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Hüseyin Çakallı
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İzzet Sakallı, (Eastern Mediterranean University, TRNC), Mathematical Methods in Physics

Allaberen Ashyralyev, (Near East University, TRNC), Numerical Functional Analysis

Bipan Hazarika, Rajiv Gandhi University, Assam, India, Sequence Spaces, fuzzy Analysis and Functional
Analysis, India

Fuat Usta, Duzce University, Duzce, Turkey, Applied Mathematics,

Ahmet Mesut Razbonyalı, (Maltepe University, Istanbul, Turkey), Computer Science and Technology
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ÜNİVERSİTESİ, MANİSA, TÜRKİYE. ORCID NUMBER: 0000-0003-0008-2432

Abstract. We initiate the investigation of the topological aspects of bipolar metric spaces.
In this context, some concepts that generalize open and closed sets, accumulation points,
closure and interior operators for bipolar metric spaces, of which little is known about
their topological behaviors, are discussed. In addition, some essential properties regarding
these notions were obtained, and counterexamples were provided for some expected but
not satisfied properties.

1. Introduction

As a natural extension of the concept of length, one of the oldest quantitative concepts,
the concept of distance can be thought of as the length of a gap. One of the most celebrated
tools that enable the concept of distance to be considered theoretically is metric spaces
being neither too restrictive nor too general. Since they are intuitive and simple structures,
they have been the subject of many generalizations, abstractions, and variations since the
first day, they were defined in Fréchet’s doctoral thesis [12].

Although it may be helpful in many situations to define distances between different
kinds of objects, substances, people, phenomena, or concepts, it is very recently that bipo-
lar metric spaces have been presented in the literature [32]. While these spaces were mainly
studied within the framework of fixed point theory [13, 14, 15, 19, 20, 23, 24, 31, 32, 33,
34, 35, 36, 37, 43], also some applications [21, 26, 27, 28, 29, 39, 44, 46], generalizations
[1, 2, 3, 5, 6, 7, 16, 22, 25, 26, 30, 42, 45, 46], and special cases [10] are studied. However,
the topological characteristics of bipolar metric spaces constitute a nearly untouched area
full of mysteries yet to be explored.

In this study, some topological concepts concerning bipolar metric spaces are examined.
Closure operators are one of the significant classes of mappings, studied particularly within
the context of the lattice theory from many various perspectives [4, 8, 9, 11, 18, 38, 40, 41]
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and proven to be useful in defining and analyzing generalized topological structures. It
turns out that the similar generalized operators in bipolar metric spaces provide less well-
behaved properties than their counterparts in metric spaces. Moreover, some expected
properties that the aforementioned concepts or operators do not generally provide are ex-
plained with illustrative counterexamples, which also contribute to a better understanding
of bipolar metric spaces.

2. Preliminaries

In order to fix the notations and inform about the topic, some basic terminology about
bipolar metric spaces is given here. Some details on the information presented in this
section can be found in [32] and [14].

Definition 2.1. A bipolar set is a pair (X,Y) of sets. In this case, each of the sets is called
a pole. Inspired by the writing order of the sets, the terms “left pole” and “right pole”
are used, with their obvious meanings. The intersection of the two poles is referred to as
the center of the bipolar set. A point of the left (right) pole is called a left (right) point.
For points of the center, the term “central point” is used. Accordingly, points in X \ Y are
referred as noncentral left points, and points belonging Y \ X are called noncentral right
points.

Although bipolar sets seems to be nothing other than ordinary pairs of sets, what makes
them more interesting is the category Bip. This category has bipolar sets as objects and
covariant mappings as morphisms, and more information about it can be found in [14].

Definition 2.2. Given two bipolar sets (X,Y) and (X′,Y ′). Then a function φ : X ∪ Y →
X′ ∪ Y ′ is called a covariant mapping (or mapping, for short) from (X,Y) to (X′,Y ′),
provided that φ(X) ⊆ X′, φ(Y) ⊆ Y ′. This case is written as φ : (X,Y)⇒ (X′,Y ′).

In addition to mappings, another tool to relate bipolar sets is contravariant mappings,
whose usefulness has been tested in many applications, particularly on the fixed point
theory.

Definition 2.3. Let (X,Y) and (X′,Y ′) be bipolar sets. A function φ : X ∪ Y → X′ ∪ Y ′ is
called a contravariant mapping from (X,Y) to (X′,Y ′), if φ(X) ⊆ Y ′, φ(Y) ⊆ X′, and this
case is denoted by φ : (X,Y)↬ (X′,Y ′).

Since bipolar metric spaces defined on bipolar sets are structures that can be explained
with the help of sequences, just like the case of metric spaces, sequences defined on bipolar
sets have particular importance. However, since sequences with mixed noncentral left and
right points on bipolar metric spaces are essentially useless, the concept of sequence on a
bipolar set is defined in terms of arrays consisting of either only left points or only right
points. Of course, sequences consisting only of central points are also possible, and these
are the most similar ones to sequences in the classical sense.

Definition 2.4. A right (left) sequence on a bipolar set, is a sequence consisting solely of
right (left) points. In the context of bipolar sets, when the generic term “sequence” is used,
it is understood that either a right sequence, or a left sequence is meant. If all terms of (un)
are central points, then it is called a central sequence.

When a bipolar metric space is given over a bipolar set, there is a notion of convergence
for sequences. However, to generalize concepts, such as Cauchy sequences, to bipolar
metric spaces, the following additional tool is needed:
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Definition 2.5. A bisequence on a bipolar set (X,Y) is defined to be an ordinary sequence
on the product set X × Y.

Now, as introduced at [32], we present a definition for the notion of a bipolar metric
space, which will hereafter be shortly referred as BMS.

Definition 2.6. Given a bipolar set (X,Y) and let b : X × Y → R+0 , where R+0 = [0,∞). If b
satisfies the following, then it is called a bipolar metric on (X,Y), and in this case (X,Y, b)
is called a bipolar metric space.

(B0) b (x, y) = 0 implies x = y, for each x ∈ X and y ∈ Y.
(B1) x = y implies b (x, y) = 0, for each x ∈ X and y ∈ Y.
(B2) b (u, v) = b (v, u), for each u, v ∈ X ∩ Y.
(B3) b(x, y) ≤ b(x, y′) + b(x′, y′) + b(x′, y), for each x, x′ ∈ X and y, y′ ∈ Y.

The inequality (B3) is known as the quadrilateral inequality. If (B0) is dropped from the
definition, then b is called a bipolar pseudo-metric.

The concept of bipolar metric space was introduced to deal with distances defined be-
tween separate kinds of objects frequently occur in both mathematical and applied sci-
ences. Examples include distances between curves and points in Rn, distances between
sets and points in a pseudometric space, and distances between arbitrarily chosen points
and sites in a Voronoi diagram. Moreover, the value of the characteristic function χAc as-
sociated with the complement of a crisp or fuzzy set A at a point x also defines a distance
between sets and points. Another list of examples includes the distances between branches
of a company and delivery addresses, the distance between pairs from sets of stars and
planetary bodies based on the observable luminosities, the distances between pairs of some
suitable bases and acids based on their reaction rate, and the distance of a group of children
and a set of abilities based on test scores. It is possible to examine whether such distances
conform more or less to the bipolar metric space structure or their generalizations.

Example 2.1. (i) If (M, d) is a metric space, then (M,M, d) is a BMS. Conversely, if
(X, X, b) is a BMS, then (X, b) is a metric space.

(ii) If (Q, d) is a quasi-metric space [47], and Q̃ = {q̃ : q ∈ Q} be a disjoint copy of
Q, that is Q̃ is any set of same cardinality with Q, such that Q̃ ∩ Q = ∅ and the mapping
q 7→ q̃ is a bijection. Then

(
Q, Q̃, b

)
is a bipolar pseudo-metric space, where b is given by

b (q1, q̃2) := d (q1, q2), for all q1, q2 ∈ Q.
(iii) Let (X, δ) be a dislocated metric space [17]. Define the set U = {x ∈ X : δ (x, x) = 0}

and Ũc be the disjoint copy of X \ U. Say Y = U ∪ Ũc. There is a unique function
b : X × Y → R+0 satisfying

δ (x, y) =
{

b (x, y) , if y ∈ U
b(x, ỹ), if ỹ ∈ Ũc for y ∈ Uc

for each (x, y) ∈ X × Y. In this case, (X,Y, b) becomes a BMS, and U becomes the center
of (X,Y, b)

(iv) Consider the set C of all functions from R to the interval [1, 3]. Define the function
b : C × R→ R+0 by b ( f , x) = f (x). Then (C,R, b) is a BMS and its center is the empty set.

Example 2.1 (i) clearly states that BMSs generalize metric spaces. As a result, it can
be said that every metric space is a BMS, as formalized in the following proposition. As
a principle, each definition given in BMSs must be given in a way that it generalizes its
namesake in metric spaces in this context.

Proposition 2.1. (X, X, b) is a BMS iff (X, b) is a metric space.
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Notation. Throughout the remainder of this section, (X,Y, b) and (Ξ,Υ, β) will always
denote BMSs, while A and B will represent arbitrary subsets of X ∪ Y. Moreover, for
simplicity, we do not distinguish the function b and its restrictions to subsets, in notation.

Definition 2.7. If P ⊆ X, and Q ⊆ Y are arbitrary subsets, then (P,Q, b) is called a
bipolar subspace of (X,Y, b). As a special case, if there exists a set C such that P = X ∩C,
Q = Y ∩C, then (P,Q, b) is called a subspace.

Clearly, subspaces and bipolar subspaces of a BMS correspond to different concepts.
While every subspace is also a bipolar subspace, the converse is not generally true, and
subspaces are helpful in most cases because they preserve the balance of the structure to
some extent. In contrast, bipolar subspaces can arise in a more chaotic sense. However,
they have an instrumental role, especially in constructing examples. For example in the
light of Proposition 2.1, a metric space (M, d) can be viewed as a BMS (M,M, d), bipolar
subspaces of (M,M, d) will provide plenty of examples of BMS that are not metric spaces.
This situation raises the question of whether all BMSs arise this way. Mutlu and Gürdal
showed that the answer is negative [32], they nevertheless obtained a partially affirmative
result for a generalized type of metric space by utilizing the following tools.

Proposition 2.2. The function bX : X × X → R+0 ,

bX(x1, x2) = sup
y∈Y
|b(x1, y) − b(x2, y)| ,

is a pseudo-metric on X, for every x1, x2 ∈ X. Similarly, bY : Y × Y → R+0 , defined by

bY (y1, y2) = sup
x∈X
|b(x, y1) − b(x, y2)| ,

is a pseudo-metric on Y, for every y1, y2 ∈ Y.

The approach in Proposition 2.1, which connects BMSs to classical metric spaces, can
be taken one step further with the help of the concept of the center of a BMS consisting of
central points, which will naturally be a metric space.

Definition 2.8. For any BMS (X,Y, b), the metric space (X∩Y, b) is called the center metric
space, and it is denoted byZ(X,Y, b).

Definition 2.9. Let (X,Y, b) be a BMS. The function b̄ : Y × X → R+ defined by b̄(y, x) =
b(x, y) for every (y, x) ∈ Y × X, is also a bipolar metric on (Y, X) and (Y, X, b̄) is called the
opposite of (X,Y, b), denoted by

←−−−−→
(X,Y, b) = (Y, X, b̄).

It is obvious from the definition that, one always has
←−−−−→
←−−−−→
(X,Y, b) = (X,Y, b).

Definition 2.10. (i) A mapping f : (X,Y, b) ⇒ (Z,W, b′) is continuous at a left point
x0 ∈ X, if

∀ε > 0, ∃δ > 0, ∀y ∈ Y, b(x0, y) < δ⇒ b′
(
f (x0), f (y)) < ε,

and it is continuous at a right point y0 ∈ Y, if

∀ε > 0, ∃δ > 0, ∀x ∈ X, b(x, y0) < δ⇒ b′
(
f (x), f (y0)) < ε.

(ii) Similarly, a contravariant mapping f : (X,Y, b) ↬ (Z,W, b′) is continuous at a left
point x0 ∈ X, if

∀ε > 0, ∃δ > 0, ∀y ∈ Y, b(x0, y) < δ⇒ b′
(
f (y), f (x0)) < ε,

and it is continuous at a right point y0 ∈ Y, if

∀ε > 0, ∃δ > 0, ∀x ∈ X, b(x, y0) < δ⇒ b′
(
f (y0), f (x)) < ε.
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Convergence of sequences on a BMSs is defined as follows.

Definition 2.11. A left sequence (xn) converges to a right point y ∈ Y, if for each ε > 0
there is an n0 ∈ N (which may depend upon ε) such that b(xn, y) < ε whenever n ≥ n0, and
this case is denoted by (xn) ⇁ y or lim

n→∞
xn = y.

A right sequence (yn) converges to a left point x, if ∀ε > 0, ∃n0 ∈ N, n ≥ n0 =⇒

b(x, yn) < ε, and this is denoted by (yn) ⇀ x or lim
n→∞

yn = x.
If a central sequence (un) converges to a central point u, such that (un) ⇁ u and (un) ⇀

u, then it is said that (un) converges to u and this is denoted by (un)→ u.

In a BMS, convergence to noncentral left points is not defined for noncentral left se-
quences, and convergence to noncentral right points is not defined for noncentral right
sequences. So, when it is given, for example, that (un) ⇁ v, then v and (un) are readily
understood to be a right point and a left sequence, respectively.

Proposition 2.3. (xn) ⇁ y on (X,Y, b) iff (xn) ⇀ y on
←−−−−→
(X,Y, b).

Remark. In the light of Proposition 2.3, it is often convenient to consider only left se-
quences stating and proving general results on convergence in BMSs unless otherwise
needed. Similar results for right sequences will readily follow by the duality between a
BMS, and its opposite.

Proposition 2.4. (xn) ⇁ y iff
(
b(xn, y)

)
→ 0 on R, and (yn) ⇀ x iff

(
b(x, yn)

)
→ 0, on R.

It is often desirable for convergent sequences to have only one limit. BMSs generally do
not have this property, but the uniqueness of the limit can be guaranteed under additional
conditions.

Theorem 2.5. [14] If (X,Y, b) can be embedded as a bipolar subspace into any metric
space, then each convergent sequence has a unique limit in (X,Y, b).

Theorem 2.6. [14] If a sequence converges to a central point, then this limit is unique.

Definition 2.12. A bisequence (xn, yn) is called convergent, if there exist points x and y such
that (xn) ⇁ y and (yn) ⇀ x. Moreover, if x = y, then (xn, yn) is said to be biconvergent to
that point.

Definition 2.13. A bisequence (xn, yn) is called a Cauchy bisequence, if for each ε > 0
there is an n0 ∈ N such that d(xn, ym) < ε whenever m, n ≥ n0.

The following proposition is a concise statement that relates the concepts of Cauchy-
ness, convergence, and biconvergence for bisequences on a BMS.

Proposition 2.7. Every biconvergent bisequence is Cauchy, and every convergent Cauchy
bisequence is biconvergent.

3. Some Topological Notions on BipolarMetric Spaces

Throughout the section, except for examples, it has been assumed that a fixed BMS
(X,Y, b) is given, and A and B are subsets of X ∪ Y .

Definition 3.1. Let x0 ∈ X, y0 ∈ Y and r > 0. Then, the set

DX(x0; r) = {y ∈ Y : b(x0, y) < r}

is called the left-centric open ball with radius r and center x0, and the set

DY (y0; r) = {x ∈ X : b(x, y0) < r}
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is called the right-centric open ball with radius r and center y0. Similarly, the set

D̄X(x0; r) = {y ∈ Y : b(x0, y) ≤ r}

is called the left-centric closed ball with radius r and center x0. Similarly, the set

D̄Y (y0; r) = {x ∈ X : b(x, y0) ≤ r}

is called the right-centric closed ball with radius r and center y0.

An interesting aspect of the definitions given above is the fact that if a ball has a left
point as its center, then the ball consists of some right points, and vice versa. Thus, as an
extreme case, if x0 is a noncentral left point, then x0 will not be an element of the balls
accepting it as the center.

Definition 3.2. A is called a left open set, if for each y ∈ A∩ Y there exists r > 0 such that
DY (y; r) ⊆ A, and A is called a right open set, if for each x ∈ A ∩ X there exists r > 0 such
that DX(x; r) ⊆ A. If A is both right open and left open, then it is called open.

By definition, each left-centric open ball is a subset of Y , and each right-centric open
ball is a subset of X. Hence, we readily have the subsequent proposition, which explains
why the adjectives right and left in the definition of open sets are used in contrast with the
types of open balls in the definition.

Proposition 3.1. The left pole (the set X) an its all supersets are always left open and the
right pole (the set Y) and its supersets are always right open.

Proof. For all y ∈ Y and r > 0, DY (y; r) ⊆ X by the definition of a right-centric open ball.
Thus the set X and all larger sets containing X are left open. The case of right openness of
Y and its supersets is similar. □

Remark. Note that the largest set X ∪ Y is always open, as a consequence of Proposition
3.1.

Theorem 3.2. Every left-centric open ball is right open.

Proof. Consider a left-centric open ball DX(x0; r). To show that DX(x0; r) is right open,
we take an element x ∈ DX(x0; r) ∩ X. Then, from the definiton of a left-centric open ball,
DX(x0; r) ⊆ Y and thus x is a central point. Now, for ρ = r − b(x0, x) > 0, we claim that
DX(x; ρ) ⊆ DX(x0; r). Suppose that y ∈ DX(x; ρ). By the definition of DX(x; ρ), y ∈ Y .
Then b(x, y) < ρ = r − b(x0, x). Therefore, b(x0, x) + b(x, y) < r. From the quadrilateral
inequality, and since x is a central point,

b(x0, y) ≤ b(x0, x) + b(x, x) + b(x, y) = b(x0, x) + b(x, y) < r.

Thus, y ∈ DX(x0; r) and hence, DX(x; ρ) ⊆ DX(x0; r). □

The following example illustrates, surprisingly, that while a left-centric open ball is
always a right open set, it does not need to be left open.

Example 3.1. Let X = (−∞, 1], Y = [−1,∞), and b(x, y) = |x−y|. Consider the left-centric
open ball

DX(0; 3) = {y ∈ [−1,∞) : |0 − y| < 3} = [−1, 3).
We show that [−1, 3) is not left open. For y = −1 ∈ Y and any ε > 0, observe that

DY (−1; ε) = {x ∈ X : |x + 1| < ε} = (−ε − 1, ε − 1) ∩ (−∞, 1].

So, DY (−1; ε) ⊈ DX(0; 3), and DX(0; 3) is not left open.
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Remark. By symmetry, similar results are valid for right-centric open balls. That is, a
right-centric open ball is always left open, but does not need to be right open.

Definition 3.3. A is called left closed, if for each right sequence in A, (yn) ⇀ x implies
x ∈ A; and it is called right closed, if for each left sequence in A, (xn) ⇁ y implies y ∈ A.
If a set is both left and right closed, then it is called closed.

We already know that the left pole of a BMS is left open, and the right pole is right
open. A similar result for closedness is given by the following straightforward proposition.

Proposition 3.3. The left pole is left closed, and the right pole is right closed.

Theorem 3.4. Every left-centric closed ball is right closed.

Proof. Let D̄X(x0; r) be a left-centric closed ball. Consider a left sequence (xn) in D̄X(x0; r)
such that (xn) ⇁ y ∈ Y . We need to see that y ∈ D̄X(x0; r). Given an ε > 0. Then there
is an n0 ∈ N such that b(xn, y) < ε for n ≥ n0. Moreover, since (xn) is a left sequence in
D̄X(x0; r) ⊆ Y , it is a central sequence, and in particular xn0 ∈ X ∩ Y . Also, b(x0, xn0 ) < r
as (xn) is in D̄X(x0; r). Therefore

b(x0, y) ≤ b(x0, xn0 ) + b(xn0 , xn0 ) + b(xn0 , y) < r + ε.

Since ε is arbitrary, b(x0, y) ≤ r, and this implies y ∈ D̄X(x0; r). □

Now, we provide an example in which a left-centric closed ball is not left closed.

Example 3.2. Let X = [−1, 1], Y = (1,∞) and b(x, y) = |x2 − y2|. Consider the left-centric
closed ball D̄X(0; 3), which is equal to (1, 3]. (yn) = ( n+1

n ) is a right sequence on D̄X(0; 3)
such that (yn) ⇀ 1, and also (yn) ⇀ −1 at the same time. However 1 < D̄X(0; 3) so that
D̄X(0; 3) is not left closed. Note here that, there is no convergent left sequence in D̄X(0; 3).
So, the fact that D̄X(0; 3) is right closed is a vacuous truth in this case.

Remark. As a dual result of Theorem 3.4, every right-centric closed ball is left closed.

Theorem 3.5. A is left open, if and only if, Ac is right closed, where the complements are
taken over the set X ∪ Y.

Proof. Let A be left open. Consider a left sequence (xn) on Ac, and suppose that (xn) ⇁ y.
We must show that y ∈ Ac. Assume the contrary that y ∈ A. Since A is left open, there
exists ε > 0 such that DY (y; ε) ⊆ A, and since (xn) ⇁ y, there is an n0 ∈ N, such that
b(xn, y) < ε for n ≥ n0. In particular, xn0 ∈ DY (y; ε) ⊆ A, which contradicts by (xn) ∈ Ac.
Thus, y ∈ A and A is a right closed set.

Conversely, suppose that Ac is a right closed set. To show that A is left open, consider
a right point y ∈ A. Assume that there exists no ε > 0 such that DY (y; ε) ⊆ A. Then for
each ε > 0,DY (y; ε) ⊈ A, or equivalently, DY (y; ε) ∩ Ac , ∅. For each n ∈ N, pick an
xn ∈ DY (y; 1

n ) ∩ Ac. In this case, (xn) is a left sequence since DY (y; 1
n ) ⊆ X, and (xn) ⊆ Ac.

However, (xn) ⇁ y, since b(xn, y) < 1
n → 0. This contradicts by the right closedness of Ac.

Therefore y ∈ A, so that A is left open. □

We now present the following result on generating topologies from a given BMS.

Theorem 3.6. Let τL be the family of left open subsets. Then
(i) ∅, X ∪ Y ∈ τL,
(ii) For every i ∈ I, Ai ∈ τL implies

⋃
i∈I

Ai ∈ τL,

(iii) A, B ∈ τL implies A ∩ B ∈ τL.
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Proof. (i) The empty set satisfies the conditions in the definition of left open sets vacuously
since it has no points, thus ∅ ∈ τL. X ∪ Y is a left open set, since one always have
DY (y; r) ⊆ X ⊂ X ∪ Y , for every right point y ∈ X ∪ Y and r > 0.

(ii) Let {Ai ⊆ X : i ∈ I} be a collection of left open subsets. Take y ∈
⋃
i∈I

Ai. Then,

y ∈ Ai for some i ∈ I. Since Ai ∈ τL, there is an r > 0 such that DY (y; r) ⊆ Ai. Therefore,
DY (y; r) ⊆

⋃
i∈I

Ai, and
⋃
i∈I

Ai ∈ τL.

(iii) Let A and B be left open subsets. If y ∈ A ∩ B, there are rA, rB > 0 such that
DY (y; rA) ⊆ A and DY (y; rB) ⊆ B. Set r = min{rA, rB}. Then, DY (y; r) ⊆ A ∩ B. In other
words, A ∩ B is left open. □

Remark. In addition to the topological space (X, τL), there is an accompanying topology
τR on X ∪ Y, consisting of all right open subsets.

For any BMS (X,Y, b), we have an associated metric space Z(X,Y, b), as described in
Definition 2.8. A question arise then: does the topology generated by the center metric
space equal to the relative topology on X ∩ Y , corresponding to τL ∩ τR? The answer is, in
general, no, as will be illustrated below.

Example 3.3. Consider the bipolar subspace
(
(−∞, 1], [−1,∞), b

)
of the standard metric

space on R. The center [−1, 1] of this BMS is not left open as for the right point −1 ∈
[−1, 1], there is no r > 0 such that DY (−1; r) ⊆ [−1, 1], since DY (−1; r) = (−r − 1, r − 1) ∩
(−∞, 1]. Hence, [−1, 1] < τL and in particular τL ∩ τR cannot be a topology on [−1, 1].

As a result of Theorems 3.5, and 3.6, we have the following corollary for the family KL

of all left closed subsets.

Corollary 3.7. Let KL be the family of left closed subsets of X ∪ Y.
(i) The empty set ∅ and X ∪ Y are left closed, i.e. ∅, X ∪ Y ∈ KL.
(ii) Arbitrary intersections of left closed sets are left closed, i.e. for all i ∈ I, Ai ∈ KL

implies
⋂
i∈I

Ai ∈ KL.

(iii) Union of two left closed sets is left closed, i.e. A, B ∈ KL implies A ∪ B ∈ KL.

Definition 3.4. A left point x is called a left accumulation point of A, if A ∩
(
DX(x; r) −

{x}
)
, ∅ for every r > 0. The set of all left accumulation points of A is denoted by

accX(A). Similarly, an y ∈ Y is called right accumulation point if, for every r > 0, one has
A ∩
(
DY (y; r) − {y}

)
, ∅ and the set of all such points is denoted by accY (A).

Definition 3.5. A left point x is called a left contact point of A, if for every r > 0, A ∩
DX(x; r) , ∅. Similarly, an y ∈ Y is a right contact point, if for every r > 0, A∩DY (y; r) ,
∅. The set of left contact points of A is called the left closure of A, and is denoted by

←−
A.

The set of right contact points of A is called the right closure of A, and it is denoted by
−→
A.

Although every left accumulation point is a left contact point, the converse is shown not
to be true in the following example.

Example 3.4. Let R−0 = (−∞, 0], R+0 = [0,∞), and b : R−0 × R
+
0 → R

+
0 be defined by

b(x, y) = ⌈y⌉ − ⌊x⌋, where ⌈ ⌉ and ⌊ ⌋ stand for ceiling and floor functions, respectively.
Consider the set R = R+0 ∪ R

−
0 . If x ∈ R−0 and x , 0, then

b(x, y) = ⌈y⌉ − ⌊x⌋ ≥ ⌈y⌉ − (−1) ≥ 1.

Therefore, DX(x; 1) = ∅, which means that x , 0 is not a left accumulation point, nor a left
contact point of R. For the only remaining left point x = 0, we have DX(0; r) = {0}, if r ≤ 1.
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In this case, R ∩ (DX(0; r) − {x}) = ∅, but R ∩ DX(0; r) = {x} , ∅. Thus, accX(R) = ∅,
while

←−
R = {0}.

Theorem 3.8. A is left closed iff accX(A) ⊆ A.

Proof. Suppose that A is left closed, x ∈ accX(A), and assume that x < A. Then x ∈ Ac, and
by Theorem 3.13, Ac is right open. In this case, since x ∈ Ac, there exists r > 0 such that
DX(x; r) ⊆ Ac. Therefore, A ∩ DX(x; r) = ∅. Thus, x is not a left contact point of A, so it
is not a left accumulation point. However, this contradicts by x ∈ accX(A). Consequently
x ∈ A, and we have accX(A) ⊆ A.

Conversely, suppose that accX(A) ⊆ A and take an x ∈ X. Consider a right sequence
(yn) on A such that (yn) ⇀ x. We need to show that x ∈ A. If (yn) is an ultimately constant
sequence, that is, if there is some n0 ∈ N, such that yn = x for n ≥ n0, then x ∈ A, since (yn)
is a right sequence on A. Otherwise, if (yn) is not ultimately constant, then for any ε > 0,
there is an nε ∈ N, such that b(x, yn) < ε for all n ≥ nε. Now consider the left-centric open
ball DX(x; r). Then, yn ∈ DX(x; r) for n ≥ nr, and since (yn) is not ultimately constant,
there is an n∗ ≥ nr such that yn∗ , x. Hence, yn∗ ∈ A ∩ (DX(x; r) − {x}) , ∅, and therefore
x ∈ accX(A) ⊆ A. □

Corollary 3.9. A is left closed, if and only if,
←−
A ⊆ A.

Remark. In contrast with the case of metric spaces, where a set A is closed iff A = A, a
left closed set, in general does not have the property

←−
A = A in a BMS. For instance, in

Examlple 3.4, R is left closed, since for any convergent right sequence (yn) in R, (yn) ⇀ x
is possible, only if (yn) is ultimately zero, and x = 0. However

←−
R = {0} , R.

The following propositions are direct consequences of definitions.

Proposition 3.10. accX(A ∪ B) = accX(A) ∪ accX(B).

Proposition 3.11. If A ⊆ B, then accX(A) ⊆ accX(B).

In classical metric spaces, and more generally in topological spaces, the closure operator
satisfies four conditions known as the Kuratowski closure axioms; namely it preserves the

empty set (∅ = ∅), is extensive (A ⊆ A), idempotent (A = A), and distributes over unions
of two sets (A ∪ B = A ∪ B). When idempotency is removed from Kuratowski axioms,
the remaining three axioms are called Čech closure axioms. Although the Kuratowski
and Čech closure axioms are especially prominent because they provide necessary and
sufficient conditions to provide equivalent definitions for pretopological and topological
spaces, respectively, there are many more properties satisfied by the closure operator of a
metric space. We now investigate the extent to which the left closure operator provides
similar properties.

Proposition 3.12. The following hold.
1.
←−
A ⊆ X.

2.
←−
A is left closed.

3. If A ⊆ X ∩ Y, then A ⊆
←−
A.

4. If A ⊆ K and K is left closed, then
←−
A ⊆ K.

5. A is left closed, if and only if
←−
A ⊆ A.

6. If A ⊆ B, then
←−
A ⊆
←−
B.

7.
←−
←−
A ⊆
←−
A.
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8. ←−∅ = ∅.
9.
←−−−−
A ∪ B =

←−
A ∪
←−
B.

Proof. 1. It follows from the left closure definition.
2. Let (un) be a right sequence on

←−
A such that (un) ⇀ x. Since

←−
A ⊆ X by definition,

(un) is in fact a central sequence on
←−
A . We also have A ∩ DX(un; 1

n ) , ∅ for all n ∈ N+. In
particular, since DX(un; 1

n ) ⊆ Y , the sets A ∩ DX(un; 1
n ) consist of right points. Form a right

sequence (yn) such that yn ∈ A ∩ DX(un; 1
n ). In this case (yn) is a right sequence on A and

b(x, yn) ≤ b(x, un) + b(un, un) + b(un, yn) ≤ b(x, un) +
1
n
.

Taking limits on R as n → ∞ on both sides, we get (yn) ⇀ x by Proposition 2.4. Then for
any given ε > 0, there exists such an n0 ∈ N that n ≥ n0 implies b(x, yn) < ε for n ∈ N.
Particularly, b(x, yn0 ) < ε, or in other terms, yn0 ∈ A ∩ DX(x; ε) , ∅. Hence x ∈

←−
A and the

set
←−
A is left closed.

3. Suppose A ⊆ X ∩ Y . Let u ∈ A∩ X = A. Then u ∈ DX(u; r), and A∩DX(u; r) , ∅ for
all r > 0. Therefore u ∈

←−
A .

4. Let A ⊆ K and K be a left closed set. Given x ∈
←−
A . Then A ∩ DX(x, 1

n ) , ∅ for all
n ∈ N+. Form a right sequence (yn) such that yn ∈ A ∩ DX(x; 1

n ) ⊆ K ∩ DX(x; 1
n ). (yn) is a

right sequence on K, and (yn) ⇀ x, as (b(x, yn)) → 0 on R. Since K is left closed, x ∈ K,
and
←−
A ⊆ K.

5. This is Corollary 3.9.
6. Follows immediately from the definitions.
7. A direct consequence of (2) and (5).
8. It is clear, as ∅ ∩ DX(x; r) will always be empty, for any x ∈ X.
9. By (6), A, B ⊆ A ∪ B implies

←−
A ⊆
←−−−−
A ∪ B and

←−
B ⊆
←−−−−
A ∪ B, so that

←−
A ∪
←−
B ⊆
←−−−−
A ∪ B.

On the other hand, if x ∈
←−−−−
A ∪ B, then (A∪B)∩DX(x; r) , ∅, so that either A∩DX(x; r) , ∅

or B ∩ DX(x; r) , ∅, that is x ∈
←−
A ∪
←−
B . □

As can be understood from the proposition above, the left closure operator of a BMS, in
general, does not satisfy two of the Kuratowski closure axioms, namely A ⊆ Ā and ¯̄A = Ā.

The following example illustrates that, both A ⊆
←−
A and

←−
←−
A =

←−
A are in fact not required in

BMSs.

Example 3.5. Let X = {(x, y) ∈ R2 : y ≥ x} and Y = {(x, y) ∈ R2 : y < x}. Let
b : X × Y → R+0 be the restriction of Euclidean metric on R2. Consider the unit disc

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Observe that
←−
D = {(x, y) ∈ R2 : −1 ≤ x ≤ 1, y = x}, and

←−
←−
D = ∅. Thus, neither D ⊆

←−
D, nor

←−
←−
D =

←−
D.

By Proposition 3.12 (2),
←−
A is always a left closed set. The following example illustrates

that
←−
A does not have to be right closed.

Example 3.6. Let X = (−∞, 5), Y = (−5,∞), A = (−10, 10), and b(x, y) = |x − y|. Then
←−
A = [−5, 5). (xn) is a left sequence on

←−
A, where xn =

5n
n+1 , but (xn) ⇁ 5 <

←−
A. So,

←−
A is not

right closed.
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Theorem 3.13. In a BMS, every singleton is closed.

Proof. Let x0 ∈ X and C = {x0}. We must show that C is both left and right closed.
Suppose that (yn) is a right sequence from C, and (yn) ⇀ x. Since C = {x0}, (yn) =

(x0, x0, x0, . . .) is a constant sequence. In this case, x0 is both a left and a right point and
(yn) is a central sequence. Then clearly (yn) ⇀ x0 as b(x0, x0) is defined, and x0 is the only
limit by Theorem 2.6. So x = x0 ∈ C, and C is left closed.

On the other hand, if (xn) is a left sequence from C, then (xn) = (x0, x0, x0, . . .), and only
limit of (xn) is x0 (if x0 is a central point), or (xn) is not convergent (if x0 is noncentral left
point). In both cases, C is right closed. □

Definition 3.6. The left interior of A is given by

A◁ = {x ∈ X : DX(x; r) ⊆ A, for some r > 0},

and the right interior of A is the set

A▷ = {y ∈ Y : DY (y; r) ⊆ A, for some r > 0}.

The points of A◁ are called left interior points, and the points of A▷ are called right interior
points.

Proposition 3.14. A set A ⊆ X ∪ Y is left open in a BMS (X,Y, b), if and only if, all of its
right points are right interior points, that is A ∩ Y ⊆ A▷.

Proof. It is a direct consequence of Definitions 3.2 and 3.6. □

Now we give an analog of Proposition 3.12 for left interiors.

Proposition 3.15. Then the following holds.
1. A◁ ⊆ X.
2. A◁ is left open.
3. If Ac ⊆ Y, then A◁ ⊆ A, where the complement is taken in X ∪ Y.
4. If B ⊆ A and B is right open, then B ∩ X ⊆ A◁.
5. A is right open if and only if A ∩ X ⊆ A◁.
6. If A ⊆ B, then A◁ ⊆ B◁.
7. A◁◁ ⊆ A◁.
8. Y◁ = X.
9. (A ∩ B)◁ = A◁ ∩ B◁.

Proof. 1. A◁ ⊆ X by the definition.
2. Let u ∈ A◁ be a right point. Since A◁ ⊆ X, u is a central point. By u ∈ A◁, there

is some r > 0, such that DX(u; r) ⊆ A. To show that A◁ is left open, we must find a
right-centric open ball with center u contained in A◁.

Consider the right-centric open ball DY (u; r
2 ) ⊆ X. To see that DY (u; r

2 ) ⊆ A◁, we must
verify that for each x ∈ DY (u; r

2 ), there exists ε > 0 such that DX(x; ε) ⊆ A. We set ε = r
2 .

In this case, if y ∈ DX(x; r
2 ), then b(x, y) < r

2 . On the other hand by x ∈ DY (u; r
2 ), we have

b(x, u) < r
2 . Combining these yields,

b(u, y) ≤ b(u, u) + b(x, u) + b(x, y) < 0 +
r
2
+

r
2
= r.

Hence y ∈ DX(u; r) ⊆ A, that is DX(x; r
2 ) ⊆ A, and x ∈ A◁. This means that DY (u; r

2 ) ⊆ A◁,
and A◁ is left open.

3. Suppose that Ac ⊆ Y . We show that Ac ⊆ (A◁)c. Let y ∈ Ac. Assume that y ∈ A◁.
Then y is a central point, and DX(y; r) ⊆ A. But by centrality of y, b(y, y) = 0 and y ∈
DX(y; r) ⊆ A, which contradicts by y ∈ Ac.
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4. Given x ∈ B ∩ X. Since B is right open, there is some r > 0 such that DX(x; r) ⊆ B.
By B ⊆ A, we also have DX(x; r) ⊆ A, which means that x ∈ A◁.

5. Suppose that A∩X ⊆ A◁. If x is a left open in A, then x ∈ A∩X ⊆ A◁, and thus there
exist an r > 0, such that DX(x; r) ⊆ A. Hence A is right open. Conversely, if A is right open
and x ∈ A ∩ X, then there exists some r > 0, such that DX(x; r) ⊆ A, and this gives x ∈ A◁.

6. It is clear from the definition.
7. We know that A◁, A◁◁ ⊆ X. Suppose for a left point x that x < A◁. Then for each

r > 0, one have DX(x; r) ⊈ A, so that there exists at least a yr ∈ DX(x; r), such that yr < A.
Now we claim that also yr < A◁. Assume the contrary that yr ∈ A◁. Since A◁ ⊆ X,
yr is a central point. By yr ∈ A◁, there is an ε > 0 such that DX(yr; ε) ⊆ A. However,
yr ∈ DX(yr; ε), by centrality of yr. Thus yr ∈ A, and this is a contradiction. Consequently,
our assumption yr ∈ A◁ is false, and yr < A◁. Therefore DX(x; r) ⊈ A◁. Since r > 0 is
arbitrary chosen, x is not an interior point of A◁, that is x < A◁◁.

8. By definition Y◁ ⊆ X, whereas for any x ∈ X, DX(x; r) ⊆ Y for all r > 0, by the
definition of a left-centric open ball. Hence x ∈ Y◁.

9. By (6), A ∩ B ⊆ A and A ∩ B ⊆ B imply (A ∩ B)◁ ⊆ A◁, (A ∩ B)◁ ⊆ B◁, and
(A ∩ B)◁ ⊆ A◁ ∩ B◁. On the other side, if x ∈ A◁ ∩ B◁, then there are r, s > 0 such that
DX(x; r) ⊆ A, and DX(x; s) ⊆ B. If we set ε = min{r, s}, then DX(x; ε) ⊆ A ∩ B, so that
x ∈ (A ∩ B)◁. □

There is a well-known duality between inteiror and closure operators on metric, and
more generally topological spaces, namely A� =

(
Ac)c. A weaker analog of this for left

interior and left closure operations on a BMS, is stated below.

Theorem 3.16. A◁ ⊆
(←−−

Ac
)c

.

Proof. Let x ∈ A◁. Then A◁ ⊆ X, and there exists r > 0 with DX(x; r) ⊆ A, or equivalently
DX(x; r) ∩ Ac = ∅. This means that x <

←−−
Ac , hence x ∈

(←−−
Ac )c. □

Applying the dual result to Theorem 3.16 for the set Ac, we immediately have the fol-
lowing result.

Corollary 3.17.
←−
A ⊆
(
(Ac)◁

)c
.

Now we provide a counterexample on falsity of some expectable properties of left inte-
riors.

Example 3.7. Let X = [0, 3], Y = [1, 4], A = (1, 4), and b(x, y) = |x − y|. Observe that

X◁ = [0, 3), A◁ = [0, 1) ∪ (1, 3], A◁◁ = [0, 1) ∪ (1, 3), Ac = [0, 1] ∪ {4},
←−−
Ac = {1}, and

(
←−
Ac)c = [0, 1) ∪ (1, 4]. Then, one have X◁ ⫋ X, A◁◁ ⫋ A◁, and A◁ ⫋

(←−−
Ac )c.

In Theorem 3.16 and Corollary 3.17, if one takes some complements in X, instead of
X ∪ Y , then also the equalities are satisfied. The key here is to prevent noncentral right
points from falling into the right hand sets by restricting only the final complements.

Theorem 3.18. A◁ = X \
←−−
Ac and

←−
A = X \ (Ac)◁.

Proof. A◁ ⊆ X \
←−−
Ac follows from Proposition 3.12 (1) and Theorem 3.17. On the other

side if x ∈ X \
←−−
Ac , then x ∈ X, but x <

←−−
Ac . Therefore DX(x; r) ∩ Ac = ∅ for some r > 0,

which impilies DX(x; r) ⊆ A, thence x ∈ A◁. The other equality is similarly shown. □



GENERALIZED KURATOWSKI CLOSURE OPERATORS IN THE BIPOLAR METRIC SETTING 13

Remark. It worths noting that the left and right closure operators coincide if X = Y, and
in this case they are equal to the closure operator of metric space (X, b) = (Y, b). Thus,
properties that are not satisfied for the closure operator, are also not available for left
closures. For example, in general

←−−−−
A ∩ B ,

←−
A ∩
←−
B, and similarly (A ∪ B)◁ , A◁ ∪ B◁.

Maybe the most conspicuous topological defect of BMSs is the presence of null interior
points and missing contanct points. More specifically, it is possible that ∅◁ , ∅, ∅▷ , ∅,
←−
X ⊊ X, and

−→
Y ⊊ Y . The following theorem provides more information on these two cases.

Theorem 3.19. ∅◁ = X \
←−
X =

{
x ∈ X : inf

y∈Y
b(x, y) , 0

}
and ∅▷ = Y \

−→
Y =

{
y ∈ Y :

inf
x∈X

b(x, y) , 0
}
.

Proof. We only show the equality for the left interior and closure. Other results follows
from the duality. For x ∈ X,

x ∈ ∅◁ ⇐⇒ ∃r > 0, DX(x; r) ⊆ ∅
⇐⇒ ∃r > 0, ∀y ∈ Y, b(x, y) ≥ r

⇐⇒ inf
y∈Y

b(x, y) = 0,

and as we have both ∅◁,
←−
X ⊆ X

x <
←−
X ⇐⇒ ∃r > 0, DX(x, r) ∩ X = ∅

⇐⇒ ∃r > 0, DX(x, r) = ∅
⇐⇒ ∃r > 0, ∀y ∈ Y, b(x, y) ≥ r.

Hence, x ∈ ∅◁ iff x <
←−
X □

In this context, we now define a better-behaved subclass of BMSs.

Definition 3.7. A BMS is called nondegenerate, if ∅◁ = ∅ = ∅▷. Otherwise it is called
degenerate.

Example 3.8. The BMSs in Example 3.1 and Example 3.3 are degenerate with ∅◁ =
(−∞,−1) and ∅▷ = (1,∞), while Example 3.6 has a degeneracy with ∅◁ = (−∞,−5) and
∅▷ = (5,∞). The space in Example 3.2 is degenerate with ∅◁ = (−1, 1) and ∅▷ = (1,∞).
The space in Example 3.4 is degenerate with ∅◁ = (−∞, 0) and ∅▷ = (0,∞). The space
in Example 3.5 is degenerate with ∅◁ = {(x, y) ∈ R2 : y > x} and ∅▷ = {(x, y) ∈ R2 :
y < x}. And similarly, the space in Example 3.7 is degenerate with ∅◁ = [0, 1) and
∅▷ = (3, 4]. On the other hand every metric space is a nondegenerate BMS. However,
the class of nondegenerate BMSs is properly larger than the class of metric spaces. An
example of a nondegenerate BMS is (X,Y, b), where X = Q2, Y = S 1, the unit circle, and
b is the restriction of the Euclidean metric. Another example is the BMS (Q,Qc, b), where
b(x, y) = |x2 − y2|.

Having both left and right closure and interior operators, it is also possible to talk about
left and right boundaries and exteriors on a BMS.

Definition 3.8. The boundary of A is defined to be the set ∂L(A) =
←−
A \ A◁, and the right

boundary of A is ∂R(A) =
−→
A \ A▷, the left exterior of A is extL(A) = (Ac)◁, and extR(A) =

(Ac)▷.

Proposition 3.20. ∂L(A) is left closed.
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Proof. Let (un) be a right sequence on ∂L(A) =
←−
A \ A◁ and (un) ⇀ x ∈ X. As

←−
A ⊆ X, (un)

is a central sequence, and x ∈
←−
A by Proposition 3.12 (2). It remains to show that x < A◁.

Since un < A◁, there is no r > 0 such that DX(un; r) ⊆ A, so that DX(un; r) ∩ Ac , ∅, and
un ∈

←−−
Ac . Then (un) is a right sequence on the left closed set

←−−
Ac , and (un) ⇀ x yields

x ∈
←−−
Ac . By applying Corollary 3.17 for Ac, one have

←−−
Ac ⊆

(
A◁
)c, and this implies x < A◁

as desired. □

The trichotomy rule M = L� ∪ ∂(L)∪ ext(L), which is valid for any subset L in a metric
space (M, d), is in general does not work (at least perfectly) for BMSs. By Proposition 3.15
(6), both A◁ and extL(A) are subsets of ∅◁. Since it is possible that ∅◁ , ∅ on a BMS,
A◁ and extL(A) does not have to be disjoint. Many instances of this case, can be found
in Example 3.8. Nevertheless, by removing the requirement for the sets to be pairwise
disjoint, the following weaker result can be stated.

Theorem 3.21. X = A◁ ∪ ∂L(A) ∪ extL(A) and X = A▷ ∪ ∂R(A) ∪ extR(A).

Proof. By the definitions, Proposition 3.15 (1), and Theorem 3.18,

A◁ ∪ ∂L(A) ∪ extL(A) = A◁ ∪ (
←−
A \ A◁) ∪ (Ac)◁

= A◁ ∪
←−
A ∪ (Ac)◁

= A◁ ∪ (X \ (Ac)◁) ∪ (Ac)◁

= A ∪ X = X.

On the other hand, X = A▷ ∪ ∂R(A) ∪ extR(A) follows from the duality. □

While the class τL in Theorem 3.6 is a topology on X ∪ Y , the left closure operator do
not correspond to τL. In fact, except for some special cases, it does not correspond to the
closure operator of any topology on X ∪ Y , as it does not satisfy the Kuratowski closure
axioms in general. In this context, we finally introduce a modified kind of left and right
interior and closure operators on a BMS, which fit better with the topologies τL and τR.

Definition 3.9. The set
⇐=

A :=
←−
A ∪ A is called the normalized left closure of A, and the

set
=⇒

A :=
−→
A ∪ A is called the normalized right closure of A, the set A◀ := A ∩

(
A◁ ∪ X c)

is called the normalized left interior of A, and the set A▶ := A ∩
(
A▷ ∪ Y c) is called the

normalized right interior of A.

Theorem 3.22. A is left closed iff
⇐=

A = A, and A is right closed iff
=⇒

A = A.

Proof. By Theorem 3.8, A is left closed iff accX(A) ⊆ A, that is accX(A)∪ A = A. Compar-

ing definitions 3.4 and 3.5, we have accX(A) ⊆
←−
A . If

⇐=

A = A, then
←−
A ∪ A = A, and

←−
A ⊆ A.

In this case also accX(A) ⊆ A, and A is left closed. On the other hand, if A is left closed,

then
←−
A ⊆ A by Proposition 3.12 (4), and

⇐=

A =
←−
A ∪ A =

←−
A . The result for right closed sets

follows from the duality. □

Theorem 3.23. A◀ =
(⇐==
Ac )c and A▶ =

(==⇒
Ac )c.

Combining Theorem 3.5, Theorem 3.22, and Theorem 3.23 gives rise to the following
corollary.

Corollary 3.24. A is right open iff A◀ = A, and A is left open iff A▶ = A.
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4. Conclusion

Open sets in metric spaces are studied through two weaker concepts, right open and
left open sets, in BMSs. Of course, the same situation applies to the case of closed sets.
The duality between left open and right closed sets is particularly interesting. On the other
hand, in BMSs, the left closure operator does not satisfy two of the Kuratowski closure
axioms, namely extensivity and idempotency. In this respect, left closure operators do not
determine a topology on the left pole, nor do they determine a pretopology. Therefore, it
is certain that the topology τL, and the left closure operator represent different structures.
Hence, it is understood that it is not necessary to study topological concepts from only
a single point of view in BMSs. Instead, different perspectives can be brought to the
structure. Undoubtedly, this attempt, which initiated an independent review of topological
concepts in BMSs, is only the beginning, and there is still a long way to advance.
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[15] U. Gürdal, A. Mutlu, K. Özkan, Fixed point results for αψ−contractive mappings in bipolar metric spaces,

Journal of Inequalities & Special Functions, 11(1) (2020), 64–75.
[16] S. Gurusamy, Bicomplex valued bipolar metric spaces and fixed point theorems, Mathematical Analysis and

its Contemporary Applications, 4(1) (2022), 29–43.
[17] P. Hitzler, A. K. Seda, Dislocated topologies, Journal of Electrical Engineering 51(12) (2000), 3–7.
[18] D. Holgate, J. Slapal, Closure, interior and neighbourhood in a category, Hacettepe Journal of Mathematics

and Statistics, 47(6) (2018), 1512–1520.
[19] J. K. Kim, M. Kumar, ω−interpolative contractions in bipolar metric space, Nonlinear Functional Analysis

and Applications, 28(2) (2023), 383–394.
[20] J. K. Kim, M. Kumar, ψ−type contraction and Jaggi type hybrid contraction in bipolar metric spaces, Non-

linear Functional Analysis and Applications, 28(3) (2023), 703–717.
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contractions in bipolar metric spaces, Mathematics, 11(6) (2023), 1310–1323.

[24] S. Kumar, M. Sharma, A fixed point result in bipolar metric spaces, Neuroquantology, 20(17) (2022), 312–
315.

[25] A. Malhotra, D. Kumar, Bipolar R−metric space and fixed point result, International Journal of Nonlinear
Analysis and Applications, 13(2) (2022), 709–712.
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Abstract. In this paper, we firstly introduce nonlinear truncated Baskakov operators on
compact intervals and obtain some direct theorems. Also, we give the approximation of
fuzzy numbers by truncated nonlinear Baskakov operators.

1. Introduction

Zadeh introduced the ideas of fuzzy sets, in [1]. Fuzzy numbers represented by proper
intervals are a significant subject with numerous applications in a wide range of disciplines.
Furthermore, it is well recognized that working with fuzzy numbers can be complicated due
to the complicated approaches in which their membership function shapes are represented.
Therefore, using trapezoidal or triangular fuzzy members to approximate fuzzy numbers,
many studies have recently been published (see [13]-[19]).

The core topic of Korovkin type is the approximation of a continuous function by a
series of linear positive operators (see [20],[21]). Bede et al. [6] have recently proposed
nonlinear positive operators in place of linear positive operators. Although the Korovkin
theorem fails for these nonlinear operators, they behave similarly to linear operators in
terms of approximation.

The purpose of the paper is to use called max-product Truncated Baskakov operator
which is given in the book [6] by applying continuous membership functions to approxi-
mate fuzzy integers. These operators additionally maintain the quasi-concavity in a manner
analogous to the specific state of the unit interval will be given. These results turn out to be
particularly useful for fuzzy numbers since they will enable us to construct fuzzy numbers
with the same support in a straightforward manner. Additionally, these operators provide a
good order of approximation for the (non-degenerate) segment core.

Baskakov [3] demonstrated the positive and linear operators, which are typically associ-
ated to functions that are bounded and uniformly continuous to ν ∈ C [0,+∞] and specified
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by

Vn (ν) (θ) = (1 + θ)−n
∞∑

k=0

(
n + k − 1

k

)
θk(1 + θ)−kν

(
k
n

)
, ∀n ∈ N. (1.1)

It is known that the pointwise approximation result (see [4]) exists as:

| Vn (ν) (θ) − ν(θ) |≤ Cωφ2
(
ν;

√
θ(1 + θ)/n

)
, θ ∈ [0,∞) , n ∈ N,

where φ(θ) =
√
θ(1 + θ) and I = [0,∞). In this case,

Ih = [h2/(1 − h)2,+∞), h ≤ δ < 1. Additionally, Vn (ν) satisfies the convexity and mono-
tonicity of the function ν on [0,+∞) (see [5]).

The truncated Baskakov operators are identified by

Un(ν)(θ) = (1 + θ)−n
n∑

k=0

(
n + k − 1

k

)
θk(1 + θ)−kν

(
k
n

)
, ν ∈ C[0, 1].

Truncated Baskakov operator of max product kind ν : [0, 1] → R are identified by (see
[6])

U(M)
t (ν)(θ) =

∨t
k=0 bt,k(θ)ν

(
k
t

)
∨t

k=0 bt,k(x)
, θ ∈ [0, 1], t ∈ N, t ≥ 1,

where bt,k(θ) =
(

t+k−1
k

)
θk(1 + θ)−t−k, t ≥ 1, θ ∈ [0, 1]. For any function ν, U(M)

t (ν)(θ) is

positive, continuous on [0, 1] and provides U(M)
t (ν) (0) = ν(0) for all t ∈ N, t ≥ 2 (see

in [6], Lemma 4.2.1). In [7], authors showed that the uniform approximation order in
the entire class C+([0, 1]) of positive continuous functions on [0, 1] cannot be developed,
so there is a function ν ∈ C+([0, 1]) that the approximation order by the truncated max-
product Baskakov operator is Cω1(ν, 1/

√
t). The fundamentally better order of approxi-

mation ω1(ν, 1/t) was attained for some functional subclasses, such as the nondecreasing
concave functions. Finally, some shape preserving properties were proved. In this work, by
demonstrating that the uniform approximation order of the truncated Baskakov operators
of max-product kind is the same as in the specific case of the unit interval, we expand their
definition to an arbitrary compact interval. Then it is shown that these operators maintain
the quasi-concavity. These solutions show out to be particularly suited in the approxi-
mation of fuzzy numbers since they enable us to construct fuzzy numbers with the same
support in a straightforward manner.

2. Preliminaries

Definition 2.1. ([10],[22] )( fuzzy numbers) Let u be a fuzzy subset of R with membership
function µu (θ) : R −→ [0, 1]. Then u is called a fuzzy number if:

(1) u is normal, i.e. ∃θ0 ∈ R such that µu (θ0) = 1;

(2) u is fuzzy convex, i.e. µu (λθ + (1 − λ)ϑ) ≥ min{µu (θ) , µu (ϑ)};

(3) µu is upper semicontinuous; and

(4) Let (cl) be the closure operator .i.e. supp (u) is compact and,
supp (u) = cl {x ∈ R | µu (θ) > 0} . Then supp (u) is bounded.

For any fuzzy number u there is t1, t2, t3, t4 ∈ R and lu, ru : R → [0, 1] such that we
describe a membership function µu as follows:



20 ECEM ACAR, SEVILAY KIRCI SERENBAY, AND SALEEM YASEEN MAJEED

µu(θ) =


0

lu (θ)
1

ru (θ)
0

i f θ < t1,
i f t1 ≤ θ ≤ t2,
i f t2 ≤ θ ≤ t3,
i f t3 ≤ θ ≤ t4,
i f t4 < θ.

Here, the left side of a fuzzy number u is lu : [t1, t2] → [0, 1] and, the right side of a
fuzzy number u is ru : [t3, t4]→ [0, 1], also lu is nondecreasing, ru is nonincreasing.

Another type of fuzzy number representation is the α-cut, often known as the LU para-
metric representation. Using this, we have that the fuzzy number u is given by a pair of
functions (u−, u+) where u−, u+ : [0, 1]→ R provide the next qualifications:

i. u− is nondecreasing,
ii. u+ is nonincreasing,

iii. u−(1) ≤ u+(1).
For u = (u−, u+), we have core(u) = [u−(1), u+(1)] and supp(u) = [u−(0), u+(0)]. The

following well-known relations provide an important connection between a fuzzy number’s
membership function and its parametric representation:

u−(α) = inf {θ ∈ R : u(θ) ≥ α} ,

u+(α) = sup {θ ∈ R : u(θ) ≥ α} , α ∈ (0, 1],
and

[u−(0), u+(0)] = cl({θ ∈ R : u(x) > 0}),
where cl denotes the closure operator. Additionally, if u is continuous with
supp(u) = [a, b] and core(u) = [c, d], then it can be proved that

u(u−(α)) = α,∀α ∈ [a, c],

u(u+(α)) = α,∀α ∈ [d, b].
Therefore, the end points of the intervals

[u]α =
[
u− (α) , u+ (α)

]
,∀α ∈ [0, 1],

determine a fuzzy number u ∈ RF . Hence, by considering{(
u− (α) , u+ (α)

)
| 0 ≤ α ≤ 1

}
,

we can describe a fuzzy number u ∈ RF and write u = (u−, u+) .

3. Truncated Baskakov Operators defined on compact intervals

Throughout this paper, we indicate the continuous function space identified on interval
I by C(I) and the positive continuous function space identified on interval I by C+(I). From
the result of Weierstrass theorem (see [2]), P(θ) converges to continuous function ν(θ) in
the interval [0, 1], we just have to move functions from [0, 1] to an arbitrary interval [η, ζ].
In fact, let the continuous function g : [0, 1] → R and the function ν(θ) is continuouson
[η, ζ], we put g(ϑ) = ν(η + (ζ − η)ϑ).

If u is a continuous fuzzy number with supp(u) = [η, ζ], a < b and core(u) = [c, d],
c < d then we identify

Ũt (u) (θ) =
{

0, θ <
[
η, ζ

]
Ut

(
u;

[
η, ζ

])
=

∑t
k=0 bt,k(θ)u

(
η + (ζ − η) k

t

)
, θ ∈

[
η, ζ

]
.

where bt,k(θ) =
(

t+k−1
k

) (
θ−η
ζ−η

)k
( ζ−2η+θ
ζ−η

)−t−k.
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U(M)
t (ν; [η, ζ]) (θ) =

∨t
k=0 bt,k(θ)ν

(
η + (ζ − η) k

t

)
∨t

k=0 bt,k(θ)
, θ ∈ [η, ζ]

where bt,k(θ) =
(

t+k−1
k

) (
θ−η
ζ−η

)k
( ζ−2η+θ
ζ−η

)−t−k.
It is known that

∑t
k=0 bt,k(θ) = 1 for all θ ∈ [η, ζ] so we get that

∨t
k=0 bt,k(θ) > 0. Hence,

we get that U(M)
t (ν; [η, ζ]) is well defined.

We obtain that for each ν ∈ C+ ([η, ζ]) ,U(M)
t (ν; [η, ζ]) ∈ C+ ([η, ζ]) , because the contin-

uous function is the maximum of a limited number of continuous functions. Here, we will
show that U(M)

t : C+ ([η, ζ]) → C+ ([η, ζ]) retains the quasi-concavity. Also the uniform
approximation order of U(M)

t will be the same as that of the linear Baskakov operator. We
first require the results and definitions given below.

Theorem 3.1. i. ([7])Let the function ν : [0, 1]→ R+ is continuous then we obtain

| U(M)
t (ν; [0, 1]) (θ) − ν(θ) |≤ 24ω1

(
ν;

1
√

t + 1

)
[0,1]
, t ∈ N, t ≥ 2, θ ∈ [0, 1].

ii. ([7]) Let the function ν : [0, 1]→ R+ is concave then we obtain

| U(M)
t (ν; [0, 1]) (θ) − ν(θ) |≤ 2ω1

(
ν;

1
t

)
[0,1]
, t ∈ N, θ ∈ [0, 1].

Theorem 3.2. Let the function ν : [0, 1] → R+ and fix t ∈ N, t ≥ 2. Assume that there
exists c ∈ [0, 1] such that ν is nondecreasing on [0, c] and nonincreasing on [c, 1]. Then,
there exists c′ ∈ [0, 1] such that U(M)

t (ν) is nondecreasing on [0, c′] and nonincreasing on
[c′, 1]. In addition, we have | c− c′ |≤ 1/(t+1) and | U(M)

t (ν) (c)− ν(c) |≤ ω1 (ν; 1/(t + 1)) .

Proof. Let c ∈ [0, 1] and jc ∈ {0, 1, · · · , t − 2} be such that
[

jc
t−1 ,

jc+1
t−1

]
. We investigate the

monotonicity on each interval of the form
[

j
t−1 ,

j+1
t−1

]
, j ∈ {0, 1, · · · , t − 2} . Therefore we

can specify the monotoncity of U(M)
t (ν) on [0, 1] using the continuity of U(M)

t (ν) Let take
arbitrary j ∈ {0, 1, · · · , jc − 1} and θ ∈

[
j

t−1 ,
j+1
t−1

]
. By the monotonicity of ν, it follows that

ν
(

j
t

)
≥ ν

(
j−1
t

)
≥ · · · ≥ ν(0). From [7](proof of Lemma 3.2) the following claims are true:

If j ≤ k ≤ k + 1 ≤ t then1 ≥ mk,t, j(θ) ≥ mk+1,t, j(θ), (3.1)

If 0 ≤ k ≤ k + 1 ≤ j thenmk,t, j(θ) ≤ mk+1,t, j(θ) ≤ 1. (3.2)
Therefore, it is easily follows that ν j,t, j(θ) ≥ ν j−1,t, j(θ) ≥ · · · ≥ ν0,t, j(θ). From [7] lemma
3.4, it follows that

U(M)
t (ν) =

t∨
k= j

νk,t, j(θ).

Since U(M)
t (ν) is the maximum of nondecreasing functions, it is nondecreasing on the inter-

val
[

j
t−1 ,

j+1
t−1

]
. U(M)

t (ν) is continuous, therefore ν is nondecreasing on the interval
[
0, jc

t−1

]
.

Let take arbitrary j ∈ { jc + 1, · · · , t − 2} and θ ∈
[

j
t−1 ,

j+1
t−1

]
. By using the monotonicity of

ν, it follows that ν
(

i
t

)
≥ ν

(
i+1

t

)
≥ · · · ≥ ν(1). It means that U(M)

t (ν) (θ) =
∨ j

k=0 νk,t, j(θ)

from the assertion (3.1). Thus, it is nonincreasing on
[

j
t−1 ,

j+1
t−1

]
, because U(M)

t (ν) is the

maximum of nonincreasing functions. Considering the continuity of U(M)
t (ν) , it is imme-

diate that ν is nonincreasing on
[

jc+1
t−1 , 1

]
. Finally let investigate the case when j = jc. If

j
t−1 ≤ c, then by the monotoncity of ν it follows that ν

(
jc
t

)
≥ ν

(
jc−1

t

)
≥ · · · ≥ ν(0). Hence ,
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in the situation we get ν is nondecreasing on
[

jc
t−1 ,

jc+1
t−1

]
. As a result, ν is nondecreasing on[

0, jc+1
t−1

]
and nonincreasing on

[
jc+1
t−1 , 1

]
. Also, c′ = jc+1

t−1 is the maximum point of U(M)
t (ν)

and It is simple to verify that | c − c′ |≤ 1
t−1 . If jc/t ≥ c then by the monotonicity of ν it

follows thatν
(

jc
t

)
≥ ν

(
jc+1

t

)
≥ · · · ≥ ν(1). Therefore, we obtain that ν is nonincreasing on[

jc
t−1 ,

jc+1
t−1

]
. It follows that ν is nondecreasing on [0, jc

t−1 ] and nonincreasing on [ jc
t−1 , 1]. In

addition,c′ = jc
t−1 is the maximum point of U(M)

t (ν) and it is easy to check that | c−c′ |≤ 1
t−1 .

The last part of the theorem is now proved. Let start by noting that for all θ ∈ [0, 1],
U(M)

t (ν) ≤ ν(c). In fact, the description of U(M)
t (ν) and the fact that c is global maximum

point of ν imply this obvious. It indicates that

| U(M)
t (ν) (c) − ν(c) |=ν(c) − U(M)

t (ν) (c) = ν(c) −
t∨

k=0

νk,t, jc (c)

≤ ν jc,t, jc (c) = ν(c) − ν
( jc

t

)
.

Since c, jc
t ∈

[
j

t−1 ,
j+1
t−1

]
, we easily get ν(c) − ν

(
jc
t

)
≤ ω1 (ν; 1/t + 1) and the theorem is

proved completely. □

Definition 3.1. ([8]) Let ν : [η, ζ]→ R be continuous on [η, ζ]. The function ν is called:

i. quasi-convex if ν(λθ + (1 − λ)ϑ) ≤ max {ν(θ), ν(ϑ)} , for all θ, ϑ ∈ [η, ζ], λ ∈ [0, 1],
ii. quasi-concave, if −ν is quasi-convex.

Remark. The continuous function ν is quasi-convex on [a, b] according to [9], which is
similar to implying there is a point c ∈ [η, b] where ν is nonincreasing on [η, c] and nonde-
creasing on [c, b]. It is clear from the definition above that the function ν is quasi-concave
on [η, ζ], similarly means that there exists a point c ∈ [η, ζ] such that ν is nondecreasing
on [η, c] and nonincreasing on [c, b].

Now, the main results of this section can be presented.

Theorem 3.3. i. If η, ζ ∈ R, η < ζ and ν : [η, ζ]→ R+ is continuous then we get

| U(M)
t (ν; [η, ζ]) (θ) − ν(θ) |≤ 24 ([ζ − η] + 1)ω1

(
ν;

1
√

n + 1

)
[η,ζ]
, t ∈ N, t ≥ 2, θ ∈ [η, ζ].

ii. If ν : [η, ζ]→ R+ is concave then we get

| U(M)
t (ν; [η, ζ]) (θ) − ν(θ) |≤ 2 ([ζ − η] + 1)ω1

(
ν;

1
t

)
[η,ζ]
, t ∈ N, θ ∈ [η, ζ].

Proof. Consider the continuous function h(ϑ) on [0, 1] as h(ϑ) = ν(η + (ζ − η)ϑ). It is
simple to verify that h( k

t ) = ν
(
η + k. (ζ−η)t

)
for all k ∈ {0, 1, · · · , t} . Let any θ ∈ [η, ζ] and

ϑ ∈ [0, 1] such that θ = η + (ζ − η)ϑ. So we have ϑ = (θ − η)/(ζ − η) and 1 + ϑ = ζ+θ−2η
ζ−η
.

From these equalities and noting the expressions for h
(

k
t

)
, we get U(M)

t (ν; [η, ζ]) (θ) =

U(M)
t (h; [0, 1]) (ϑ). From Theorem 3.1

| U(M)
t (ν; [η, ζ]) (θ) − ν(θ) |=| U(M)

t (h; [0, 1]) (ϑ) − h(ϑ) |≤ 24ω1

(
h;

1
√

t + 1

)
[0,1]
. (3.3)



NOTE ON APPROXIMATION OF TRUNCATED BASKAKOV OPERATORS 23

Since ω1

(
h; 1
√

t+1

)
[0,1]
≤ ω1

(
ν; ζ−η√

t+1

)
[η,ζ]

and the property

ω1 (ν; λδ)[η,ζ] ≤ ([λ] + 1)ω1 (ν; δ)[η,ζ] , we obtain

ω1

(
h;

1
√

t + 1

)
[0,1]
≤ ([ζ − η] + 1)ω1

(
ν;

1
√

t + 1

)
[η,ζ]

which proves (i).
Using the notation from the above point (i), we get U(M)

n (ν; [η, ζ]) (θ) = U(M)
t (h; [0, 1]) (ϑ),

where h(ϑ) = ν(η + (ζ − η)ϑ) = ν(θ) for all ϑ ∈ [0, 1]. The last equality is equivalent to
ν(u) = h

(
u−η
ζ−η

)
for all u ∈ [η, ζ]. By the property of concavity for ν, ν(λu1 + (1 − λ)u2) ≥

λν(u1) + (1 − λ)ν(u2), for all λ ∈ [0, 1], u1, u2 ∈ [η, ζ], in terms of h can be written as

h
(
λ

u1 − η

ζ − η
+ (1 − λ)

u2 − η

ζ − η

)
≥ λh

(
u1 − η

ζ − η

)
+ (1 − λ)h

(
u2 − η

ζ − η

)
.

Denoting ϑ1 =
u1−η
ζ−η
∈ [0, 1] and ϑ2 =

u2−η
ζ−η
∈ [0, 1] this immediately implies the concavity

of h on [0, 1] . Then, by Theorem 3.1 (ii), we get

| U(M)
t (ν; [η, ζ]) (θ) − ν(θ) |=| U(M)

t (h; [0, 1]) (ϑ) − h(ϑ) |≤ 2ω1

(
h;

1
t

)
[0,1]
.

□

Theorem 3.4. Let the function ν : [η, ζ] → R+ and let fix t ∈ N, t ≥ 1. Assume that there
exists c ∈ [η, ζ] such that ν is nondecreasing on [η, c] and nonincreasing on [c, ζ]. Then,
there exists c′ ∈ [η, ζ] such that U(M)

t (ν; [η, ζ]) is nondecreasing on [η, c′] and nonincreas-
ing on [c′, ζ]. Also, we have | c − c′ |≤ (ζ − η)/(t + 1) and | U(M)

t (ν; [η, ζ]) (c) − ν(c) |≤

([ζ − η] + 1)ω1

(
ν; 1
√

t+1

)
[η,ζ]
.

Proof. As in the prior theorem, we establish the function h. Let c1 ∈ [0, 1] be such that
h(c1) = c, we observe that h is nondecreasing on [0, c1] and nonincreasing on [c1, 1], be-
cause it is the composition of ν and the linear nondecreasing function t → η + (ζ − η)t. By
Theorem 3.2 it results that there exists c′ ∈ [0, 1] such that U(M)

t (h; [0, 1]) is nondecreasing
on [0, c′1] and nonincreasing on [c′1, 1] and also, we have | U(M)

t (h; [0, 1]) (c1) − h(c1) |≤
ω1 (h; 1/t + 1) and | c1 − c′1 |≤ 1/(t + 1). Let c′ = η + (ζ − η)c′1. If θ1, θ2 ∈ [η, c′] with
θ1 ≤ θ2 then let ϑ1, ϑ2 ∈ [0, c′1] be such that θ1 = η + (ζ − η)ϑ1 and θ2 = η + (ζ − η)ϑ2.

Than it follows that U(M)
t (ν; [η, ζ]) (θ1) = U(M)

t (h; [0, 1]) (ϑ1) and U(M)
t (ν; [η, ζ]) (θ2) =

U(M)
t (h; [0, 1]) (ϑ2). the monotonicity of U(M)

t (h; [0, 1]) means U(M)
t (h; [0, 1]) (ϑ1) ≤ U(M)

t (h; [0, 1]) (ϑ2)
that is
U(M)

t (ν; [η, ζ]) (θ1) ≤ U(M)
t (ν; [η, ζ]) (θ2). We obtain that U(M)

t (ν; [η, ζ]) is nondecreasing
on [η, c′]. By the same way, we get that U(M)

t (ν; [η, ζ]) is nonincreasing on [c′, ζ]. For the
remainder of the proof, noting that | c1−c′1 |≤ 1/(t+1). we get | c−c′ |=| (ζ−η)(c1−c′1) |≤
(ζ − η)/(t + 1). In addition, mentioning

| U(M)
t (h; [0, 1]) (c1) − h(c1) |≤ ω1

(
h;

1
t + 1

)
[0,1]

and taking into account that ω1

(
h; 1

t+1

)
[0,1]
≤ ([b − η] + 1)ω1

(
ν; 1

t+1

)
[η,ζ]
, we obtain

| U(M)
t (ν; [η, ζ]) (c) − ν(c) |= | U(M)

t (h; [0, 1]) (c1) − h(c1) |

≤ω1

(
h;

1
√

t + 1

)
[0,1]
≤ ([ζ − η] + 1)ω1

(
ν;

1
√

t + 1

)
[η,ζ]
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and the proof is complete. □

Remark. The preceding theorem and Remark 3 contribute to the conclusion that U(M)
t (ν)

is also quasi-concave if ν : [η, ζ]→ R+ is continuous and quasi-concave. As we indicated
in the Introduction, U(M)

t maintains monotonicity and quasi-convexity for functions in the
space C+([0, 1]). It can be demonstrated that these conservation features hold in the gen-
eral case of the space C+([η, ζ]) using reasoning similar to that used in the demonstration
of Theorem 3.4.

4. Applications to fuzzy number approximation

Lemma 4.1. Let η, ζ ∈ R, η < ζ. For t ∈ N, t ≥ 2 and k ∈ {0, 1, · · · , t} , j ∈ {0, 1, · · · , t − 2}
and θ ∈ (η + j.(ζ − η)/(t − 1), η + ( j + 1).(ζ − η)/(t − 1)) .
Let mk,t, j(θ) =

bt,k(θ)
bt, j(θ)
, where bt,k(θ) =

(
t+k−1

k

) (
θ−η
ζ−η

)k
( ζ−2η+θ
ζ−η

)−t−k. Then
mk,t, j(θ) ≤ 1.

Proof. We can assume that η = 0 and ζ = 1, by using the same reasoning as in the proof of
Theorems 3.3 and 3.4 we may simply get the conclusion of the lemma in the general case.
For fix θ ∈ ( j/(t − 1), ( j + 1)/(t − 1)) and from Lemma 3.2 in [7], we obtain

m0,t, j(θ) ≤ m1,t, j(θ) ≤ · · · ≤ m j,t, j(θ),

m j,t, j(θ) ≥ m j+1,t, j(θ) ≥ · · · ≥ mt,t, j(θ).
From m j,t, j(θ) = 1, it is enough to show that m j+1,t, j(θ) < 1 and m j−1,t, j(θ) < 1. Then, we

have
m j,t, j(θ)

m j+1,t, j(θ)
=

j + 1
t + j

1 + θ
θ
.

Because the function g(ϑ) = (1 + θ)/θ is strictly decreasing on the interval
[

j
t−1 ,

( j+1)
t−1

]
, it

results that 1+θ
θ
> t+ j

j+1 . Obviously, this suggests m j,t, j(θ)/m j+1,t, j(θ) > 1 that is m j,t, j(θ) < 1.
Similar conclusions lead us to the result that m j−1,t, j(θ) < 1 and we get the proof. □

Now consider a function ν ∈ C+([η, ζ]). We may simplify the method to compute
U(M)

t (ν; [η, ζ])(θ) for some θ ∈ [η, ζ] by combining formula(3) with the conclusion of
Lemma 4.1. Let take j ∈ {0, 1, ..., t − 2} and θ ∈ [η+(ζ−η) j/(t−1), η+(ζ−η)( j+1)/(t−1)].
As a result of the features of continuous functions, an immediate result of Lemma 4.1 is
that mk,t, j(θ) ≤ 1 for all k ∈ {0, 1, ..., t} . This means that

t∨
k=0

bt,k(θ) = bt, j(θ), θ ∈
[
η + (ζ − η) j/(t − 1), η + (ζ − η)( j + 1)/(t − 1)

]
. (4.1)

As a result, for each k ∈ {0, 1, ..., t} and
θ ∈

[
η + (ζ − η) j/(t − 1), η + (ζ − η)( j + 1)/(t − 1)

]
νk,t, j(θ) = mk,t, j(θ).ν(η + (ζ − η)k/t), (4.2)

by (3) and (4.1) we obtain

U(M)
t (ν; [η, ζ])(θ) =

t∨
k=0

νk,t, j(θ), θ ∈
[
η + (ζ − η) j/(t − 1), η + (ζ − η)( j + 1)/(t − 1)

]
.

(4.3)
A similar method from paper [7] that takes into account the particular situation a =

0, b = 1 is generalized in the formula above. From Lemma 4.1, for any k ∈ {0, 1, ..., t} and
θ ∈

[
η + (ζ − η) j/(t − 1), η + (ζ − η)( j + 1)/(t − 1)

]
, we get νk,t, j(θ) ≤ ν(η + (ζ − η)k/t).
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Lemma 4.2. Let η, b ∈ R, η < ζ. If ν : [η, ζ]→ R+ is bounded then we get U(M)
t (ν; [η, ζ]) (η+

j(ζ − η)/(t − 1)) ≥ ν(η + j(ζ − η)/(t − 1)) for all j ∈ {0, 1, · · · t − 2} .

Proof. From Lemma 4.1, since
η+ j(ζ − η)/(t− 1) ∈ (η + (ζ − η) j/(t − 1), η + (ζ − η)( j + 1)/(t − 1)) and mk,t, j(η+ j(ζ −

η)/(t − 1)) = bt,k(η+ j(ζ−η)/(t−1))
bt, j(η+ j(ζ−η)/(t−1)) for all k ∈ {0, 1, · · · , t} it means that

t∨
k=0

bt,k (η + j(ζ − η)/t) = bt, j (η + j(ζ − η)/t) .

Then we obtain

U(M)
t (ν; [η, ζ]) (η + j(ζ − η)/t) =

∨t
k=0 bt,k (η + j(ζ − η)/t) ν(η + j(ζ − η)/t)

bt, j (η + j(ζ − η)/t)

≥
bt, j (η + j(ζ − η)/t) ν(η + j(ζ − η)/t)

bt, j (η + j(ζ − η)/t)
= ν(η + j(ζ − η)/t).

and lemma is proved. □

Theorem 4.3. Let u be a fuzzy number with supp(u) =
[
η, b

]
and core(u) = [c, d] such that

η ≤ c < d ≤ ζ. Then for sufficiently large t, it result that Ũ(M)
t

(
u;

[
η, ζ

])
is a fuzzy number

such that :
i. supp(u) = supp(Ũ(M)

t
(
u;

[
η, ζ

])
);

ii. if core(Ũ(M)
t

(
u;

[
η, ζ

])
) = [ct, dt], then ct and dt can be identified precisely and

also we get |c − ct | ≤ (ζ − η)/t and |d − dt | ≤ (ζ − η)/t;
iii. if u is continuous on [a, b], then∣∣∣Ũ(M)

t
(
u;

[
η, ζ

])
− u (θ)

∣∣∣ ≤ 6
([
ζ − η

]
+ 1

)
ω1

(
u,

1
√

t

)
[η,ζ]
,

for all θ ∈ R.

Proof. Let t ∈ N, with the inequality (ζ − η)/t < d − c. From Theorem 3.4, there is
c′ ∈ [η, ζ] such that Ũ(M)

t
(
u;

[
η, ζ

])
is nondecreasing on [η, c′] and nonincreasing on [c′, ζ].

Beside, from the description of Ũ(M)
t

(
u;

[
η, ζ

])
, it gives us that

By indicating ∥ . ∥ the uniform norm on B([η, ζ]) the space of bounded functions on
[η, ζ], ∥ Ũ(M)

t
(
u;

[
η, ζ

])
∥≤∥ u ∥ and since ∥ u ∥= 1, it means that ∥ Ũ(M)

t (u) ∥≤ 1.
Consequently, it is sufficient to demonstrate that Ũ(M)

t (u) is a fuzzy number in order
to obtain existence of α ∈ [η, ζ] such that Ũ(M)

t (u) (α) = 1. Let α = η + j(ζ − η)/n
where j is choosen with the property that c < α < d. Such j exists as (ζ − η)/t <
d − c. Since α ∈ core(u), it results u(α) = 1. Also,from Lemma 4.2, we can write that
Ũ(M)

t
(
u;

[
η, ζ

])
(α) ≥ u(α) and obviously this means that Ũ(M)

t
(
u;

[
η, ζ

])
is a fuzzy num-

ber. Since we have F(M)
t

(
u;

[
η, ζ

])
(η) = u(η), U(M)

t
(
u;

[
η, ζ

])
(b) = u(b) and the descrip-

tion of u and Ũ(M)
t

(
u;

[
η, ζ

])
, it follows that Ũ(M)

t
(
u;

[
η, ζ

])
(θ) = 0 outside [η, ζ]. Now, by

u(θ) > 0 and Ũ(M)
t

(
u;

[
η, ζ

])
(θ) = U(M)

t
(
u;

[
η, ζ

])
(θ) for all θ ∈ (η, ζ), we can obtain that

Ũ(M)
t

(
u;

[
η, ζ

])
(θ) > 0 for all θ ∈ (η, ζ) which proves (i).

Now, let t ∈ N with (ζ − η)/t ≤ d − c. Then take k(t, c), k(t, d) ∈ {1, · · · , t − 1} be
with the property that η + (ζ − η)(k(t, d) − 1)/t < c ≤ η + (ζ − η)k(t, c)/n and η + (ζ −
η)k(t, c)/t ≤ d < η + (ζ − η)(k(t, d) + 1)/n. Since (ζ − η)/t ≤ d − c it is obvious that
k(t, c) ≤ k(t, d).Also, k(t, c) and k(t, d) were chosen, we get that u(η+(ζ−η)k/t) = 1 for any
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k ∈ {k(t, c), · · · , k(t, d)} and u(η+ (ζ−η)k/t) < 1 for any k ∈ {0, · · · , t}\{k(t, c), · · · , k(t, d)} .
For some θ ∈

[
η + k(t, c)(ζ − η)/t, η + (k(t, c) + 1)(ζ − η)/t

]
, we have

Ũ(M)
t

(
u;

[
η, ζ

])
(θ) =

n∨
k=0

uk,t,k(t,c)(θ).

We have

uk(t,c),t,k(t,c)(θ) = mk(t,c),t,k(t,c)(ζ)u(η + (ζ − η)k(t, c)/n) = u(η + (ζ − η)k(t, c)/t) = 1

and from the description of k(t, c) and by Lemma 4.2,so for any k ∈ {0, · · · , t} , we get

Ũ(M)
t

(
u;

[
η, ζ

])
(θ) = u(η + (ζ − η)k(t, c)/t) = 1,

∀ θ ∈
[
η + k(t, c)(ζ − η)/t, η + (k(t, c) + 1)(ζ − η)/t

]
. Similarly we obtain that

Ũ(M)
t

(
u;

[
η, ζ

])
(θ) = u(η + (ζ − η)k(t, d)/t) = 1,

∀ θ ∈
[
η + k(t, d)(ζ − η)/t, η + (k(t, d) + 1)(ζ − η)/t

]
. Let take arbitrarily

θ ∈ (η + (k(t, c) − 1)(ζ − η)/t, η + k(t, c)(ζ − η)/t) ,

we have

Ũ(M)
t

(
u;

[
η, ζ

])
(θ) =

n∨
k=0

uk,t,k(t,c)−1(θ).

If k ∈ {k(t, c), · · · , k(t, d)} , then we get

uk,t,k(t,c)−1(θ) =mk,t,k(t,c)−1(θ)u(η + (ζ − η)k/t) < u(η + (ζ − η)k/t)

= u(η + (ζ − η)k(t, c)/n) = Ũ(M)
t

(
u;

[
η, ζ

])
(η + (ζ − η)k(t, c)/t).

Let k < {k(t, c), · · · , k(t, d)} , then we get

uk,t,k(t,c)−1(θ) =mk,t,k(t,c)−1(θ)u(η + (ζ − η)k/t) ≤ u(η + (ζ − η)k/t)

< u(η + (ζ − η)k(t, c)/t) = Ũ(M)
t

(
u;

[
η, ζ

])
(η + (ζ − η)k(t, c)/t).

From the propertiy of quasi-concavity of Ũ(M)
t

(
u;

[
η, ζ

])
on [η, ζ] it easily results that

Ũ(M)
t

(
u;

[
η, ζ

])
(θ) < Ũ(M)

t
(
u;

[
η, ζ

])
(η + (ζ − η)k(t, c)/t), ∀θ ∈ [η, η + k(t, c)(ζ − η)/t)].

Similarly, we get

Ũ(M)
t

(
u;

[
η, ζ

])
(θ) < Ũ(M)

t
(
u;

[
η, ζ

])
(η + (ζ − η)(k(t, d) + 1)/t),

∀ θ ∈ [η + (k(t, d) + 1)(ζ − η)/t), ζ]. From the previous inequalities

Ũ(M)
t

(
u;

[
η, ζ

])
(η + (ζ − η)k(t, c)/t) =u(η + (ζ − η)k(t, c)/t) = u(η + (ζ − η)k(t, d)/t)

=Ũ(M)
t

(
u;

[
η, ζ

])
(η + (ζ − η)(k(t, d) + 1)/t) = 1,

we get that Ũ(M)
t

(
u;

[
η, ζ

])
reaches its maximum value only in the range [η+(ζ−η)k(t, c)/t, η+

(ζ−η)(k(t, d)+1)/t] which by the description of Ũ(M)
t

(
u;

[
η, ζ

])
implies that core

(
Ũ(M)

t
(
u;

[
η, ζ

]))
=[

η + (ζ − η)k(t, c)/t, η + (ζ − η)(k(t, d) + 1)/t
]
. Then, indicating ct = η+(b−η)k(t, c)/n one

can see that both ct and c belong to the interval [η+(ζ−η)(k(t, c)−1)/t, η+(ζ−η)k(t, c)/t] of
length (ζ −η)/n and so |c− ct | ≤ (ζ −η)/t. Correlatively, indicating dt = η+ (ζ −η)(k(t, d)+
1)/(t + 1) we get that |d − dn| ≤ (ζ − η)/t and the statement (ii) has been proven.

(iii) From Theorem 3.3, the proof is immediate.
□
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Abstract. As a natural extension of the metric and the bipolar metric, this article intro-
duces the new abstract bipolar b− metric. The bipolar b−metric is a novel technique ad-
dressed in this article; it is explained by combining the well-known b−metric in the theory
of metric spaces, as defined by Mutlu and Gürdal (2016) [10], with the description of the
bipolar metric. In this new definition, well-known mathematical terms such as Cauchy
and convergent sequences are utilized. In the bipolar b−metric, fundamental topological
concepts are also defined to investigate the existence of fixed points implicated in such
mappings under different contraction conditions. An example is provided to demonstrate
the presented results.

1. Introduction

Fixed point theory is a fabulous blend of Topology, Analysis, and Geometry. It has
been a crucial part of exploring linear and nonlinear phenomena. There are also excellent
applications of fixed-point theorems to encourage mathematical inquiry, economics, game
theory, computer science, and digital image embedding. Thanks to its application in math-
ematics and other disciplines, the Banach ([4]) contraction principle has become widely
used. Two situations enable this principle to become widespread. Either the mapping
space is universalized, or the map’s contraction condition is extended.

One of the exciting topics of the last few decades is the theory of fixed points. In
particular, the issue of changing the abstract structure of the mapping to form a fixed point
has been intensively studied. The concept of a metric space has been variously revised,
expanded, and generalized to ensure the existence of a fixed point for certain mappings
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defined in these new constructs. The most exciting and general concept is the b−metric
space. Several mathematicians have considered it by different names (such as the quasi-
metric [5] and the general metric), but it became famous for the publications of Bakhtin
[3] and Czerwik [6].

It is exciting to get fixed point theorems for covariant and contravariant maps with
different contraction maps in both expanding and non-expanding topological spaces. There
are unique bivariate metric spaces like b−metric spaces [3, 6], extended b−metric spaces,
and trivariate metric-type spaces like bipolar metric spaces [10].

In [10] the new distance function, the distance between the members of two different
sets is different from the empty set. A successful description of generalized and improved
metric spaces is called bipolar metric spaces. This study also validated new versions of
Banach and Kannan Caristi’s fixed point theorems (see [14]).

Recent articles on bipolar metric space refer to popular theorems of fixed point theory
contained in them (see [14] and [15]). In addition, various issues related to this theory are
covered (see [1, 2, 7, 11, 12, 8, 13, 16, 17]).

This study aims to combine the bipolar metric space defined in [10] 2016 with the
b−metric space definition, which is a new approach for general metric spaces. This article
discusses the existence of and gives examples of some fixed point theorems in the bipolar
b−metric.

2. Preliminaries

In this section, the definition and theorem that will be required for the analysis will be
reminded again for convenience.

Recall (see, e.g., [3, 6]) that a b−metric d on a set X is a generalization of standard
metric, where the triangular inequality is replaced by

d(x, z) ≤ b[d(x, y) + d(y, z)],

for all x, y, z ∈ X, for some fixed b ≥ 1.
Definition 2.1. ( [10]). A bipolar metric space is a triple (X,Y, d) such that X,Y , ∅ and
d : X × Y −→ R+ is a function satisfying the following conditions:

(i) d(x, y) = 0⇐⇒ x = y,
(ii) if x, y ∈ X ∩ Y, then d(x, y) = d(y, x),
(iii) d(x1, y2) ≤ d(x1, y1) + d(x2, y1) + d(x2, y2)
for all (x, y), (x1, y1), (x2, y2) ∈ X×Y. Then d is called a bipolar metric on the pair (X,Y).

Example 2.1. Let X = {(a, 2a)| a ∈ R}, Y = {(d, c)| d, c ∈ R} = R2 and

d(x, y) =| a − d | + | 2a − c |,

for every x = (a, 2a) ∈ X and y = (d, c) ∈ Y. Obviously X ∩ Y = X and conditions (i) and
(ii) of Definition 2.1 are satisfied.

For each x = (a, 2a), x′ = (a′, 2a′) ∈ X and y = (d, c), y′ = (d′, c′) ∈ Y, we have

d(x, y) = | a − d | + | 2a − c |

≤ | a − d′ | + | 2a − c′ | + | a′ − d′ | + | 2a′ − c′ | + | a′ − d | + | 2a′ − c |

= d(x, y′) + d(x′, y′) + d(x′, y).

So, condition (iii) of Definition 2.1 is also satisfied and d is a bipolar metric.

Definition 2.2. ( [10]). Let (X1,Y1) and (X2,Y2) be pairs of sets.
(a) Let f : X1 ∪ Y1 −→ X2 ∪ Y2 be a given function.
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If f (X1) ⊆ X2 and f (Y1) ⊆ Y2, f is said a covariant map from (X1,Y1) to (X2,Y2) and write
f : (X1,Y1)⇒ (X2,Y2).

(b) f : X1 ∪ Y1 −→ X2 ∪ Y2 be a given function.
If f (X1) ⊆ Y2, and f (Y1) ⊆ X2, f is said a contravariant map from (X1,Y1) to (X2,Y2) and
f : (X1,Y1)⇄ (X2,Y2) is written in this paper.

Example 2.2. Let X = {(a, 0)| a ∈ R}, Y = {(b, c)| b, c ∈ R} = R2 and
f : X ∪ Y −→ X ∪ Y defined by f (x, y) = (x2, xy) for every (x, y) ∈ X ∪ Y. Obviously
f (X) ⊆ X and f (Y) ⊆ Y. Therefore, f is a covariant map from (X,Y) to (X,Y), that is
f : (X,Y)⇒ (X,Y).

It is superimposed on the b−metric with the bipolar metric, just as different previously
defined metrics are combined in one definition. An example of these is the metric structure
in defining bipolar and ultrametric,and the description presented is the definition of bipolar
b−metric.

3. MAIN RESULTS

It is superimposed on the b−metric with the bipolar metric, just as different previously
defined metrics are combined in one definition. An example of these is the metric structure
in defining bipolar and ultrametric [7], and the description presented is the definition of
bipolar b−metric.

Definition 3.1. A bipolar b−metric space is a triple (X,Y, d) such that X,Y , ∅ and
d : X × Y −→ R+ is a function satisfying the following conditions:

(i) d(x, y) = 0⇐⇒ x = y,
(ii) if x, y ∈ X ∩ Y, then d(x, y) = d(y, x),
(iii) d(x1, y2) ≤ b[d(x1, y1) + d(x2, y1) + d(x2, y2)] for all (x, y), (x1, y1), (x2, y2) ∈ X × Y

and b ≥ 1. We say d is a bipolar b−metric on the pair (X,Y).

Example 3.1. Let X = {(a, 0)| a ∈ R}, Y = {(d, c)| d, c ∈ R} = R2 and

d(x, y) = (a − d)2+ | c |,

for every x = (a, 0) ∈ X and y = (d, c) ∈ Y. Obviously X ∩ Y = X and conditions (i) and
(ii) of Definition 3.1 are satisfied.

For each x = (a, 0), x′ = (a′, 0) ∈ X and y = (d, c), y′ = (d′, c′) ∈ Y and b = 3, we have

d(x, y) = (a − d)2+ | c |= [(a − d′) + (d′ − a′) + (a′ − d)]2+ | c |

≤ 3(a − d′)2+ | c′ | +3(a′ − d′)2+ | c′ | +3(a′ − d)2+ | c |

= 3[d(x, y′) + d(x′, y′) + d(x′, y)].

So, condition (iii) of Definition 3.1 is also satisfied and d is a bipolar b−metric for b = 3.

It is useful to state the following here. If b = 1 in a bipolar b−metric, a bipolar metric
is obtained (see [10]).
It should be noted that in the preceding example, if (X,Y, d) is a bipolar b−metric space,
then (X,Y, d) is not necessarily a bipolar metric space, because the triangle inequality does
not hold.

Let Ψ denote a family of mappings such that for each ψ ∈ Ψ,
ψ : [0,∞) −→ (0,∞) and

(1) ψ(t) is continuous and it is decreasing for every t ∈ [0,∞),
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(2)
∫ m s

0 ψ(t)dt ≤ m
∫ s

0 ψ(t)dt for every s > 0 and m ≥ 1.

For example, if ψ : [0,∞) −→ (0,∞) defined by ψ(t) = e−t, ψ(t) = 1
1+t , then it is easy to

see that ψ ∈ Ψ.

Example 3.2. Let (X,Y, d) be a bipolar b−metric space. If it is defined with

ρ(x, y) =
∫ d(x,y)

0
ψ(t)dt, f or every (x, y) ∈ X × Y and ψ ∈ Ψ,

then (X,Y, ρ) is a bipolar b−metric space.

Proof. Obviously conditions (i) and (ii) of Definition 3.1 are satisfied. Now, since d is
bipolar b−metric hence for all (x, y), (x1, y1) ∈ X × Y and b ≥ 1, we have d(x, y) ≤
b[d(x, y1) + d(x1, y1) + d(x1, y)]. Since ψ is positive we get:

ρ(x, y) =

∫ d(x,y)

0
ψ(t)dt

≤

∫ b[d(x,y1)+d(x1,y1)+d(x1,y)]

0
ψ(t)dt

=

∫ b d(x,y1)

0
ψ(t)dt +

∫ b[d(x,y1)+d(x1,y1)]

b d(x,y1)
ψ(t)dt

+

∫ b[d(x,y1)+d(x1,y1)+d(x1,y)]

b[d(x,y1)+d(x1,y1)]
ψ(t)dt.

If set t = b d(x, y1) + s, since ψ is decreasing then we get:

∫ b[d(x,y1)+d(x1,y1)]

b d(x,y1)
ψ(t)dt =

∫ b d(x1,y1)

0
ψ(b d(x, y1) + s)ds ≤

∫ b d(x1,y1)

0
ψ(s)ds

≤ b
∫ d(x1,y1)

0
ψ(s)ds.

Similarly, if set t = b[d(x, y1) + d(x1, y1)] + s, then

∫ b[d(x,y1)+d(x1,y1)+d(x1,y)]

b[d(x,y1)+d(x1,y1)]
ψ(t)dt =

∫ b d(x1,y)

0
ψ(b[d(x, y1) + d(x1, y1)] + s)ds

≤

∫ b d(x1,y)

0
ψ(s)ds ≤ b

∫ d(x1,y)

0
ψ(s)ds.

Therefore,

ρ(x, y) =

∫ d(x,y)

0
ψ(t)dt

≤

∫ b d(x,y1)

0
ψ(t)dt +

∫ b[d(x,y1)+d(x1,y1)]

b d(x,y1)
ψ(t)dt

+

∫ b[d(x,y1)+d(x1,y1)+d(x1,y)]

b[d(x,y1)+d(x1,y1)]
ψ(t)dt

≤ b
∫ d(x,y1)

0
ψ(t)dt + b

∫ d(x1,y1)

0
ψ(t)dt + b

∫ d(x1,y)

0
ψ(t)dt

= b[ρ(x, y1) + ρ(x1, y1) + ρ(x1, y)].
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So, condition (iii) of Definition 3.1 is also satisfied and ρ is a bipolar b−metric. □

Remark. If d1, d2 are bipolar b−metrics on (X1,Y1) and (X2,Y2), respectively, we shall
sometimes write f : (X1,Y1, d1)⇒ (X2,Y2, d2) and f : (X1,Y1, d1)⇄ (X2,Y2, d2).

Definition 3.2. Let (X,Y, d) be a bipolar b−metric space
(a) The set X is called the left pole, Y is called the right pole and X ∩ Y is called the

center of (X,Y, d). Especially, the points in the left pole are called left points, the points in
the right pole are called right points, and the points in the center are called central points.

(b) A sequence {xn} ⊆ X is called a left sequence, and a sequence {yn} ⊆ Y is called
a right sequence. In a bipolar b−metric space, a left or right sequence is simply called a
sequence.

(c) A sequence {un} is said to be convergent to a point u, if and only if {un} is a left
sequence, u is a right point and lim

n−→∞
d(un, u) = 0, or {un} is a right sequence, u is a left

point and lim
n−→∞

d(u, un) = 0.
(d) A bi-sequence {(xn, yn)} on (X,Y, d) is a sequence on the set X × Y. If the sequence

{xn} and {yn} are convergent, then the bi-sequence {(xn, yn)} is said to be convergent, and if
{xn} and {yn} converge to a common fixed point, then {(xn, yn)} is said to be bi-convergent.

(e) {(xn, yn)} is called a Cauchy bi-sequence if lim
n,m−→∞

d(xn, ym) = 0.

(f) A bipolar b−metric space is called complete, if every Cauchy bi-sequence is conver-
gent, hence bi-convergent.

Definition 3.3. Let (X1,Y1, d1) and (X2,Y2, d2) be bipolar b−metric spaces
(a) A map f : (X1,Y1, d1) ⇒ (X2,Y2, d2) is called left-continuous at a point x0 ∈ X1, if

for every ε > 0, there exists a δ > 0 such that d1(x0, y) < δ implies d2( f x0, f y) < ε for all
y ∈ Y1.

(b) A map f : (X1,Y1, d1)⇒ (X2,Y2, d2) is called right-continuous at a point y0 ∈ Y1, if
for every ε > 0, there exists a δ > 0 such that d1(x, y0) < δ implies d2( f x, f y0) < ε for all
x ∈ X1.

(c) A map f is called continuous if it is left-continuous at each point x ∈ X1 and right-
continuous at each point y ∈ Y1.

(d) A contravariant map f : (X1,Y1)⇄ (X2,Y2) is continuous if and only if it is contin-
uous as a covariant map f : (X1,Y1)⇒ (Y2, X2).

Remark. ([10]). A covariant or contravariant map f from (X1,Y1, d1) to (X2,Y2, d2) is
continuous if and only if {un} −→ v on (X1,Y1, d1) implies { f (un)} −→ f (v) on (X2,Y2, d2).

In bipolar b−metric space we have the following Lemma.

Lemma 3.1. Let (X,Y, d) be a bipolar b−metric space with b ≥ 1, and suppose that {xn} ⊆

X and {yn} ⊆ Y are convergent to y, x respectively, where y ∈ Y and x ∈ X. Then we have

1
b

d(x, y) ≤ lim inf
n−→∞

d(xn, yn) ≤ lim sup
n−→∞

d(xn, yn) ≤ bd(x, y).

In particular if b = 1, then we have lim
n−→∞

d(xn, yn) = d(x, y).

Proof. By property (iii) of Definition 3.1, we have

d(x, y) ≤ b[d(x, yn) + d(xn, yn) + d(xn, y)].

Taking the lower limit as n→ ∞ we obtain
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1
b

d(x, y) ≤ lim inf
n−→∞

d(xn, yn).

On the other hand

d(xn, yn) ≤ b[d(xn, y) + d(x, y) + d(x, yn)].

And taking the upper limit as n→ ∞ we obtain

lim sup
n−→∞

d(xn, yn) ≤ bd(x, y).

So we obtain the desired result. □

Definition 3.4. Let (X,Y, d) be a bipolar b−metric space and assume that f , g : (X,Y, d)⇒
(X,Y, d). Then the pair { f , g} is said to be compatible if and only if lim

n−→∞
d(g f xn, f gyn) = 0,

whenever {xn} and {yn} are two sequences in X and Y respectively, such that lim
n−→∞

f xn =

lim
n−→∞

gyn = t for some t ∈ X ∩ Y.

Lemma 3.2. Let (X,Y, d) be a bipolar b−metric space and f , g : (X,Y, d) ⇒ (X,Y, d) such
that the pair { f , g} be compatible and g is continuous. Suppose that {xn} ⊆ X and {yn} ⊆ Y
such that lim

n−→∞
f xn = lim

n−→∞
gyn = u for some u ∈ X ∩ Y. Then lim

n−→∞
f gyn = gu.

Proof. Since f and g are compatible, hence lim
n−→∞

d(g f xn, f gyn) = 0. Since g is continuous
it follows that

lim
n→∞

g f xn = gu.

By property (iii) of Definition 3.1, we have

d(gu, f gyn) ≤ b[d(gu, gu) + d(g f xn, gu) + d(g f xn, f gyn)].

Taking the limit as n→ ∞ we obtain

lim
n−→∞

d(gu, f gyn) ≤ b[ lim
n−→∞

d(gu, gu) + lim
n−→∞

d(g f xn, gu) + lim
n−→∞

d(g f xn, f gyn)] = 0.

Therefore, lim
n−→∞

d(gu, f gyn) = 0, so we obtain the desired result. □

In this section, we first express and prove some different extensions and generalizations
of the Banach contraction principle [4] on bipolar b−metric spaces.

Theorem 3.3. Let (X,Y, d) be a complete bipolar b−metric space and f , g : (X,Y, d) ⇒
(X,Y, d) with:

(i) f (X) ⊆ g(X), f (Y) ⊆ g(Y) and g is continuous,
(ii)

d( f (x), f (y)) ≤
λ

b2 d(g(x), g(y)),

for all (x, y) ∈ X × Y and 0 < λ < b,
(iii) the pair ( f , g) is compatible.

Then the functions f , g : X ∪ Y −→ X ∪ Y have a unique common fixed point in X ∩ Y.
There exists a unique point u ∈ X ∩ Y such that f (u) = g(u) = u.
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Proof. Let x0 ∈ X and y0 ∈ Y . For each n ∈ N, define f (xn) = g(xn+1) = an and f (yn) =
g(yn+1) = bn. Then {(an, bn)} is a bisequence on (X,Y, d). For each positive integer n, we
have

d(an, bn) = d( f (xn), f (yn))

≤
λ

b2 d(g(xn), g(yn)) =
λ

b2 d(an−1, bn−1) =
λ

b2 d( f (xn−1), f (yn−1))

≤
λ2

b4 d(g(xn−1), g(yn−1)) =
λ2

b4 d( f (xn−2), f (yn−2))

...

≤
λn

b2n d(a0, b0).

Also,

d(an, bn+1) = d( f (xn), f (yn+1))

≤
λ

b2 d(g(xn), g(yn+1)) =
λ

b2 d(an−1, bn) =
λ

b2 d( f (xn−1), f (yn))

≤
λ2

b4 d(g(xn−1), g(yn)) =
λ2

b4 d( f (xn−2), f (yn−1))

...

≤
λn

b2n d(a0, b1).

Hence for m ≥ n we get

d(am, bn) ≤ b[d(am, bn+1) + d(an, bn+1) + d(an, bn)]

≤ bd(am, bn+1) +
λn

b2n−1 [d(a0, b1) + d(a0, b0)].

Also,

d(am, bn+1) ≤ b[d(am, bn+2) + d(an+1, bn+2) + d(an+1, bn+1)]

≤ bd(am, bn+2) +
λn+1

b2n+1 [d(a0, b1) + d(a0, b0)].

Similarly,

d(am, bm−1) ≤ b[d(am, bm) + d(am−1, bm) + d(am−1, bm−1)]

≤ bd(am, bm) +
λm−1

b2m−3 [d(a0, b1) + d(a0, b0)].

Therefore, if set d(a0, b1) + d(a0, b0) = α then we have:

d(am, bn) ≤ bd(am, bn+1) +
λn

b2n−1α

≤ b2d(am, bn+2) +
λn

b2n−1α +
λn+1

b2n+1α

...

≤ bm−nd(am, bm) +
λn

b2n−1α +
λn+1

b2n+1α + · · · +
λm−1

b2m−3α

≤ bm−n λ
m

b2mα +
λn

b2n−1α +
λn+1

b2n+1α + · · · +
λm−1

b2m−3α
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≤
λn

b2n−1α +
λn+1

b2n+1α + · · · +
λm−1

b2m−3α +
λm

bm+nα

≤ (
λ

b
)nα + (

λ

b
)n+1α + · · · + (

λ

b
)m−1α + (

λ

b
)mα

≤
( λb )nα

1 − λ
b

−→ 0.

Therefore, (an, bn) is a Cauchy bisequence. Since (X,Y, d) is complete, (an, bn) converges,
and thus biconverges to a point u ∈ X ∩ Y and

lim
n→∞

f (xn) = lim
n→∞

g(xn+1) = lim
n→∞

an = u,

and
lim
n→∞

f (yn) = lim
n→∞

g(yn+1) = lim
n→∞

bn = u.

We show that u is a common fixed point of f and g.
Let g be continuous it follows that

lim
n→∞

g f (xn) = g(u), lim
n→∞

gg(xn) = g(u).

Since f and g are compatible, so by Lemma 3.2 lim
n−→∞

f g(yn) = g(u). Putting x = gxn

and y = u in inequality (ii) of Theorem 3.3 we obtain

d( f g(xn), f (u)) ≤
λ

b2 d(gg(xn), g(u)). (3.1)

Now, by taking the upper limit when n→ ∞ in (3.1) and using Lemma 3.1 we get

1
b

d(g(u), f (u)) ≤ lim sup
n−→∞

d( f g(xn), g(u))

≤
λ

b2 lim sup
n−→∞

d(gg(xn), g(u))

=
λ

b2 bd(g(u), g(u)) = 0.

Consequently d(g(u), f (u)) = 0, it follows that f (u) = g(u). Now, we show that f (u) =
u. Putting x = u and y = yn in inequality (ii) of Theorem 3.3 we obtain

d( f (u), f (yn)) ≤
λ

b2 d(g(u), g(yn)). (3.2)

Similarly by taking the upper limit when n→ ∞ in (3.2) and using Lemma 3.1 we obtain

1
b

d( f (u), u) ≤ lim sup
n−→∞

d( f (u), f (yn)) ≤
λ

b2 lim sup
n−→∞

d(g(u), g(yn))

≤
λ

b2 bd(g(u), u)) =
λ

b
d( f (u), u))

<
1
b

d( f (u), u),

it follows that g(u) = f (u) = u. If there exists another common fixed point v in X ∩ Y of f
and g, then

d(u, v) = d( f (u), f (v)) ≤
λ

b2 d(g(u), g(v)) =
λ

b2 d(u, v)

< d(u, v),
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which implies that d(u, v) = 0 and u = v. Thus u is a unique common fixed point of f and
g. The proof of the theorem is completed. □

Now we give an example to support our result.

Example 3.3. Let X = {(a, 0) | a ∈ R} and Y = {(d, c) | d ∈ R, c ∈ [0,∞)} be endowed
with bipolar b−metric d(x, y) = (a − d)2 + c, where x = (a, 0) ∈ X and y = (d, c) ∈ Y.
By Example 3.1, (X,Y, d) is a bipolar b−metric for b = 3. For every (x, y) ∈ X ∪ Y,
define f , g : X ∪ Y −→ X ∪ Y by f (x, y) = 1

3 (sin(x), ln(1 + y
3 )) and g(x, y) = (x, y2 + y).

f , g : (X,Y) ⇒ (X,Y), that is f and g are two covariant maps from (X,Y) to (X,Y). It is
easy to see that the pairs { f , g} are compatible mappings.

Also for each x ∈ X and y ∈ Y we have

d( f x, f y) = d( f (a, 0), f (d, c))

=
1
9

(sin(a) − sin(d))2 +
1
3

ln(1 +
c
3

)

≤
1
9

(sin(a) − sin(d))2 +
1
9

c

≤
1
9

(a − d)2 +
1
9

(c2 + c)

=
1
9

d(g(a, 0), g(d, c)) =
1
9

d(gx, gy)

≤
λ

b2 d(gx, gy),

where 1 ≤ λ < 3 and b = 3. Thus f and g satisfy the conditions given in Theorem 3.3 and
(0, 0) ∈ X ∩ Y is the unique common fixed point of f and g.

Now we get the special cases of Theorem 3.3 as follows:

Corollary 3.4. Let (X,Y, d) be a complete bipolar b−metric space and f : (X,Y, d) ⇒
(X,Y, d) be a mapping such that

d( f x, f y) ≤
λ

b2 d(x, y), for all (x, y) ∈ X × Y with 0 < λ < b.

Then f has a unique fixed point in X ∩ Y.

Proof. If we take g as identity map on X and on Y , then from Theorem 3.3 follows that f
has a unique fixed point. □

Corollary 3.5. Let (X,Y, d) be a complete bipolar metric space and f , g : (X,Y, d) ⇒
(X,Y, d) with:

(i) f (X) ⊆ g(X), f (Y) ⊆ g(Y) and g is continuous,
(ii)

d( f (x), f (y)) ≤ λd(g(x), g(y)),

for all (x, y) ∈ X × Y and 0 < λ < 1,
(iii) the pair ( f , g) is compatible.

Then the functions f , g : X ∪ Y −→ X ∪ Y have a unique the common fixed point in X ∩ Y.
There exists a unique point u ∈ X ∩ Y such that f (u) = g(u) = u.

Proof. It is enough to set b = 1 in Theorem 3.3. □
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The following corollary gives the Theorem of Mutlu, Gürdal [10].

Corollary 3.6. Let (X,Y, d) be a complete bipolar b−metric space and let f : (X,Y, d) ⇒
(X,Y, d) with:

d( f (x), f (y)) ≤ λd(x, y), f or all (x, y) ∈ X × Y and 0 < λ < 1.
Then the function f : X ∪ Y −→ X ∪ Y has a unique fixed point in X ∩ Y. There exists a

unique point u ∈ X ∩ Y such that f (u) = u.

Proof. If we take g as identity map on X and on Y , then from Corollary 3.5 follows that f
has a unique fixed point. □

4. Fixed point theorem for contravariant maps

Below we prove a similar result for contravariant maps.

Definition 4.1. Let (X,Y, d) be a bipolar b−metric space and f : (X,Y, d) ⇄ (X,Y, d)
and g : (X,Y, d) ⇒ (X,Y, d). Then the pair { f , g} is said to be compatible if and only if
lim

n−→∞
d(g f yn, f gxn) = 0, whenever {xn} and {yn} are two sequences in X and Y respectively,

such that lim
n−→∞

f yn = lim
n−→∞

gxn = t for some t ∈ X ∩ Y.

Lemma 4.1. Let (X,Y, d) be a bipolar b−metric space and let f : (X,Y, d) ⇄ (X,Y, d)
and g : (X,Y, d) ⇒ (X,Y, d) such that the pair { f , g} be compatible and g is continuous.
Suppose that {xn} ⊆ X and {yn} ⊆ Y such that lim

n−→∞
f yn = lim

n−→∞
gxn = u for some u ∈ X∩Y.

Then lim
n−→∞

f gxn = gu.

Proof. Since f and g are compatible, hence lim
n−→∞

d(g f yn, f gxn) = 0. Since g is continuous
it follows that

lim
n→∞

g f yn = gu.

By property (iii) of Definition 3.1, we have

d(gu, f gxn) ≤ b[d(gu, gu) + d(g f yn, gu) + d(g f yn, f gxn)].

Taking the limit as n→ ∞ we obtain

lim
n−→∞

d(gu, f gxn) ≤ b[ lim
n−→∞

d(gu, gu) + lim
n−→∞

d(g f yn, gu)

+ lim
n−→∞

d(g f yn, f gxn)] = 0.

Therefore, lim
n−→∞

d(gu, f gxn) = 0, so we obtain the desired result. □

Theorem 4.2. Let (X,Y, d) be a complete bipolar b−metric space and f : (X,Y, d) ⇄
(X,Y, d) and g : (X,Y, d)⇒ (X,Y, d) with:

(i) f (X) ⊆ g(Y), f (Y) ⊆ g(X) and g is continuous,
(ii)

d( f (y), f (x)) ≤
λ

b2 d(g(x), g(y)),

for all (x, y) ∈ X × Y and 0 < λ < b2,
(iii) the pair ( f , g) is compatible.
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Then the functions f , g : X ∪ Y −→ X ∪ Y have a unique common fixed point in X ∩ Y.
There exists a unique point u ∈ X ∩ Y such that f (u) = g(u) = u.

Proof. Let x0 ∈ X and y0 ∈ Y . For each n ∈ N, define f (xn) = g(yn) = bn and f (yn) =
g(xn+1) = an. Then {(an, bn)} is a bisequence on (X,Y, d). For each positive integer n, we
have

d(an, bn) = d( f (yn), f (xn))

≤
λ

b2 d(g(xn), g(yn)) =
λ

b2 d(an−1, bn) =
λ

b2 d( f (yn−1), f (xn))

≤
λ2

b4 d(g(xn), g(yn−1)) =
λ2

b4 d(an−1, bn−1)

...

≤
λ2n

b4n d(a0, b0).

Also,

d(an, bn+1) = d( f (yn), f (xn+1))

≤
λ

b2 d(g(xn+1), g(yn)) =
λ

b2 d(an, bn) =
λ

b2 d( f (yn), f (xn))

≤
λ2

b4 d(g(xn), g(yn)) =
λ2

b4 d(an−1, bn)

...

≤
λ2n

b4n d(a0, b1).

Hence for m ≥ n we get

d(am, bn) ≤ b[d(am, bn+1) + d(an, bn+1) + d(an, bn)]

≤ bd(am, bn+1) +
λ2n

b4n−1 [d(a0, b1) + d(a0, b0)].

Also,

d(am, bn+1) ≤ b[d(am, bn+2) + d(an+1, bn+2) + d(an+1, bn+1)]

≤ bd(am, bn+2) +
λ2(n+1)

b4(n+1)−1 [d(a0, b1) + d(a0, b0)].

Similarly,

d(am, bm−1) ≤ b[d(am, bm) + d(am−1, bm) + d(am−1, bm−1)]

≤ bd(am, bm−2) +
λ2(m−1)

b4(m−1)−1 [d(a0, b1) + d(a0, b0)].

Therefore, if set d(a0, b1) + d(a0, b0) = α then we have:

d(am, bn) ≤ bd(am, bn+1) +
λ2n

b4n−1α

≤ b2d(am, bn+2) +
λ2n

b4n−1α +
λ2(n+1)

b4(n+1)−1α

...
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≤ bm−nd(am, bm) +
λ2n

b4n−1α +
λ2(n+1)

b4(n+1)−1α + · · · +
λ2(m−1)

b4(m−1)−1α

≤ bm−n λ
2m

b4m α +
λ2n

b4n−1α +
λ2(n+1)

b4(n+1)−1α + · · · +
λ2(m−1)

b4(m−1)−1α

≤
λ2n

b4n−1α +
λ2(n+1)

b4(n+1)−1α + · · · +
λ2(m−1)

b4(m−1)−1α +
λ2m

b3m+nα

≤
1
b

[(
λ2

b4 )nα + (
λ2

b4 )n+1α + · · · + (
λ2

b4 )m−1α + (
λ2

b4 )mα]

≤
1
b

[
( λ

2

b4 )nα

1 − λ2

b4

] −→ 0.

Therefore, (an, bn) is a Cauchy bisequence. Since (X,Y, d) is complete, (an, bn) converges,
and thus biconverges to a point u ∈ X ∩ Y and

lim
n→∞

f (yn) = lim
n→∞

g(xn+1) = lim
n→∞

an = u,

and
lim
n→∞

f (xn) = lim
n→∞

g(yn) = lim
n→∞

bn = u.

We show that u is a common fixed point of f and g.
Since g is continuous it follows that

lim
n→∞

g f (yn) = g(u), lim
n→∞

gg(xn+1) = g(u).

Since f and g are compatible, so by Lemma 4.1 lim
n−→∞

f g(xn) = g(u). Putting x = gxn

and y = u in inequality (ii) of Theorem 4.2 we obtain

d( f (u), f g(xn)) ≤
λ

b2 d(gg(xn), g(u)). (4.1)

Now, by taking the upper limit when n→ ∞ in (4.1) and using Lemma 3.1 we get

1
b

d( f (u), g(u)) ≤ lim sup
n−→∞

d( f (u), f g(xn))

≤
λ

b2 lim sup
n−→∞

d(gg(xn), g(u))

=
λ

b2 bd(g(u), g(u)) = 0.

Consequently d( f (u), g(u)) = 0, it follows that f (u) = g(u). Now, we show that f (u) =
u. Putting x = u and y = yn in inequality (ii) of Theorem 4.2 we obtain

d( f (yn), f (u)) ≤
λ

b2 d(g(u), g(yn)). (4.2)

Similarly by taking the upper limit when n→ ∞ in (4.2) and using Lemma 3.1 we obtain

1
b

d(u, f (u)) ≤ lim sup
n−→∞

d( f (yn), f (u)) ≤
λ

b2 d(g(u), g(yn))

≤
λ

b2 bd(g(u), u) =
λ

b
d( f (u), u)

<
1
b

d(u, f (u)),
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it follows that g(u) = f (u) = u. If there exists another common fixed point v in X ∩ Y of f
and g, then

d(u, v) = d( f (u), f (v)) ≤
λ

b2 d(g(v), g(u)) =
λ

b2 d(u, v)

< d(u, v),

which implies that d(u, v) = 0 and u = v. Thus u is a unique common fixed point of f and
g. The proof of the theorem is completed. □

Example 4.1. Let

X =
{

(xn) ∈ R∞| xn ≤ 0 for each n ∈ N and
∞∑

n=1

√
−xn < ∞

}
and

Y =
{

(yn) ∈ R∞| yn ≥ for each n ∈ N and
∞∑

n=1

√
yn < ∞

}
.

Defined d : X × Y → R, by d(x, y) =
(
∞∑

n=1

√
yn − xn

)2

, where x = (xn) ∈ X and y = (yn) ∈ Y.

Then (X,Y, d) is a bipolar b−metric space with the constant b = 4.
f : (X,Y, d)⇄ (X,Y, d), f (un) = (−un)

g : (X,Y, d)⇒ (X,Y, d), g(un) = (u3
n) + 2un

These are compatible as f ◦ g = g ◦ f . Note that

d( f (yn), f (xn)) ≤
8
42 d(g(xn), g(yn)),

and also g is continuous and f (X) ⊆ g(Y), f (Y) ⊆ g(X). Then by Theorem 4.2. f and g
must have a unique common fixed point. Indeed, the only point (un) = (0, 0, 0, . . .) ∈ X ∩ Y
is a common fixed point of f and g.

Now we get the special cases of Theorem 4.2 as follows:

Corollary 4.3. Let (X,Y, d) be a complete bipolar b−metric space and f : (X,Y, d) ⇄
(X,Y, d) be a mapping such that

d( f y, f x) ≤
λ

b2 d(x, y), for all (x, y) ∈ X × Y, with 0 < λ < b2.

Then f has a unique fixed point in X ∩ Y.

Proof. If we take g as identity map on X and on Y , then from Theorem 4.2 follows that f
has a unique fixed point. □

Corollary 4.4. Let (X,Y, d) be a complete bipolar metric space and f : (X,Y, d)⇄ (X,Y, d)
and g : (X,Y, d)⇒ (X,Y, d) with:

(i) f (X) ⊆ g(Y), f (Y) ⊆ g(X) and g is continuous,
(ii)

d( f (y), f (x)) ≤ λd(g(x), g(y)),

for all (x, y) ∈ X × Y and 0 < λ < 1,
(iii) the pair ( f , g) is compatible.

Then the functions f , g : X ∪ Y −→ X ∪ Y have a unique common fixed point in X ∩ Y.
There exists a unique point u ∈ X ∩ Y such that f (u) = g(u) = u.

Proof. It is enough to set b = 1 in Theorem 4.2. □

The following corollary gives the Theorem of Mutlu, Gürdal [10].
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Corollary 4.5. Let (X,Y, d) be a complete bipolar metric space and let f : (X,Y, d) ⇄
(X,Y, d) with:

d( f (y), f (x)) ≤ λd(x, y), f or all (x, y) ∈ X × Y and 0 < λ < 1.

Then the function f : X ∪ Y −→ X ∪ Y has a unique fixed point in X ∩ Y. There exists a
unique point u ∈ X ∩ Y such that f (u) = u.

Proof. If we take g as identity map on X and on Y , then from Corollary 4.4 follows that f
has a unique fixed point. □

Remark. In Fixed point theory for readers’ interest well known of Meir-Keeler type con-
traction, C̆iric̆ type of quasi contraction, Nadler type of contraction Sehgal-Guseman type
of contraction, the completion of bipolar b−metric space, Suzuki-Berinde type of contrac-
tion, etc., that is these structures can be proven in bipolar b−metric space exploration.
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[14] K. Özkan, U. Gürdal and A. Mutlu, Generalization of Amini-Harandi’s fixed point theorem with an ap-
plication to nonlinear mapping theory. Fixed Point Theory, 21(2) (2020), 707–714. doi: 10.24193/fpt-
ro.2020.2.50
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