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Abstract 

Oxalic acid (C2H2O4), hydrogen peroxide (H2O2), and sodium hydroxide (NaOH) chemicals are widely 
used in the bleaching industry. This research examined alterations in color parameters, glossiness 
values, and the whiteness index (WI*) values following the application of bleaching agents, namely 
C2H2O4 and H2O2 + NaOH solutions, on ayous (Triplochiton scleroxylon K. Schum) wood. A control group 
was established to compare the treated surfaces. The results indicate that variance analyses revealed 
significant differences across all tests concerning the type of bleaching chemical used. The application 
of bleaching chemicals resulted in increases in WI* values in both directions. The ΔE* values were 
determined to be 2.21 when using the C2H2O4 chemical and 12.01 with the H2O2 + NaOH chemicals. It 
was determined that glossiness values decreased in both directions at 60 and 85 degrees. In addition, 
increases were observed in L* and ho values, while decreases were obtained in C* and a* values. It was 
observed that the surface properties of ayous wood changed with the chemicals used in the study. 
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1. Introduction 

Wood finishing involves a combination of processes like sanding, scraping, and planning to achieve 
a smooth surface for subsequent treatments. Following surface preparation, a range of finishes is applied, 
including varnishes, lacquers, and paints. Adhesives of various types are employed for bonding wood pieces 
together. Varnishes and lacquers are utilized to impart a glossy surface to the wood. Anti-bacterial paints 
serve to safeguard wood against bacterial decay. UV stabilizers and protectants are utilized to shield wood 
from sunlight. Wastewater generated from wood coating activities typically originates from these processes 
and the cleaning of process equipment (Badve et al., 2013). Color is an attribute of visual interpretation that 
is defined by the spectral makeup of light that is reflected off surfaces (Sandoval-Torres et al. 2010). 
Brightness is commonly described as the quality accountable for the glossy or shiny aspect of a coating. 
Assessing brightness becomes pivotal in scenarios necessitating the aesthetic allure of a coated varnish 
(Khanna and Kumar, 2008). Whiteness encompasses more than just lightness, which is measured by CIE Y 
values or CIE L* values. Lightness, hue, and colorfulness-determined by CIE a* and b* values in the CIELAB 
space-all play a role in the perception of whiteness (Luo et al., 2009). 

Color lightening methods can be categorized into oxidation-based and reduction-based color 
lightening techniques. Bleaching should only be undertaken when absolutely essential, as it has the 
potential to detract from the inherent beauty and lively aesthetic of solid wood or wood veneers. Color 
fading refers to the depletion of natural pigments in wood due to the action of different oxidation and 
reduction substances (Kurtoğlu, 2000).  The aesthetic appeal of wood is influenced by its hue, grain pattern, 
sheen, and the techniques used for bleaching, filling, staining, and applying clear coatings. Given the vast 
array of color combinations and tones present in wood, offering exhaustive descriptions of all color 
variations is impractical. Nonetheless, the sapwood of many species tends to be light-colored, with some 
approaching near-whiteness (Forest Products Laboratory, 2000). The bleaching process carried out to 
remove lignin provides nearly permanent whiteness but is expensive (Shmulsky and Jones, 2011).  

In the literature, there are reports of bleaching treatments conducted on various wood species using 
different bleaching agents [balau red (Shorea guiso) (Peker et al., 2024), bulletwood (Manilkara bidentata 
(A.DC.) A. Chev.) (Peker et al., 2023a), movingui (Distemonanthus benthamianus) (Peker et al., 2023b), 
Japanese larch (Larix kaempferi) and Mongolian oak (Quercus mongolica) (Park et al., 2022), satinwood 
ceylon (Chloroxylon swietenia DC) (Ayata and Çamlıbel, 2023), bamboo (Nguyen et al., 2019), ilomba 
(Pycnanthus angolensis Exell) (Ayata and Bal, 2023), okoumé (Aucoumea klaineana) (Çamlıbel and Ayata, 
2024a), birch (Yamamoto et al., 2017), canelo (Drimys winteri J.R. Forst. & G. Forst.) (Peker, 2023a), birch 
(Liu et al., 2015), oak, birch, Norway maple, European larch (Möttönen et al. 2003), olon (Zanthoxylum 
heitzii) (Peker and Ayata, 2023), lotofa (Sterculia rhinopetala) (Peker, 2023b), cocobolo (Dalbergia retusa 
Hemsl.,) (Çamlıbel and Ayata, 2024b), black locust (Robinia pseudoacacia L.) (Peker and Ulusoy, 2023), 
linden (Tilia tomentosa - Moench.) (Çamlıbel and Ayata, 2023a), basralocus (Dicorynia guianensis Amshoff) 
(Ayata and Bal, 2024), maritime pine (Mehats et al., 2021), ekop (Tetraberlinia bifoliolata Haum.) (Çamlıbel 
and Ayata, 2023b), birch (Mononen et al. 2005), and izombé (Testulea gabonensis) (Peker et al., 2023c). 

It has been observed in the literature that ayous wood has not been bleached using C2H2O4 and H2O2 
+ NaOH bleaching chemicals. To provide a brief overview of this wood species: 

According to reports, ayous wood pulp has potential for producing paper of medium quality (Louppe 
et al. 2008). In the United Kingdom, “ayous (Triplochiton scleroxylon K. Schum)” timber finds application in 
pattern making, skirting, furniture, and shelf construction. It is capable of taking a fine polish and should be 
seasoned before use (Boulton and Price, 1931). Although ayous wood is lightweight, its strength values are 
notable owing to its density (Bosu and Krampah, 2005). 

https://orcid.org/0000-0002-6787-7822
https://orcid.org/0000-0002-8766-1316
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In ayous wood, the thermal conductivity value was determined as 0.14 W/m.K, lignin content was 
32.40%, water extraction was 2.28%, cellulose content was 40.40%, pentosan content was 17.00%, silica 
content was 0.019%, ash content was 2.19%, and ethanol extraction was 1.99% (Gérard et al., 2019). 
Weight losses for Poria placenta were 42%, for Irpex lacteus were 56%, for Gloeophyllum trabeum were 
24%, and for Trametes versicolor were 61% (Nzokou et al., 2003). Shore D hardness was 37.65 HD, air-dried 
density was 384 kg/m3, and Janka hardness values were 21.01 N/mm2, 17.87 N/mm2, and 28.69 N/mm2 in 
tangential, radial, and tangential directions, respectively. Nail holding resistance values were 4.69 N/mm2, 
4.39 N/mm2, and 4.41 N/mm2 in tangential, radial, and tangential directions, respectively (Ayata, 2020). 

In this study, certain surface changes resulting from the bleaching of ayous wood were investigated. 
The aim of this study was to enable the emergence of a new situation in terms of the applications of ayous 
wood with the results obtained from this study.  

 

2. Materials and Methods 
 
2.1. Material 
 
2.1.1. Wood Material 

In this research, ayous (Triplochiton scleroxylon K. Schum) wood was employed as the primary 
material. The wood was obtained from a reliable commercial supplier to ensure top quality and had 
dimensions measuring 100 x 100 x 16 mm. In adherence to these selection criteria, the specimens were 
prepared according to the protocols outlined in ISO 554, (1976). Prior to the bleaching procedure, the test 
samples underwent sanding with grits 80, 120, and 180, followed by surface cleaning using compressed air. 
 

2.1.2. Bleaching Chemicals 

In the study, single-component [oxalic acid (C2H2O4): liquid, colorless, odorless, pH value 2.0±0.5] 
and two-component [pH value 7, liquid, odorless, colorless, soluble, solvent water, hydrogen peroxide 
(H2O2): component A and sodium hydroxide (NaOH): component B, in a ratio of 2:1] chemicals were utilized. 

 
2.2. Method 
 
2.2.1. Application of Bleaching 

The chemicals were applied to the wooden surfaces using a sponge with the brushing technique, as 
a single layer.  

 
2.2.2 Determination of Glossiness Values, Color Parameters, and Whiteness Index (WI*) 

Properties 

Glossiness assessments were carried out using the ETB-0833 model gloss meter device at three 
different angles (20°, 60°, and 85°) in both perpendicular and parallel directions to the fibers, in accordance 
with ISO 2813 (1994) specifications. The Whiteness Meter BDY-1 device was utilized to determine the 
whiteness index (WI*) values in both parallel and perpendicular directions to the fibers, following the ASTM 
E313-15e1 (2015) standard. The color alteration of samples was measured using a CS-10 (CHN Spec, China) 
device based on the CIELAB color system and ASTM D 2244-3 (2007) standard [CIE 10° standard observer; 
CIE D65 light source, illumination system: 8/d (8°/diffuse illumination)]. The evaluations of total color 
difference were determined according to DIN 5033 (1979) standards. [undetectable (<0.2), very weak (0.2 
- 0.5), weak (0.5 - 1.5), distinct (1.5 - 3.0), very distinct (3.0 - 6.0), strong (6.0 - 12.0), and very strong (> 
12.0)]. Explanations for ∆C*, ∆a*, ∆b*, and ∆L* are detailed in Table 1, based on Lange (1999) guidelines. 

 
Table 1: The definitions of ∆a*, ∆C*, ∆b*, and ∆L* (Lange 1999) 

Test Positive Description Negative Description 
∆b* More yellow than the reference Bluer than the reference 
∆L* Lighter than the reference Darker than the reference 
∆a* Redder than the reference Greener than the reference 
∆C* Clearer, brighter than the reference Duller, matte than the reference 

 
The total color differences were determined using the formulas below. 
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Δa* = [a*bleached] – [a*control]           (1) 
ΔL* = [L*bleached] – [L*control]           (2) 
Δb* = [b*bleached] – [b*control]           (3) 
ΔE* = [(ΔL*)2 + (Δb*)2 + (Δa*)2]1/2          (4) 
C* = [(a*)2 + (b*)2]1/2            (5) 

ΔC* = [C*bleached] – [C*control]           (6) 
ho = arctan [b*/a*]             (7) 
ΔH* = [(ΔE*)2 - (ΔL*)2 - (ΔC*)2]1/2          (8) 
 

2.2.3. Statistical Analysis 

Statistical analysis was performed using statistical software, examining the measurement data from 
the study. This process included calculating identifying the maximum and minimum mean values, standard 
deviations, computing measurement values related to the mean, conducting variance analyses, establishing 
homogeneity groups, and determining percentage (%) change rates.  
 

3. Results 

Table 2 shows the recorded data for color parameters (a*, b*, C*, ho, and L*). 
 

Table 2: Measurement results for color parameters (a*, b*, C*, ho, and L*) 

Test 
Bleaching  
Chemical  

Type 
N Mean  

Change  
Ratio  
(%) 

HG Standard  
Deviation  

Mini- 
mum  

Maxi- 
mum  

Coefficient  
of  

Variation 

L* 
Control  10 64.65 - C** 0.46 63.87 65.37 0.71 
C2H2O4 10 66.69 ↑3.16 B 0.63 66.01 67.69 0.94 

H2O2 + NaOH 10 75.43 ↑16.67 A* 0.44 75.00 76.13 0.59 

a* 
Control  10 7.73 - A* 0.28 7.26 8.07 3.68 
C2H2O4 10 7.02 ↓9.18 B 0.26 6.69 7.51 3.71 

H2O2 + NaOH 10 3.44 ↓55.50 C** 0.14 3.28 3.79 4.06 

b* 
Control  10 24.03 - B 0.32 23.36 24.34 1.33 
C2H2O4 10 24.49 ↑1.91 A* 0.54 23.92 25.57 2.20 

H2O2 + NaOH 10 20.98 ↓12.69 C** 0.52 20.31 22.13 2.48 

C* 
Control  10 25.35 - A* 0.52 24.46 26.34 2.04 
C2H2O4 10 25.27 ↓0.32 A 0.79 23.68 26.57 3.13 

H2O2 + NaOH 10 21.25 ↓16.17 B** 0.54 20.57 22.46 2.52 

ho 
Control  10 72.16 - C** 0.43 71.60 72.86 0.60 
C2H2O4 10 74.01 ↑2.56 B 0.46 73.04 74.41 0.62 

H2O2 + NaOH 10 80.68 ↑11.81 A* 0.18 80.27 80.84 0.23 
N: Number of Measurements, HG: Homogeneity Group, *: Lowest Value, **: Highest Value 

 

Table 3 presents the results for the total color differences (∆E*).  
 

Table 3: Results for the total color differences 

Bleaching  
Chemical Type  ∆L* ∆a* ∆b* ∆C* ∆H* ∆E* Color Change Criteria  

(DIN 5033, 1979) 
C2H2O4 2.04 -0.72 0.45 -0.07 0.84 2.21 Distinct (1.5 - 3.0) 

H2O2 + NaOH 10.78 -4.29 -3.06 -4.09 3.31 12.01 Very Strong (> 12.0) 
 
Table 4 outlines the measured glossiness values. 
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Table 4: Measurement results for glossiness values 

Test 
Bleaching  
Chemical  

Type 
N Mean  

Change  
Ratio  
(%) 

HG Standard  
Deviation  

Mini- 
mum  

Maxi- 
mum  

Coefficient  
of  

Variation 

⊥20o 
Control  10 0.40 - B** 0.00 0.40 0.40 0.00 
C2H2O4 10 0.41 ↑2.50 B 0.09 0.30 0.50 21.36 

H2O2 + NaOH 10 0.50 ↑25.00 A* 0.00 0.50 0.50 0.00 

⊥60o 
Control  10 1.86 - A* 0.15 1.70 2.10 8.09 
C2H2O4 10 1.28 ↓31.18 C** 0.10 1.20 1.40 8.07 

H2O2 + NaOH 10 1.68 ↓9.68 B 0.13 1.50 1.80 7.84 

⊥85o 
Control  10 0.45 - A* 0.14 0.30 0.60 30.09 
C2H2O4 10 0.10 ↓77.78 B** 0.00 0.10 0.10 0.00 

H2O2 + NaOH 10 0.10 ↓77.78 B** 0.00 0.10 0.10 0.00 

║20o 
Control  10 0.40 - B** 0.00 0.40 0.40 0.00 
C2H2O4 10 0.40 0.00 B** 0.00 0.40 0.40 0.00 

H2O2 + NaOH 10 0.46 ↑15.00 A* 0.05 0.40 0.50 11.23 

║60o 
Control  10 2.17 - A* 0.16 2.00 2.40 7.54 
C2H2O4 10 1.76 ↓18.89 B** 0.21 1.60 2.00 11.74 

H2O2 + NaOH 10 1.79 ↓17.51 B 0.09 1.70 1.90 4.89 

║85o 
Control  10 0.45 - A* 0.14 0.30 0.60 30.09 
C2H2O4 10 0.18 ↓60.00 B 0.10 0.10 0.30 57.38 

H2O2 + NaOH 10 0.10 ↓77.78 B** 0.00 0.10 0.10 0.00 
N: Number of Measurements, HG: Homogeneity Group, *: Lowest Value, **: Highest Value 

 
Table 5 illustrates the obtained values for whiteness index (WI*). 
 

Table 5: Measurement results for whiteness index (WI*) values 

WI* 
⊥ 

Control  10 22.82 - B** 0.47 22.50 23.70 2.05 
C2H2O4 10 23.06 ↑1.05 B 0.44 22.60 23.60 1.89 

H2O2 + NaOH 10 33.28 ↑45.84 A* 0.45 32.80 33.80 1.35 

WI* 
║ 

Control  10 15.26 - C** 0.38 14.90 16.20 2.51 
C2H2O4 10 19.46 ↑27.52 B 0.14 19.30 19.70 0.73 

H2O2 + NaOH 10 30.18 ↑97.77 A* 0.15 29.90 30.30 0.51 
N: Number of Measurements, HG: Homogeneity Group, *: Lowest Value, **: Highest Value 

 
The Table 6 presents the analysis of variance outcomes for color parameters (a*, b*, C*, ho, and L*), 

glossiness values, and whiteness index (WI*) values. 
 

Table 6: Analysis of variance results for color parameters (a*, b*, C*, ho, and L*), glossiness values, and 
whiteness index (WI*) values 

Bleaching Chemical Type 
Test Sum of Squares df Mean Square F Value Sig. 

L* 655.814 2 327.907 1221.444 0.000* 
a* 105.582 2 52.791 941.013 0.000* 
b* 72.928 2 36.464 164.752 0.000* 
C* 109.728 2 54.864 139.420 0.000* 
ho 401.300 2 200.650 1387.159 0.000* 

⊥20o glossiness 0.061 2 0.030 11.870 0.000* 
⊥60o glossiness 1.763 2 0.881 52.184 0.000* 
⊥85o glossiness 0.817 2 0.408 66.818 0.000* 
║20o glossiness 0.024 2 0.012 13.500 0.000* 
║60o glossiness 1.045 2 0.522 20.321 0.000* 
║85o glossiness 0.673 2 0.336 34.793 0.000* 

WI* (⊥) 713.059 2 356.529 1751.509 0.000* 
WI* (║) 1183.883 2 591.941 9270.543 0.000* 

*: Significant 
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4. Discussion 

Increases of 3.16% with C2H2O4 and 16.67% with H2O2 + NaOH were obtained in the L* parameter. 
Samples treated with the H2O2 + NaOH solution exhibited the highest L* value (75.43), while the control 
experiment samples showed the lowest value (64.65) (Table 2). In the literature, the bleaching process with 
C2H2O4 and H2O2 + NaOH chemicals were reported to increase the L* values in bulletwood (Peker et al., 
2023a), movingui (Peker et al., 2023b), ilomba (Ayata and Bal, 2023), olon (Peker and Ayata, 2023), canelo 
(Peker, 2023a), lotofa (Peker, 2023b), and black locust (Peker and Ulusoy, 2023) woods. 

The lowest result for the a* parameter was found on samples treated with the H2O2 + NaOH solution 
(3.44), while the highest was obtained in the control experiment samples (7.73). Decreases of 9.18% with 
C2H2O4 and 55.50% with H2O2 + NaOH were found in the a* value (Table 2). In the literature, it has been 
reported that satinwood ceylon (Ayata and Çamlıbel, 2023), lotofa (Peker, 2023b), and black locust (Peker 
and Ulusoy, 2023) woods subjected to bleaching with C2H2O4 and H2O2 + NaOH chemicals exhibited 
increases in the a* parameters.  

The lowest result for the b* parameter was determined on samples treated with the H2O2 + NaOH 
solution (20.98), while the highest result was detected in samples treated with C2H2O4 (24.49). In the b* 
test, a decrease of 1.91% was observed with C2H2O4, and an increase of 12.69% was found with H2O2 + NaOH 
(Table 2). The studies on bleaching revealed that the application of C2H2O4 led to an enhancement in the 
color of satinwood ceylon (Ayata and Çamlıbel, 2023), ilomba (Ayata and Bal, 2023), olon (Peker and Ayata, 
2023), lotofa (Peker, 2023b), black locust (Peker and Ulusoy, 2023), and linden (Çamlıbel and Ayata, 2023a) 
wood species. Conversely, the use of H2O2 + NaOH resulted in a decrease in color for the same wood species. 

The samples treated with the H2O2 + NaOH solution exhibited the lowest result for the C* parameter 
(21.25), whereas the highest result was observed in the control experiment samples (25.25). In terms of C* 
value, decreases of 0.32% with C2H2O4 and 16.17% with H2O2 + NaOH were recorded (Table 2). In studies 
conducted on bleaching, decreases in the C* values were reported in satinwood ceylon (Ayata and Çamlıbel, 
2023) and black locust (Peker and Ulusoy, 2023) woods treated with bleaching agents C2H2O4 and H2O2 + 
NaOH. 

The ho parameter reached its peak value in samples treated with the H2O2 + NaOH solution (80.68), 
whereas the lowest value was recorded in the control experiment samples (72.16). An increase of 2.56% 
was noted with C2H2O4, and 11.81% with H2O2 + NaOH in the ho value (Table 2). In previous studies, it has 
been noted that the ho values increased in satinwood ceylon (Ayata and Çamlıbel, 2023), movingui (Peker 
et al., 2023b), ilomba (Ayata and Bal, 2023), izombé (Peker et al., 2023c), ekop (Çamlıbel and Ayata, 2023b), 
canelo (Peker, 2023a), olon (Peker and Ayata, 2023), and lotofa (Peker, 2023b) woods treated with 
bleaching agents C2H2O4 and H2O2 + NaOH. 

After the application of both solutions, ∆L* values (lighter than the reference) were obtained 
positively, while ∆C* values (duller, matte than the reference) and ∆a* values (greener than the reference) 
were determined negatively. Additionally, ∆b* values were found to be positive with C2H2O4 (more yellow 
than the reference) and negative with H2O2 + NaOH (bluer than the reference).  The ∆E* values were 
calculated to be 2.21 with the C2H2O4 chemical and 12.01 with the H2O2 + NaOH chemicals. When examining 
the outcomes based on color alteration criteria, it becomes evident that while the C2H2O4 chemical resulted 
in a distinct (1.5 - 3.0) criterion, the H2O2 + NaOH chemical yielded a much stronger effect, meeting the very 
strong (> 12.0) criterion (Table 3). 

Glossiness measurements conducted at 60 and 85 degrees in both directions indicated decreases 
with both bleaching solutions. Likewise, the control experiment group samples yielded the highest results 
at these degrees and directions (Table 4). 

In both perpendicular (⊥) and parallel (║) directions, the control experimental group exhibited the 
lowest WI* values (⊥: 22.82 and ║: 15.26). Conversely, the samples treated with the H2O2 + NaOH chemical 
solution yielded the highest WI* values (⊥: 33.28 and ║: 30.18). The WI* ⊥ values exhibited increases of 
1.05% and 45.84% with the C2H2O4 and H2O2 + NaOH chemicals, respectively, while the WI* ║ values 
showed increases of 27.52% and 97.77%, respectively (Table 5). 

The analysis of variance indicated that the factor representing the number of categories had a 
significant influence on the test results, as shown in Table 6. 

 

5. Conclusion 

Variance analyses were found to be significant across all tests. The WI* values showed increases in 
both directions with the bleaching chemicals. It was noted that glossiness values declined in both directions 
at 60 and 85 degrees. Furthermore, there were increases in ho and L* values, while decreases were noted in 
a* and C* values. 
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Abstract 

In this study, researchers investigated how surface properties, such as whiteness index (WI*) values, 
color parameters [total color differences (∆E*), lightness (L*), red (a*) color tone, yellow (b*) color 
tone, chroma (C*) value, and hue (ho) angle], and glossiness values, were affected by wax applications 
with different coating layers on magnolia (Magnolia grandiflora L.) wood. A control group was set up, 
and the outcomes from samples with varying counts of wax layers were contrasted. The variance 
analyses conducted for the number of rocks factor in all tests were found to be significant. The ∆E* 
values were found to be 3.02 for the 1-layer application, 3.67 for the 2-layer application, and 4.80 for 
the 3-layer application. It was observed that as the number of layers increased in color parameters, the 
values of ho and L* decreased, while b*, C*, and a* values increased. Additionally, decreases in WI* 
values were detected in both directions (⊥ and ║). It was observed that the waxes used in the study 
had a modifying effect on the selected surface properties of magnolia wood. 
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1. Introduction 

Wax is commonly a blend of organic compounds, frequently comprising elongated molecules. These 
molecules encompass hydrocarbons, esters derived from fatty acids, elongated chain alcohols, and similar 
constituents. The precise chemical makeup of wax is largely contingent upon its source, be it animal, plant, 
or mineral in origin (Regert et al. 2005; Peris-Vicente et al. 2006). Waxes play a role in establishing a tough 
and long-lasting shield on surfaces. This shield not only offers resilience but also establishes a waterproof 
barrier, shielding the surface from a range of external factors. They find extensive applications across 
furniture, upholstery, and plastic goods. In the realm of art, waxes serve as a crucial tool for creating resist 
paintings. Artists apply them selectively to areas where exposure to acid is undesirable, effectively 
protecting those regions from the potential corrosive effects of acid (Hammond et al., 1969). 

 The Magnolia genus, belonging to the Magnoliaceae family, consists of about 90 species of trees or 
shrubs. These are mainly found in temperate and tropical regions, with distribution extending across 
countries such as India, Malaysia, Japan, and China (Anonymous, 1996). Magnolia grandiflora L., commonly 
known as the Southern magnolia tree, is a tree reaching heights of 5-20 meters, native to the southeastern 
states of the United States and Mexico (Vázquez, 1990). When newly cut, the wood displays a white 
coloration; however, upon exposure to air, it undergoes a transformation to a brown hue (Elias, 1980). This 
tree exhibits remarkable resistance to wind and is suitable for use in shelterbelt plantings (Huxley, 1992).  

Wood has a restricted range of uses; however, it can be employed in crafting furniture, paneling, 
cladding, commodities, and cabinets (Brown and Kirman, 1990). The timber is utilized in small amounts for 
fuel, basketry, crate construction, wooden crafts, and furniture making (Vines, 1982; Sargent, 1965). While 
the wood is hard and relatively dense, it lacks significant flexibility and durability (Vines, 1982). Wood 
stands as one of the foremost renewable construction materials. It can be easily molded, demands minimal 
energy during processing, and exhibits exceptional structural characteristics (Scheffer and Cowling, 1966). 

Magnolia wood had a fully dry density of 581.12 kg/m3, tangential shrinkage of 6.16%, radial 
shrinkage of 4.66%, longitudinal shrinkage of 0.54%, volumetric shrinkage of 11.36%, fiber saturation point 
of 19.56%, moisture absorption after two weeks of 68.46%, bending strength of 85.56 N/mm2, modulus of 
elasticity of 6375.66 N/mm2, dynamic bending (shock) resistance of 0.378 kg/cm2, tangential surface Janka 
hardness of 57.51 N/mm2, radial surface Janka hardness of 49.50 N/mm², transverse surface Janka 
hardness of 62.73 N/mm2 (Çavuş, 2019), and air-dry density of 647.00 kg/m3, with screw holding capacity 
of 32.53 N/mm2 on the radial surface, 38.40 N/mm2 on the tangential surface, and 30.40 N/mm2 on the 
transverse surface (Çavuş and Ayata, 2018). 

In the literature, numerous studies have investigated the application of various wax treatments on 
wooden surfaces (Garai et al., 2005; Lesar et al., 2011; Avramidis et al., 2011; Wang et al., 2014; Yuqing et 
al., 2016; Humar et al., 2017; Akçay, 2020; Janesch et al., 2020; Yang et al., 2020; Niu and Song, 2021; Zhang 
et al., 2022; Arminger et al., 2022; Liu et al., 2022; Ning et al., 2022; Piao et al., 2022; Peker et al., 2024a, 
2024b, 2024c). The changes in surface alterations between the applied wax and wooden material have been 
attempted to be explained using various tests in conducted studies. Nevertheless, there seems to be a 
notable gap in research concerning the surface alterations resulting from the application of different coating 
layers specifically on magnolia wood. 

In this study, variations in surface properties resulting from wax applications with different coating 
layers were investigated on magnolia (Magnolia grandiflora L.) wood. The obtained results were believed 
to have made a significant contribution to the knowledge domain regarding both the researchers involved 
in the wax application study and the potential applications of this specific tree species. 
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2. Materials and Methods 
 
2.1. Material 
 
2.1.1. Wood Material 

In this study, magnolia (Magnolia grandiflora L.) wood was utilized as the principal material. The 
wood was sourced from a reputable commercial supplier to ensure high quality and had dimensions of 100 
x 200 x 15 mm. Following these selection criteria, the samples were prepared in accordance with the 
standards specified in ISO 554, (1976). Prior to bleaching, the test samples underwent sanding with grits 
80, 120, and 180, followed by surface cleaning using compressed air. 
 

2.1.2. Wax 

In the research, a blend of natural and synthetic wax with oil (appearance: paste, odor: characteristic, 
color: neutral, solubility in water: dispersible but not soluble, dry residue: 30%, and pH value: 7.6) was 
employed. 

 
2.2. Method 
 
2.2.1. Application of Wax on Wooden Material Surfaces 

In the study, oil with a mixture of natural and synthetic wax was applied to wooden material surfaces 
using a brush in 1, 2, and 3 layers.  

 
2.2.2 Determination of Glossiness Values, Color Parameters, and Whiteness Index (WI*) 

Properties 

The use of Whiteness Meter BDY-1 device determined the whiteness index (WI*) values in parallel 
and perpendicular directions to the fibers (ASTM E313-15e1, 2015). Glossiness tests were conducted using 
the ETB-0833 model gloss meter device at three different angles (20°, 60°, and 85°) in perpendicular and 
parallel directions to the fibers according to ISO 2813 (1994) standard. The color change of samples was 
measured using a CS-10 (CHN Spec, China) device based on the CIELAB color system and ASTM D 2244-3 
(2007) standard [CIE 10° standard observer; CIE D65 light source, illumination system: 8/d (8°/diffuse 
illumination)]. The explanations for ∆a*, ∆C*, ∆b*, and ∆L* are outlined in Table 1 based on Lange (1999). 

 
Table 1: The definitions of ∆a*, ∆C*, ∆b*, and ∆L* (Lange, 1999). 

Test Positive Description Negative Description 
∆b* More yellow than the reference More blue than the reference 
∆L* Lighter than the reference Darker than the reference 
∆a* Redder than the reference Greener than the reference 
∆C* Clearer, brighter than the reference Duller, matte than the reference 

 
Alternative criteria for comparing the visual assessment of the calculated ΔE* color difference are 

presented in Table 2 following DIN 5033, (DIN 1979) standards. 
 

Table 2: Comparison criteria for ΔE* evaluation (DIN 5033 1979). 

Visual Total Color Difference 
Undetectable <0.2 

Very Weak 0.2 - 0.5 
Weak 0.5 - 1.5 

Distinct 1.5 - 3.0 
Very Distinct 3.0 - 6.0 

Strong 6.0 - 12.0 
Very Strong > 12.0 

 
The results of total color differences were determined using the following formulas.  
 
Δa* = [a*wax applied] – [a*control]           (1) 
ΔL* = [L*wax applied] – [L*control]          (2) 
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Δb* = [b*wax applied] – [b*control]           (3) 
ΔE* = [(ΔL*)2 + (Δb*)2 + (Δa*)2]1/2          (4) 
C* = [(a*)2 + (b*)2]1/2            (5) 

ΔC* = [C*wax applied] – [C*control]           (6) 
ho = arctan [b*/a*]             (7) 
ΔH* = [(ΔE*)2 - (ΔL*)2 - (ΔC*)2]1/2          (8) 
 

2.2.3. Statistical Analysis 

Statistical analysis was conducted utilizing a statistical software package and the study's 
measurement data. This involved computing standard deviations, determining maximum and minimum 
mean values, calculating measurement values associated with the mean, identifying homogeneity groups, 
conducting variance analyses, and determining percentage (%) change rates.  
 

3. Results 

The analysis of variance results for color parameters (a*, b*, C*, ho, and L*) is provided in Table 3.  
 

Table 3: Analysis of variance results for color parameters (a*, b*, C*, ho, and L*) 

Source   Test   Sum of Squares df Mean Square F Sig. 

Number 
 of  

Layer 

L* 53.376 3 17.792 12.078 0.000* 
a* 5.553 3 1.851 43.418 0.000* 
b* 69.555 3 23.185 60.099 0.000* 
C* 73.946 3 24.649 61.155 0.000* 
ho 7.686 3 2.562 15.753 0.000* 

Error  

L* 53.032 36 1.473     
a* 1.535 36 0.043     
b* 13.888 36 0.386     
C* 14.510 36 0.403     
ho 5.855 36 0.163     

Total  

L* 203697.927 40       
a* 502.140 40       
b* 21337.849 40       
C* 21839.021 40       
ho 264669.499 40       

Corrected 
 Total  

L* 106.408 39       
a* 7.087 39       
b* 83.444 39       
C* 88.456 39       
ho 13.541 39       

*: Significant 
Table 4 presents the measurement results for color parameters (a*, b*, C*, ho and L*).  
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Table 4: Measurement results for color parameters (a*, b*, C*, ho, and L*) 

Test Wax Application N Mean   Change (%) HG SS Minimum  Maximum  COV 

L* 

Control 10 73.29 - A* 1.18 71.34 75.19 1.61 
1-layer 10 70.99 ↓3.14 B 1.42 67.93 72.32 2.00 
2-layers  10 70.82 ↓3.37 B 1.19 68.82 71.83 1.68 
3-layers  10 70.28 ↓4.11 B** 1.04 68.60 71.25 1.48 

a* 

Control 10 2.99 - D** 0.22 2.58 3.37 7.45 
1-layer 10 3.37 ↑12.71 C 0.16 3.18 3.72 4.86 
2-layers  10 3.74 ↑25.08 B 0.24 3.39 4.10 6.40 
3-layers  10 3.98 ↑33.11 A* 0.19 3.46 4.15 4.83 

b* 

Control 10 21.02 - D** 0.71 20.09 22.48 3.37 
1-layer 10 22.93 ↑9.09 C 0.64 21.63 23.81 2.78 
2-layers  10 23.62 ↑12.37 B 0.65 22.63 24.57 2.75 
3-layers  10 24.63 ↑17.17 A* 0.46 23.54 25.20 1.87 

C* 

Control 10 21.23 - D** 0.72 20.25 22.73 3.39 
1-layer 10 23.18 ↑9.19 C 0.65 21.87 24.06 2.79 
2-layers  10 23.91 ↑12.62 B 0.67 22.87 24.91 2.80 
3-layers  10 24.95 ↑17.52 A* 0.48 23.79 25.52 1.92 

ho 

Control 10 81.90 - A* 0.51 81.17 82.68 0.63 
1-layer 10 81.63 ↓0.33 A 0.26 80.96 81.96 0.32 
2-layers  10 81.01 ↓1.09 B 0.44 80.47 81.67 0.55 
3-layers  10 80.83 ↓1.31 B** 0.35 80.43 81.63 0.43 

N: Number of Measurements, SS: Standard Deviation, HG: Homogeneity Group,  
COV: Coefficient of Variation, *: Lowest Value, **: Highest Value 

 
The variance analyses related to the glossiness values are shown in Table 5. 
 

Table 5: Analysis of variance results for glossiness values 

Source   Test   Sum of Squares df Mean Square F Sig. 

Number  
of  

Layer 

⊥20o glossiness 0.699 3 0.233 14.979 0.000* 
⊥60o glossiness 122.493 3 40.831 643.288 0.000* 
⊥85o glossiness 259.445 3 86.482 363.284 0.000* 
║20o glossiness 3.395 3 1.132 93.440 0.000* 
║60o glossiness  190.835 3 63.612 1072.607 0.000* 
║85o glossiness 850.975 3 283.658 922.216 0.000* 

Error  

⊥20o glossiness 0.560 36 0.016   
⊥60o glossiness 2.285 36 0.063   
⊥85o glossiness 8.570 36 0.238   
║20o glossiness 0.436 36 0.012   
║60o glossiness  2.135 36 0.059   
║85o glossiness 11.073 36 0.308     

Total  

⊥20o glossiness 44.940 40       
⊥60o glossiness 1309.610 40       
⊥85o glossiness 1339.240 40       
║20o glossiness 35.160 40       
║60o glossiness  1719.430 40       
║85o glossiness 4096.650 40       

Corrected 
Total  

⊥20o glossiness 1.259 39       
⊥60o glossiness 124.778 39       
⊥85o glossiness 268.015 39       
║20o glossiness 3.831 39       
║60o glossiness  192.970 39       
║85o glossiness 862.048 39       

*: Significant 
 
Table 6 illustrates the measurement findings for glossiness values. 
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Table 6: Measurement results for glossiness values 

Test Wax Application N Mean   Change (%) HG SS Minimum  Maximum  COV 

⊥20o 

Control 10 0.86 - C** 0.22 0.60 1.10 25.83 
1-layer 10 1.00 ↑16.28 B 0.00 1.00 1.00 0.00 
2-layers  10 1.10 ↑27.91 B 0.08 1.00 1.20 7.42 
3-layers  10 1.22 ↑41.86 A* 0.08 1.10 1.30 6.47 

⊥60o 

Control 10 2.50 - C** 0.00 2.50 2.50 0.00 
1-layer 10 5.99 ↑139.60 B 0.22 5.70 6.20 3.64 
2-layers  10 6.18 ↑147.20 B 0.34 5.70 6.50 5.54 
3-layers  10 7.10 ↑184.00 A* 0.30 6.60 7.40 4.20 

⊥85o 

Control 10 0.82 - C** 0.19 0.70 1.10 23.56 
1-layer 10 6.39 ↑679.27 B 0.09 6.30 6.50 1.37 
2-layers  10 6.21 ↑657.32 B 0.92 4.90 7.00 14.83 
3-layers  10 7.28 ↑787.80 A* 0.24 6.90 7.60 3.35 

║20o 

Control 10 0.50 - C** 0.00 0.50 0.50 0.00 
1-layer 10 0.88 ↑76.00 B 0.13 0.70 1.00 14.96 
2-layers  10 0.84 ↑68.00 B 0.05 0.80 0.90 6.15 
3-layers  10 1.32 ↑164.00 A* 0.17 1.10 1.50 12.78 

║60o 

Control 10 2.53 - C** 0.05 2.50 2.60 1.91 
1-layer 10 6.91 ↑173.12 B 0.16 6.70 7.10 2.31 
2-layers  10 6.93 ↑173.91 B 0.18 6.70 7.10 2.64 
3-layers  10 8.34 ↑229.64 A* 0.42 7.80 8.80 5.03 

║85o 

Control 10 1.36 - D** 0.05 1.30 1.40 3.80 
1-layer 10 9.90 ↑627.94 C 0.43 9.40 10.40 4.34 
2-layers  10 11.05 ↑712.50 B 0.19 10.80 11.30 1.72 
3-layers  10 13.66 ↑904.41 A* 1.00 11.90 14.60 7.35 

N: Number of Measurements, SS: Standard Deviation, HG: Homogeneity Group,  
COV: Coefficient of Variation, *: Lowest Value, **: Highest Value 

 

Table 7 presents the results for the total color differences (∆E*).  
 

Table 7: Results for the total color differences 

Wax Application ∆L* ∆a* ∆b* ∆C* ∆H* ∆E* Color change criteria  
(DIN 5033, 1979) 

1-layer -2.31 0.38 1.90 1.94 - 3.02 
Very distinct (3.0 to 6.0) 2-layers  -2.48 0.74 2.60 2.68 0.34 3.67 

3-layers  -3.01 0.98 3.61 3.72 0.40 4.80 
 
Table 8 displays the recorded data for whiteness index (WI*) values. 
 

Table 8: Analysis of variance results for whiteness index (WI*) values 

Source   Test   Sum of Squares df Mean Square F Sig. 
Number  
of Layer 

WI* (⊥)  359.827 3 119.942 404.907 0.000* 
WI* (║)  510.864 3 170.288 743.977 0.000* 

Error  WI* (⊥)  10.664 36 0.296   
WI* (║)  8.240 36 0.229   

Total  WI* (⊥)  29714.380 40    
WI* (║)  22646.720 40    

Corrected 
 Total  

WI* (⊥)  370.491 39       
WI* (║)  519.104 39       

*: Significant 
 

Table 9 showcases the measurement outcomes for whiteness index (WI*) values. 
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Table 9: Measurement results for whiteness index (WI*) values  

Test Wax Application N Mean   Change (%) HG SS Minimum  Maximum  COV 

WI* 
⊥ 

Control 10 31.38 - A* 0.35 30.90 31.80 1.11 
1-layer 10 28.32 ↓9.75 B 0.39 27.70 28.80 1.36 
2-layers  10 24.92 ↓20.59 C 0.94 24.40 26.70 3.77 
3-layers  10 23.72 ↓24.41 D** 0.18 23.40 23.90 0.76 

WI* 
║ 

Control 10 29.38 - A* 0.31 28.90 29.70 1.05 
1-layer 10 23.34 ↓20.56 B 0.62 22.60 24.10 2.66 
2-layers  10 21.22 ↓27.77 C 0.15 21.00 21.40 0.73 
3-layers  10 20.14 ↓31.45 D** 0.64 19.00 20.70 3.19 

N: Number of Measurements, SS: Standard Deviation, HG: Homogeneity Group,  
COV: Coefficient of Variation, *: Lowest Value, **: Highest Value 

 

4. Discussion 

In the provided test result tables, it was determined that the factor representing the number of 
categories significantly influenced the variance analyses (Table 3, 5, and 8). 

Decreases in WI* were observed for both perpendicular and parallel directions to the fibers with 
applications of different coating ratios, while decreases were observed in ho and L* parameters. Increases 
were detected in a*, C*, and b* values. The highest results for L* and ho values were found in the samples 
belonging to the control experimental group (73.29 and 81.90, respectively). Alternatively, the decline rates 
in the ho values are recorded as 0.33% for 1-layer, 1.09% for 2-layer, and 1.31% for 3-layer. The highest 
reduction rate for L* was determined to be 4.11% on surfaces treated with 3-layer of wax, while the lowest 
reduction rate was observed to be 3.14% on samples treated with 1-layer of wax. The lowest results for the 
a*, b*, and C* parameters were found in the control samples (2.99, 21.02, and 21.23, respectively). 
Additionally, the highest values for these parameters were also observed on surfaces treated with 3-layer 
of wax (a*: 3.98, b*: 24.63, and C*: 24.95, respectively). In the 3-layer wax application, the parameters a*, 
b*, and C* experienced the highest increase rates, with percentages of 33.11%, 17.17%, and 17.52%, 
respectively, in that order (Table 4).  

Wax applications on walnut and maple woods (Liu et al., 2022), along with beech, linden, poplar, and 
pine woods (Akçay, 2020), were noted to have resulted in a reduction in L* and an increase in a* and b* 
values.  

According to these results, increases in glossiness values were observed in all degrees and directions 
following the application of wax. Additionally, the lowest measurement results for all degrees and directions 
were obtained from the samples belonging to the control experimental group, while the highest results 
were found in the samples with 3-layer of wax application. Particularly, it was determined that the increase 
values in both directions at 85 degrees were above 600% (Table 6). 

Following all applications, negative values were observed in ∆L* (darker than the reference), while 
positive results were determined in ∆a*, ∆b*, and ∆C* (redder, yellower, and clearer/brighter than the 
reference, respectively). The ∆E* values were found to be 3.02 for the 1-layer wax application, 3.67 for the 
2-layer wax application, and 4.80 for the 3-layer wax application. Additionally, the increase in the 
coefficients of ∆E*, ∆a*, ∆b*, and ∆C* corresponds to the increase. When compared with color change criteria 
(DIN 5033, 1979), it is evident that the result “very distinct (3.0 to 6.0)” was obtained after all applications 
(Table 7). 

The WI* values in the vertical direction relative to the fibers were found to be higher compared to 
those in the parallel direction to the fibers. The highest results for WI* values were found in the control 
samples (⊥: 31.38 and ║: 29.38), while the lowest results were observed in the group of experimental 
samples with 3-layer of wax application (⊥: 23.72 and ║: 20.14). The values for WI* were found as 9.75% 
in the ⊥ direction for 1-layer, 20.59% for 2-layer, and 24.41% for 3-layer, whereas in the ║ direction, they 
were determined as 20.56% for 1-layer, 27.77% for 2-layer, and 31.45% for 3-layer (Table 9). 

In the existing literature, alterations in color, glossiness, and whiteness index values resulting from 
the wax application on olive (Peker et al., 2024a), plum (Peker et al., 2024b), balau red (Peker et al., 2024c), 
and ebony Macassar (Kaplan et al., 2024) wood species were documented. In wax studies conducted on 
olive (Peker et al., 2024a) and plum (Peker et al., 2024b) woods with different application rates, it has been 
reported that L* and ho values decrease, and additionally, a*, b*, and C* values increase. The results obtained 
in color measurements in this study are consistent with the literature. 
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5. Conclusion 

The waxes utilized in the study were noted to alter the chosen surface characteristics of magnolia 
wood. Wax applications resulted in enhancements across all glossiness levels and orientations. The ∆E* 
values were determined to be 3.02 for the 1-layer application, 3.67 for the 2-layer application, and 4.80 for 
the 3-layer application. A decline was noted in WI* values in both directions (⊥ and ║). 
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Abstract 

Surface tension is an internal force due to an unbalance in molecular forces that occurs when two 
different materials, such as a wood surface and adhesive, are brought into contact with each other, 
forming an interface or boundary. The force is due to the tendency for all materials to reduce their 
surface area in response to the unbalance in molecular forces that occurs at their points of contact. 
Wetting properties between solids and liquids are of major importance for most industrial products 
and processes, such as adhesives, paint and lacquers, photograph films, printing inks, finishing, and 
textiles. Contact angle analysis is a widely used method to study the wetting characteristics of solid 
materials. There are several methods to determine the contact angles of a liquid on a wood surface. 
However, the most widely applied method is the sessile drop method. 
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1. Surface Tension, Wettability and Contact Angle 

When a drop of liquid is dropped on a flat solid material surface, it may spread completely on the 
surface or, more likely, remain as a drop, forming a certain angle (θ - contact angle) with the solid surface. 
The contact angle (θ) is a function of the liquid and the solid surface. When the forces of attraction between 
the liquid and the solid surface (adhesion) are equal to or greater than those between the liquid and the 
solid surface (cohesion), the contact angle is 0. When the adhesion forces between the liquid and the solid 
surface are smaller than the cohesion forces in the liquid, the contact angle approaches infinity (∞) (Shaw, 
1970).  

When two different materials (such as a drop of liquid on a solid surface) come into contact with each 
other to form an interface or boundary, an internal force called "surface tension" is generated due to the 
imbalance in the molecular forces that arise. This force is caused by the fact that all materials try to reduce 
their surface area in response to the imbalance in the molecular forces that occur at the contact points 
(Aydin, 2004a).  Figure 1 shows the forces of attraction that cause surface tension.  

 

 
 

Figure 1: Attraction forces between molecules on the surface  
and inside a liquid drop (Web-1) 

 
Surface tension is the cohesive force at the liquid's surface that tends to minimize surface area. It is 

a crucial factor in determining how a liquid interacts with a solid surface. In wood materials, surface tension 
affects the spreading and penetration of liquids, and the surface tension of both the wood and the interacting 
liquid significantly affects processes like finishing and adhesion (Smith, 2018).  

Several factors can influence wood’s surface tension, including moisture content, surface roughness, 
and chemical composition. A Higher moisture content generally reduces surface tension. Increased 
roughness can lead to higher surface tension due to capillary effects. Variations in lignin, cellulose, and 
extractives also affect the surface tension of wood (Wu, 1982). 

Materials can be broadly classified based on their affinity with water into hydrophobic (water-
repelling) and hydrophilic (water-attracting). Hydrophobicity and hydrophilicity are critical concepts in 
chemistry, biology, and materials science. They describe the affinity of substances for water, which 
influences a variety of phenomena, from molecular interactions to materials' macroscopic properties. The 
interaction of materials with water is expressed by the terms hydrophobic (water repellent) or hydrophilic 
(water loving). Hydrophilic materials have the ability to absorb water rapidly (Figure 2-a). Surface 
chemistry allows such materials to wet by forming a film of water or coating agent on their surface. 
Hydrophilic materials have large surface tension values and have the ability to form hydrogen bonds with 
water (Aydin, 2004a).    

Hydrophobic materials, compared to hydrophilic materials, react inversely to the interaction with 
water. Such materials absorb little or no water and tend to form bubbles on their surfaces (Figure 2-b). 
Hydrophobic materials have small surface tension values and lack active groups in the chemical structure 
of their surfaces to form hydrogen bonds with water (Aydin, 2004a).   
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Figure 2: Movement of water molecules on hydrophilic and hydrophobic surfaces (Shaw, 1970) 

 
Wettability is a critical characteristic of wood that affects its performance in various applications, 

including adhesion, coating, and impregnation processes. Good wettability ensures that adhesives and 
coatings can spread uniformly and adhere strongly to the wood surface. Effective adhesive bonding requires 
high wettability to ensure adequate spread and penetration of the adhesive (Marra, 1992). Improved 
wettability results in stronger and more durable bonds. It is a measure of how easily a liquid can spread 
across a wood surface, which in turn is influenced by the wood's surface energy, roughness, and chemical 
composition. Understanding the wettability of wood is essential for optimizing its use in construction, 
furniture making, and other industries where wood-water interactions are significant (Kamke and Lee, 
2007).  

Wettability is also important for wood impregnation processes, where liquids such as preservatives, 
fire retardants, or dyes are introduced into the wood's cellular structure. High wettability facilitates deeper 
and more uniform penetration of these substances, enhancing the wood's performance in various 
applications. For example, pressure-treated wood, which involves impregnating wood with preservatives, 
relies on good wettability to ensure effective protection against decay and pests (Lebow, 2010). 

The wettability of wood also affects its susceptibility to biological degradation and weathering. 
Hydrophobic treatments that reduce wettability can enhance the durability and lifespan of wood products 
by preventing moisture ingress and subsequent microbial attack (Jones et al., 2016). Recent studies have 
focused on developing eco-friendly and sustainable treatments that balance wettability and environmental 
impact (Kim et al., 2022). 

The wettability of wood is influenced by its surface characteristics, including chemical composition, 
surface roughness, and the presence of contaminants (Gray, 1962). Various treatments can enhance the 
wettability of wood, such as plasma treatment, chemical modification, and sanding (Gardner et al., 1996). 
Plasma treatment modifies the wood surface at a molecular level, improving wettability by introducing 
polar functional groups (Griffin, 1962). Chemical treatments can alter the surface energy of wood, making 
it more hydrophilic or hydrophobic, depending on the intended application (Rowell, 1984).  

Different wood species exhibit varying degrees of wettability due to their unique anatomical and 
chemical characteristics. For instance, Gindl et al. (2013) demonstrated that hardwood species generally 
have lower contact angles compared to softwoods, attributed to differences in surface energy and porosity. 
Similarly, Bächle et al. (2019) found that the presence of extractives in certain wood species can 
significantly reduce wettability, emphasizing the need for species-specific treatment approaches.  

Surface roughness is also a critical determinant of wood’s wettability. Studies have shown that 
smoother wood surfaces tend to have higher contact angles, indicating lower wettability (Kúdela and 
Paprčka, 2016). The interplay between surface roughness and contact angle is complex; rougher surfaces 
can either increase or decrease wettability depending on the scale and pattern of the roughness (Laskowska 
and Kozakiewicz, 2021). Techniques such as sanding and mechanical planing are often employed to modify 
the surface roughness and, consequently, the wettability of wood.  

Chemical composition, including the presence of lignin, cellulose, and hemicelluloses, plays a 
significant role in wood wettability. Treatments that alter the chemical composition, such as thermal 
modification and chemical grafting, have been extensively studied. Thermal modification, for example, 
generally decreases wood wettability by increasing hydrophobicity and reducing surface energy (Hakkou 
et al., 2019). Chemical treatments, such as acetylation and silanization, have also been shown to enhance 
the hydrophobic properties of wood surfaces (Li et al., 2017). 

Contact angle measurements are the most common method used to determine the wettability of a 
material and to describe the adhesion between a solid and a liquid (Collet, 1972; Kazayawoko et al., 1997; 
Aydin and Çolakoglu, 2002; Aydin, 2004a; Aydin, 2004b). The contact angle, also called the wetting angle, 
is the angle between the plane tangent to the liquid surface and the plane tangent to the surface of the solid 
(Woodward, 2000; Aydin and Çolakoglu, 2002; Jones et al., 2020). It quantifies the wettability of a surface: 
a low contact angle indicates high wettability, while a high contact angle suggests low wettability (Kalnins 
and Feist, 1993; Shi and Gardner, 2001).  

Several factors impact the contact angle on wood, such as surface energy, roughness, chemical 
composition, moisture content, and the presence of surface treatments. A higher surface energy typically 



Ismal Aydin Wood Industry and Engineering, 6, 1 (2024) 18-27 
 

Review Article     21 
 

 

reduces the contact angle. Increased roughness can lead to higher contact angles due to air entrapment 
(Berg, 1993). The chemical composition of the wood, including the presence of extractives and treatment 
chemicals, significantly affects wettability. For instance, a higher lignin content generally reduces 
wettability (Gray, 1962). The moisture content of wood influences its surface energy and, consequently, the 
contact angle. Higher moisture content usually results in lower contact angles due to the swelling of wood 
fibers (Wu, 1982). Chemical modifications can either increase or decrease the contact angle, depending on 
the treatment (Sharma and Chattopadhyay, 2021). Surface treatments such as sanding, plasma treatment, 
or chemical modification, can alter the surface energy of wood, thereby affecting contact angles. For 
example, plasma treatment increases surface energy and reduces contact angles, enhancing wettability 
(Hosseinaei et al., 2015). 

When a small drop of liquid is dropped on a flat solid surface, there are three possible wetting 
patterns. These are complete wetting, partial wetting, and non-wetting as can be seen from Figure 3 (Aydin, 
2004a).  

 
θ = 0 θ < 45° θ = 90° θ > 90° θ = 180° 

 
 
 

 

 
 

 

       

 
 
 

 

 
 

 

 
Complete 
Wetting Partial Wetting - Hydrophilic Partial Wetting 

- Hydrophobic Non-Wetting 

Figure 3: Wetting behaviors on wood (Aydin, 2004a). 
 

For perfect wetting, a contact angle θ=0° is required. In this case, the liquid spreads as a thin film on 
the solid surface. The case θ=180° is practically not observed. This is not feasible because it would require 
the adhesion between the liquid and the solid to be zero, or the surface tension between the liquid and the 
air to be infinite. There is always some force of attraction between the solid and the liquid. If θ<90°, it can 
be said that the liquid wets the solid surface; if θ>90°, it does not (Bodig, 1962). Both partial wetting with 
θ<90° and complete wetting (θ=0°) provide acceptable interface-free energy for adhesion (Aydin, 2004a). 
Table 1 also indicates the degree of wetting and interaction strength depending on the contact angle. 

 
Table 1: Degree of wettability and interaction strength depending on the contact angle 

 

Contact  
Angle 

Degree of 
wettability 

Forces of Attraction 

Solid–liquid Liquid–liquid 

θ = 0 Complete wetting Strong Weak 

0 < θ < 90° High wettability Strong Strong 
90° ≤ θ < 180° Low wettability Weak Strong 

θ = 180° Non-wetting Weak Strong 
 

It is thought that there are three forces affecting the liquid drop that forms an angle on the surface 
when dropped on the surface of a solid, and that these forces are in equilibrium. These forces are surface 
tension between solid and liquid (γSL), surface tension between solid and gas (γSG) and surface tension 
between liquid and gas (γLG) (Wålinder, 2000; Clint, 2001). 

 

 
Figure 4: Formation of the contact angle (θ) (a) and the balance of forces acting on the liquid drop on the 

solid surface (b) (Aydin, 2004a) 
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The relationship between the surface tensions of a solid and a liquid, the interfacial tensions between 
the solid and the liquid, and the contact angle (θ) formed by a drop of liquid dropped on a flat surface was 
formulated by Thomas Young in 1805. This equation, also called Young's Equation, is given below (Kalnins 
and Feist, 1993): 

 
γLG cos θ = γSG- γSL 

 
Dupré developed an equation for the thermodynamic energy of the interaction between these 

interface forces, commonly known as the work of adhesion (Mantanis and Young, 1997). According to this 
equation:  

 
WA = γS +  γL - γSL 

 
Combining the two equations above yields the following equation for adhesion work (Clint, 2001): 
 

WA = γL (1 + cos θ) 
 

Thus, the thermodynamic energy of the interaction at an interface can be calculated using the surface 
tension and contact angle values of the liquid. 

 

2. Contact Angle Measurement Methods to Determine the Wettability of Wood Surfaces 

Wetting properties between solids and liquids are critical for many industrial products, including 
adhesives, surface treatments such as paints and varnishes, printing inks, photographic films, video and 
audio tapes, and so on. Understanding wood's wettability is critical for optimizing its use in a variety of 
industrial applications. Controlling and enhancing wettability significantly improves wood adhesion, 
coating, and impregnation processes, resulting in more durable and reliable wood products. 

The wettability of a material is usually determined by contact angle measurements. The accurate 
measurement of contact angles on wood surfaces is crucial for assessing wettability. There are many 
techniques available for measuring the contact angles of a liquid on a wood surface. The most commonly 
used methods are optical and gravimetric techniques. Direct measurement of contact angles from the 
profile of a liquid drop on the wood surface (Sessile Drop Method) is the most widely used method (Herczeg, 
1965; Jordan and Wellons, 1977; Nguyen and Johns, 1979). With the optical technique known as drop shape 
analysis (Sessile Drop Method), contact angles are measured visually. This method involves placing a liquid 
droplet on the wood surface and capturing its profile with a high-resolution camera. The contact angle is 
determined by analyzing the shape of the droplet using software. In the sessile drop method, the contact 
angle (θ) is defined as the angle between the tangent to the liquid droplet surface and the solid surface at 
the three-phase contact line. A droplet of liquid is dispensed onto the wood surface, and the equilibrium 
contact angle is recorded once the droplet stabilizes (Gardner, 1996). The process typically involves the 
following steps: 

1. Surface Preparation: The wood surface is cleaned and conditioned to remove contaminants. 
2. Droplet Placement: A microliter syringe or a similar device is used to place a droplet of distilled 

water or another test liquid on the surface. 
3. Image Capture: A high-speed camera captures the side view of the droplet. 
4. Angle Measurement: Image analysis software calculates the contact angle from the droplet profile. 
 
The sessile drop method is favored for its simplicity and directness. Although this technique has the 

advantages of requiring small quantities of test liquid and a small sample of wood, the contact angle of a 
liquid on a wood surface is difficult to obtain. The reason for this difficulty is the problem of accurately 
plotting the tangent on the drop profile at the point of contact with the wood surface (Casilla et. al., 1981). 
Wood surfaces are rough and heterogeneous. A drop of liquid (such as glue) on such a surface like wood 
does not have perfect axial symmetry. If a single contact angle is measured with such a technique, this 
measurement may not be representative of all drops on the wood surface, as the contact angles will vary 
from point to point. Furthermore, an accurate contact angle reading using this technique depends on the 
experience and skill of the operator taking the measurement (Kazayawoko et. al., 1997). This method can 
often give different results depending on the operator performing the measurement (Aydin and Çolakoglu, 
2002). In addition, contact angle measurements with this method are quite time consuming. Because the 
angle changes in a short time due to the interaction between the liquid and the solid, direct determination 
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of the contact angle on solid surfaces is very difficult (Kalnins et. al., 1988). Since porous materials are highly 
absorbent, it is difficult to obtain contact angles with an optical technique (Aydin and Çolakoglu, 2002). 

Recent advancements in goniometry and image analysis have improved the precision of contact 
angle measurements. Shi et al. (2018) highlighted the importance of using sessile drop methods combined 
with high-resolution imaging to capture the dynamic changes in contact angle over time. Furthermore, the 
use of environmental scanning electron microscopy (ESEM) has enabled researchers to study the 
wettability of wood under various humidity conditions, providing deeper insights into the moisture-related 
behavior of wood surfaces (Zhao et al., 2020). 

In order to overcome the difficulties encountered in the direct measurement of contact angles by 
sessile drop analysis and to obtain more precise measurements, devices equipped with video cameras and 
computers have been developed. In today's applications, automated devices equipped with video cameras 
and computer support, schematically shown in Figure 5, are mostly used to observe the behavior of a liquid 
drop on a solid surface after contact with the surface, to directly measure the contact angles with precision, 
and to calculate the surface tension. 

 

 
Figure 5: A computer-aided automatic contact angle measurement and analysis (Aydin, 2004a) 
 
The Wilhelmy Plate method offers an alternative approach, particularly suitable for dynamic 

wettability studies. This method is widely used due to its simplicity, accuracy, and ability to provide insights 
into the wetting behaviors of various materials. The Wilhelmy Plate Method operates on the principle that 
a thin, vertical plate made of a known material is partially immersed in a liquid. The liquid wets the plate 
and climbs up its surface, creating a meniscus whose shape and height are influenced by the contact angle 
(Adamson and Gast, 1997). It measures the force exerted on a vertically immersed plate as it interacts with 
a liquid, providing contact angle data based on the force balance. The force exerted by the liquid on the plate 
is measured as a function of depth, allowing the calculation of contact angles. This technique is particularly 
useful for assessing the contact angle of wood fibers and small samples (van Oss et. al., 1988). 

As can be seen from the schematic diagram of the Wilhelmy Plate Method (Figure 6), when a 
vertically suspended plate touches a liquid surface or interface, then a force F, which correlates with the 
surface tension or interfacial tension σ and with the contact angle θ according to the following equation, 
acts on this plate (Web-2): 

γ =   
F

L × cos θ
 

 
The wetted length L of the plate is equal to its perimeter. To measure the force F, the plate is attached 

to the force sensor of a tensiometer. 
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Figure 6: Schematic diagram of the Wilhelmy Plate Method (Web-2) 

 
Dynamic contact angle measurements involve determining the contact angle during the advancing 

and receding motions of the liquid on the solid surface. This is critical for understanding hysteresis, which 
is the difference between advancing and receding contact angles and is indicative of surface heterogeneity 
and roughness (Kwok and Neumann, 1999). With the Wilhelmy method, a dynamic contact angle is 
normally measured by slowly immersing and then withdrawing the solid. The advancing angle is 
determined during the wetting process and the receding angle during the de-wetting process (Web-2). The 
advancing contact angle is measured as the plate is immersed in the liquid. The meniscus climbs up the 
plate, and the contact angle increases until it stabilizes at a maximum value. This angle reflects the liquid's 
tendency to wet the surface. The receding contact angle is measured as the plate is withdrawn from the 
liquid. The meniscus descends, and the contact angle decreases until it stabilizes at a minimum value. This 
angle indicates the liquid's tendency to de-wet the surface (Kwok and Neumann, 1999). 

The Wilhelmy Plate method is straightforward and requires minimal sample preparation. It provides 
precise measurements of contact angles and is applicable to a wide range of liquids and solid materials. On 
the other hand, it is highly sensitive to surface roughness and heterogeneity, which can affect accuracy. 
Temperature and humidity can also influence the measurements and need to be controlled. 

Casilla et al. (1981) developed an alternative approach to determining the wettability of wood 
surfaces. This approach is a modified version of the Wilhelmy technique. This modified version determines 
a wettability index (the area under the force-dip curve) by immersing a conical wood sample in a solution 
(Kazayawoko et al., 1997). In contrast to drop shape analysis methods, the Wilhelmy technique does not 
directly obtain a quantitative contact angle value. Although this technique is an alternative tool to 
characterize the wettability and surface properties of wood, its inability to provide a quantitative contact 
angle value is a major obstacle since most thermodynamic wetting and adhesion theories require contact 
angle information (Kazayawoko, 1996; Kazayawoko et al., 1997). However, in specific applications such as 
gluing and varnishing, dynamic contact angle has been reported to be more informative (Boehme and Hora, 
1996). 
 Rotenberg et al. (1983) developed an alternative method called ADSA (Axisymmetric Drop Shape 
Analysis) to calculate the contact angle based on measurements of the drop shape.  
 It is also possible to approximate the contact angles on a material surface using the dimensions of 
the liquid drop on the surface using the following equation (Liptáková and Kúdela, 1994): 

  

 

  
θ = 2 x arc tan (H/R) 
  

Where θ is the contact angle, H is the height of the drop and R is the radius of the drop base. 
 
Using the Dynamic Contact Angle (DCA) method, it is possible to measure the contact angle at 

equilibrium. The time required for a liquid drop to reach equilibrium on the surface where it is dropped 
depends on the liquid used. For example, for a water drop, the equilibrium state is reached in a few seconds, 
while for oil drops, the time to reach equilibrium is about 3 minutes. The contact angle before reaching 
equilibrium is called the advancing contact angle. After reaching the equilibrium state, the contact angle 
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starts to retreat towards the initial state, and the contact angle in this state is called the retreating contact 
angle (Liptáková and Kúdela, 1994). The lack of thermodynamic equilibrium in non-ideal systems leads to 
the formation of a contact angle due to the formation in the field of motion of the fluid. This phenomenon is 
called contact angle hysteresis (Wulf et al., 1997). 

There are some factors that cause the formation of contact angle hysteresis. Surface roughness and 
the heterogeneous structure of the surface are the most important of these factors (Kazayawoko, 1996; 
Extrand, 1998; Dominigue; 2000). As the liquid drop spreads, it can be contaminated by some contaminants 
on the surface, and this changes the surface tension of the liquid. The contamination of the liquid drop is 
also considered among the factors that cause the formation of contact angle hysteresis (Extrand, 1998). 
Another factor shown to cause hysteresis is the reorganization of molecules and functional groups on the 
surface of the solid after contact with the liquid (Wålinder; 2000). The occurrence of the hysteresis 
phenomenon poses a difficulty in the practical measurement of contact angles (Kazayawoko, 1996).  

 

3. Conclusions 

The surface tension, contact angle, and wettability of wood are critical parameters influencing its 
performance in various applications. By understanding and manipulating these properties, we can enhance 
wood processing techniques, improve product quality, and expand the range of wood's practical uses. 
Future research should focus on developing more efficient surface treatments and better understanding the 
interactions between wood surfaces and different liquids. 

Understanding wood's wettability is critical for optimizing its use in a variety of industrial 
applications. Factors such as surface energy, surface roughness, and chemical treatments significantly 
influence wettability. Accurate measurement of wettability through techniques like contact angle 
goniometry and the Wilhelmy plate method provides valuable insights into wood-liquid interactions. 
Controlling and enhancing wettability significantly improves the performance of wood in adhesion, coating, 
and impregnation processes, resulting in more durable and reliable wood products. 

Contact angle measurement is a valuable tool for investigating the wettability and surface properties 
of wood. By understanding the factors influencing contact angles and employing appropriate measurement 
techniques, researchers and industry professionals can optimize wood treatment processes, enhancing the 
performance and longevity of wood products. 

Contact angle measurement methods, including the sessile drop, Wilhelmy plate, and dynamic 
measurements, are fundamental in assessing the wettability of wood surfaces. Each method has its own 
unique advantages and limitations, making them suitable for different aspects of wettability studies. 
Understanding these methods enables researchers to select appropriate techniques for specific 
applications, ultimately improving wood surface treatments and applications. 
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