϕ (τ)

ϱ

)θ
)
ϕ

′
(τ)xodτ.

Because every column of (A)
k
B is in (A)

k
B, and the kth-summand mentioned above repre-

sents linear combination of the columns of (A)
k
B. This implies that,

Wc [b, ta]xo ∈ B+AB+ · · ·+(A)
n−1

B

∈ ⟨A|B⟩ .

Hence,
Im [Wc (b, ta)] ⊂ ⟨A|B⟩ .

It is obvious that, ⟨A|B⟩ corresponds to the range space of the controllability Gramian matrix[
B AB A2B · · · An−1B

]
associated with the linear state equation (1.1). Construct an invertible n×n matrix P by select-
ing a set of column vectors that form a basis for ⟨A|B⟩ and extend this basis to the entire space
X . Subsequently, altering the state variables in accordance with the transformation given by
z (t) = P−1x (t) results in a novel linear state equation expressed in terms of the transformed
state variable z(t), along with corresponding coefficient matrices

P−1AP =

[
Â11 Â12

0 Â22

]
, P−1B =

[
B̂11

0

]
.

The given expressions can be utilized to represent Wc [b, ta] in (2.5) as

Wc [b, ta] = ϱ−θP

∫ ta

b

e
ϱ−1
ϱ (ϕ(ta)−ϕ(τ)) (ϕ (ta)− ϕ (τ))

θ−1

× Eθ,θ

([
Â11 Â12

0 Â22

](
ϕ (ta)− ϕ (τ)

ϱ

)θ
)[

B̂11

0

]

× (B)
∗
E∗

θ,θ

([
Â11 Â12

0 Â22

](
ϕ (ta)− ϕ (τ)

ϱ

)θ
)
ϕ

′
(τ) dτPT .

This implies that

Wc [b, ta] = P

[
Ŵ1 [b, ta] 0

0 0

]
PT ,
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where

Ŵ1 [b, ta] = ϱ−θ

∫ ta

b

e
ϱ−1
ϱ (ϕ(ta)−ϕ(τ)) (ϕ (ta)− ϕ (τ))

θ−1

× Eθ,θ

(
Â11

(
ϕ (ta)− ϕ (τ)

ϱ

)θ
)
B̂11

×
(
B̂11

)∗
E∗

θ,θ

(
Â11

(
ϕ (ta)− ϕ (τ)

ϱ

)θ
)
g

′
(τ) dτ

is a non-singular matrix. This illustration demonstrates that any vector of the form

(3.10) P

[
z
0

]

is contained in Im [W (b, ta)] . For setting

x =
[
PT
]−1

[
Ŵ1 [b, ta] z

0

]

we obtain

W1 [b, t1]x = P

[
z
0

]
.

The structure of AkB = P

[
Âk

11B̂11

0

]
, k = 0, 1, ... is represented as (3.10), it implies that

⟨A|B⟩ ⊂ Im [Wc (b, ta)] .

Hence, we conclude that ⟨A|B⟩ = Im [Wc (b, ta)] . □

Theorem 3.4. If a vector xb belongs to the set of controllable states for the linear state equation (1.1),
then xb ∈ ⟨A|B⟩ .

Proof. If state xb can be controlled, then ∃ a positive finite time ta such that

0 = x (ta) = e
ϱ−1
ϱ (ϕ(ta)−ϕ(b))Eθ

(
ϱ−θA (ϕ (ta)− ϕ (b))

θ
)
xb

+ ϱ−θ

ta∫
b

e
ϱ−1
ϱ (ϕ(ta)−ϕ(τ)) (ϕ (ta)− ϕ (τ))

θ−1

× Eθ,θ

(
ϱ−θA (ϕ (ta)− ϕ (τ))

θ
)
Bu (τ)ϕ

′
(τ) dτ.
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e
ϱ−1
ϱ (ϕ(ta)−ϕ(b))Eθ

(
ϱ−θA (ϕ (ta)− ϕ (b))

θ
)
xb

=− ϱ−θ

ta∫
b

e
ϱ−1
ϱ (ϕ(ta)−ϕ(τ)) (ϕ (ta)− ϕ (τ))

θ−1
Eθ,θ

(
ϱ−θA (ϕ (ta)− ϕ (τ))

θ
)

×Bu (τ)ϕ
′
(τ) dτ.

Eθ

(
ϱ−θA (ϕ (ta)− ϕ (b))

θ
)
xb = −ϱ−θ

ta∫
b

e
ϱ−1
ϱ (ϕ(b)−ϕ(τ)) (ϕ (ta)− ϕ (τ))

θ−1

× Eθ,θ

(
ϱ−θA (ϕ (ta)− ϕ (τ))

θ
)
Bu (τ)ϕ

′
(τ) dτ.

xbEθ

(
ϱ−θA (ϕ (ta)− ϕ (b))

θ
)
= −ϱ−θ

ta∫
b

e
ϱ−1
ϱ (ϕ(b)−ϕ(τ)) (ϕ (ta)− ϕ (τ))

θ−1

× Eθ,θ

(
ϱ−θA (ϕ (ta)− ϕ (τ))

θ
)
Bu (τ) g

′
(τ) dτ.

xb = −ϱ−θ

ta∫
b

e
ϱ−1
ϱ (ϕ(b)−ϕ(τ)) (ϕ (ta)− ϕ (τ))

θ−1

× Eθ,θ

(
ϱ−θA (ϕ (ta)− ϕ (τ))

θ
)
BE−1

θ

(
ϱ−θA (ϕ (ta)− ϕ (b))

θ
)
u (τ) g

′
(τ) dτ.

Since Eθ,θ

(
ϱ−θA (ϕ (ta)− ϕ (τ))

θ
)
=

n−1∑
k=0

kp̃k (t) (A)
k
, θ > 0 [20]. Therefore,

xb = −
n−1∑
k=0

(A)
k
Bϱ−θ

∫ ta

b

p̃k (t) e
ϱ−1
ϱ (ϕ(b)−ϕ(τ)) (ϕ (ta)− ϕ (τ))

θ−1

× E−1
θ

(
ϱ−θA (ϕ (ta)− ϕ (b))

θ
)
u (τ)ϕ

′
(τ) dτ.

xb =

n−1∑
k=0

(A)
k
Bϱ−θ

∫ b

ta

p̃k (t) e
ϱ−1
ϱ (ϕ(b)−ϕ(τ)) (ϕ (ta)− ϕ (τ))

θ−1

× E−1
θ

(
ϱ−θA (ϕ (ta)− ϕ (b))

θ
)
u (τ)ϕ

′
(τ) dτ.

Because each column of (A)
k
B is in (A)

k
B, and the kth-summand mentioned above represents

linear combination of the columns of (A)
k
B. This implies that,

xb ∈ B+AB+ · · ·+(A)
n−1

B

∈ ⟨A|B⟩ .

□

Theorem 3.5. If X is the set of controllable states for the linear state equation (1.1), then it implies that
X is contained in controllable subspace ⟨A|B⟩.

3.2. Observability. The subsequent proposition furnishes the requisite technique for demon-
strating the observability of a given system.

Proposition 3.3. For any tf > 0, N = ker (Wo [b, tf ]) .
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Proof. Suppose that v ∈ ker (Wo), which means that Wov = 0. Then, we have:

v∗Wov =

tf∫
b

v∗e
ϱ−1
ϱ (ϕ(ϑ)−ϕ(b))E∗

θ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
C∗

× CEθ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
vdϑ.

0 =

tf∫
b

e
ϱ−1
ϱ (ϕ(ϑ)−ϕ(b))

(
Eθ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
v
)∗

C∗

× C
(
Eθ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
v
)
dv.

0 =

tf∫
b

e
ϱ−1
ϱ (ϕ(ϑ)−ϕ(b))

∥∥∥C (Eθ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
v
)∥∥∥2 dv.

Since
∥∥∥C (Eθ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
v
)∥∥∥2 ≥ 0 for all t ≥ 0, we must have

C
(
Eθ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
v
)
= 0

for all t ≥ 0. This implies that

Eθ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
v ∈ ker (C) , ∀ t ≥ 0.

Which means that v belongs to the unobservable subspace N .
Further, suppose that w ∈ N , which means that there exists no input u (t) such that x (0) = w

and y (t) = Cx (t) +Du (t) = 0 for all t ≥ 0. This implies that the output of the system cannot
distinguish between the initial state w and the zero state x = 0. Therefore, we have:

0 =

∫ tf

b

∥y (t)∥2 dt =
∫ tf

b

x∗ (t)C∗Cx (t) dt.

Now,

Wow : =

tf∫
b

e
ϱ−1
ϱ (ϕ(ϑ)−ϕ(b))E∗

θ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
C∗

× CEθ

(
ϱ−θA (ϕ (ϑ)− ϕ (b))

θ
)
wdϑ = 0,

where the last step follows from the fact that C∗C is a positive semi-definite matrix. Therefore,
we have x∗ (t)C∗Cx (t) = 0 for all t ≥ 0. This implies that w ∈ ker (Wo). Hence, N = ker (Wo).

□

The following Theorem gives the geometric type criterion for a system to be observable.

Theorem 3.6. The linear state equation (1.1) is observable if and only if N = {0}.

Proof. Consider the system (1.1) is observable on [b, tf ]. We have to show that N = {0}. It
follows that observability Gramian matrix is invertible as system is observable,

ker (Wo [b, tf ]) = {0} .
By using proposition 3.3, we have

N = {0} .
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Conversely suppose that N = {0}. By using proposition 3.3, we have

ker (Wo [b, tf ]) = {0} .

It follows that observability Gramian matrix is invertible. Then by Theorem 2.2, linear state
equation (1.1) is observable. □

4. NUMERICAL EXAMPLES

Let’s provide two examples to demonstrate the application of our findings.

Example 4.1. Suppose the following 3-dimensional linear time invariant system on [0, 5]:

(4.11)

(
cD

1
2 ,

1
2 ,ϕx

)
(ϑ) =

 1 0 3
2 4 1
1 5 1

x (ϑ) +

 1 2
0 1
1 1

u (ϑ) ,

x (0) = 0.

Let us denote

A =

 1 0 3
2 4 1
1 5 1

 , B =

 1 2
0 1
1 1

 ,

then, one can obtain

B =Im (B) = span


10
1

 ,

21
1

 .

The process of computing a basis for a subspace entails choosing columns from a set of matrices in such
a way that they are not linearly dependent.

[
B AB A2B

]
=

1 2 4 5 10 29
0 1 3 9 22 54
1 1 2 8 21 58

 .

And, we observe that

10
1

 ,

21
1

 ,

43
2

 columns are linearly independent. Therefore, the controllable

subspace of R3 is given by

⟨A|B⟩ = span


10
1

 ,

21
1

 ,

43
2

 = R3.

Hence by using Theorem 3.5, system (4.11) is controllable.

Example 4.2. Suppose the following 3-dimensional linear time invariant system on [0, 5]:

(4.12)
(
cD

1
2 ,

1
2 ,ϕx

)
(ϑ) =

 1 6 5
7 2 4
8 9 3

x (ϑ) y (ϑ) =

(
0 5 1
4 2 1

)
x (ϑ)x (0) = 0.

Let us denote

A =

 1 6 5
7 2 4
8 9 3

 , C =

(
0 5 1
4 2 1

)
;
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then, one can obtain

ker (C) = span


−3/20
−1/5
1

 ;

ker (CA) = span


−262/1097
−735/1097

1

 ;

ker
(
CA2

)
= span


 −3373/84859
−58320/84859

1

 .

Creating a basis for a subspace entails the process of choosing linearly independent columns from a set
of matrices

[
ker (C) ker (CA) ker

(
CA2

)]
=

−3/20 −262/1097 −3373/84859
−1/5 −735/1097 −58320/84859
1 1 1

 .

And we observe that, all columns are linearly independent. Therefore, the unobservable subspace N ⊆
R3 is

N = ker (C) ∩ ker (CA) ∩ ker
(
CA2

)
=


00
0

 .

Hence by using Theorem 3.6, system (4.12) is observable.

5. CONCLUSION

This paper focuses on the controllability and observability analysis of generalized Caputo
proportional fractional linear time-invariant control systems using geometric analysis. The au-
thors establish the geometric characterization of the controllable subspace and unobservable
subspace of such systems. They also discuss the connections with the controllability and ob-
servability Gramian matrices of the considered systems. The paper also presents a necessary
criterion for controllability based on the controllable subspace, as well as a necessary and suf-
ficient criterion for observability based on the unobservable subspace. The authors validate
their findings through examples. By expanding the scope of the systems studied, the paper
generalizes some known results and demonstrates the potential for exploring the combination
of control theory with generalized Caputo proportional fractional operators, as indicated by
recent research.
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