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Abstract. In this study, Lorentzian plane homothetic multiplicative calculus

kinematics is discussed. Lorentzian plane homothetic multiplicative calculus
movement, the pole points of a point X relative to the moving and fixed plane

are discussed. In this motion, the velocities and accelerations of a point X are

obtained. In this motion, the relations between the velocities and accelerations
of a point X are obtained. In addition, new theorems and results are given.

1. Introduction

Using different arithmetic operations based on classical analysis alternative anal-
ysis have also been described. In 1887, the Volterra type of analysis was determined
by [1]. Since this new approach is based on multiplication, this analysis is called
multiplicative analysis (also called multiplicative analysis). In recent years, studies
have been carried out by revealing some areas for the application of this analysis
[2, 3, 4].

After the definition of Volterra analysis, some new studies were conducted by
Michael Grossman and Robert Katz between 1967 and 1970. As a result of the stud-
ies, new analysis called geometric analysis, bigeometric analysis and anageometric
analysis were defined. Some basic definitions and concepts regarding this new analy-
sis, also called non-Newtonian analysis, are given [5].There are also studies in which
non-Newtonian analysis is applied. Among these analysis, Dick Stanley’s geometric
analysis was referred to as multiplicative analysis [6]. Later, in 2008, studies were
conducted in which the basic concepts of multiplicative analysis were defined and
some of its applications were discussed [7]. The aim of this article is to examine
one-parameter lorentzian homothetic multiplicative analysis plane kinematics us-
ing matrices. Selahattin Aslan, Murat Bekar and Yusuf Yaylı defined multiplicative
quaternions and achieved some results using quaternions [8]. Semra Kaya Nurkan,
Ibrahim Gürgil and Murat Kemal Karacan are given in geometric calculus, vec-
tors and their properties, matrix, determinant, vector product and Gram–Schmidt
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in geometric space [9]. Hasan ES gave plane kinematics in multiplicative calculus
[10]. The aim of this article is to examine one-parameter Lorentzian homothetic
multiplicative calculus plane kinematics using matrices.

2. BASIC CONCEPTS

In [28], the set of the multiplicative calculus real numbers R(G) are determined
as

R(G) = {exp(m) = em : m ∈ R} .
Then (R(G),⊕,⊗) is a field with multiplicative calculus( geometric) zero 1 and
multiplicative calculus (geometric) identy e.

The relations between the basic multiplicative operations and ordinary arith-
metic operations can be given for all m,n ∈ R(G) as

m⊕ n = mn,

m	 n =
m

n
,

m⊗ n = mlnn = nlnm,

m� n = x
1

lnn , n 6= 1,

√
m

G
= e(lnm)

1
2 ,

m−1G = e
1

log m ,

√
m2G

G
= |m|G ,

m2G = m⊗m = mlnm,

m⊗ e = m

m⊕ 1 = m,

|m|G =

 m , m > 1,
1 , m = 1,

m−1 , m < 1,

Additionally, for each em, en ∈ R(G), the multiplicative addition and multiplicative
multiplication operations can be given as follows

em ⊕ en = em+n

em ⊗ en = emn

and thus we can write

em ⊗ en = emn, em ⊕ en = em+n,

em 	 en = em−n, em � en = e
m
n ,

√
em

G
= e
√
m.

Positive geometric real numbers and negative geometric real numbers are defined
as

R+(G) = {m ∈ R(G) : m > 1}
and

R−(G) = {m ∈ R(G) : 0 < m < 1} ,
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respectively [8, 9, 10, 28].
The sentence R2(G) is defined as follows

R2(G) = {s◦ = (es1 , es2) : es1 , es2 ∈ R(G)} ⊂ R2

s◦ ⊕ z◦ = (es1 , es2)⊕ (ez1 , ez2)

= (es1 ⊕ ez1 , es2 ⊕ ez2)

=
(
es1+z1 , es2+z2

)
and the multiplicative scalar multiplication as

ec ⊗ s◦ = ec ⊗ (es1 , es2)

= (ec ⊗ es1 , ec ⊗ es2)

= (ecs1 , ecs2),

where ec ∈ R(G), s◦, z◦ ∈ R2(G).

Definition 2.1. The relationship between the multiplicative derivative and the
classical derivative is determine as

h∗(n)(x) = e(lnh(x))(n)

.

[11, 12, 13, 17, 20, 25].

Definition 2.2. The multiplicative distance defined by [13, 25]. This allows to
define the multiplicative distance dG(m,n) between m,n ∈ R+(G) as

dG(m,n) =
∣∣∣m
n

∣∣∣G
[11, 12, 13, 25].

Definition 2.3. The relationship between trigonometry and multiplicative trigonom-

etry is determine as sing ω = esinω, cosg ω = ecosω, tang ω = etanω =
sing ω
cosg ω [5, 6,

11, 12, 13, 14, 15, 30].

Definition 2.4. An 2x2 multiplicative matrix is defined by

K =

[
ek11 ek12

ek21 ek22

]
where ek11 , ek12 , ek21 , ek22 ∈ R(G). Let K and M be two multiplicative matrices
and K ⊗M = N be the multiplication of these matrices, where

N =

[
ek11m11+k12m21 e

k11m12+k12m22

e
k21m11+k22m21

e
k21m12+k22m22

]
.

Definition 2.5. 2x2 type identity matrix in multiplicative calculus is

I =

[
e 1
1 e

]
.

If matrix D is a 2x2 type matrix and DT ⊗D = D ⊗DT = I, then D is called a
multiplicative orthogonal matrix.
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3. PLANE KINEMATICS IN LORENTZIAN HOMOTHETIC
MULTIPLICATIVE CALCULUS

Definition 3.1. The dot product in R2(G) is determined as in the equation 3.1

(3.1) 〈m,n〉GL = em1n1−m2n2 ,

where 〈m,n〉GL is the dot product in the multiplicative Lorentz sense and m =
(m1,m2) , n = (n1, n2) ∈ R2(G).

Definition 3.2. The norm of a multiplicative vector m = (m1,m2) is

(3.2) ‖m‖GL =

√
〈m,m〉GL

G

= e
√

m2
1−m2

2 .

Definition 3.3. The multiplicative unit circle S1(G) in R2(G) can be defined as

S1(G) =
{
m = (m1,m2) ∈ R2(G) : 〈m,m〉GL = e

}
(3.3)

= (coshg ω, sinhg ω) =
(
ecoshω, esinhω

)
.

Definition 3.4. Let m = (em1 , em2) and n = (en1 , en2) be unit vectors in R2(G).
Then the equation

(3.4)

[
coshg ω sinhg ω
sinhg ω coshg ω

]
⊗
[
em1

em2

]
=

[
en1

en2

]
represents a rotation in R2(G) of the multiplicative vector m by a multiplicative
angle ω ∈ R in positive direction around the origin O = (1, 1) of the Cartesian
coordinate system of R2(G). We will call this rotation as multiplicative planar
rotation. After this rotation multiplicative vector m turns to the multiplicative

vector n as given [8]. Where A(ω) =

[
coshg ω sinhg ω
sinhg ω coshg ω

]
is a rotation matrix in

multiplicative plane.

Definition 3.5. The Lorentzian homothetic multiplicative plane equation of mo-
tion in R2(G) is determine as,

y1 = x⊗ (h⊗ coshg ω)⊕ y ⊗ (h⊗ sinhg ω)⊕ c1(3.5)

y2 = x⊗ (h⊗ sinhg ω)⊕ y ⊗ (h⊗ coshg ω)⊕ c2
If ω, c1, and c2 are given by the functions of time parameter t, then this motion is
called as a one-parameter Lorentzian homothetic multiplicative motion.

Definition 3.6. The equation of a one-parameter Lorentzian homothetic multi-
plicative motion in R2(G) is defined by

(3.6) Y (t) = B(t)⊗X(t)⊕ C(t)

Y =

[
ey1

ey2

]
, X =

[
ex1

ex2

]
, C =

[
ec1

ec2

]
,

where Y and X are the position vectors of the same point R, respectively, for the
multiplicative fixed and multiplicative moving systems, and C is the multiplicative
translation vector.

If we take the multiplicative derivative of the 3.6 equation with respect to the
parameter t. In that case the equation of

(3.7) Y ? = B∗ ⊗X ⊕B ⊗X∗ ⊕ C∗
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is obtained. Here, Va = Y ? is called the absolute speed of the motion, Vr = B⊗X∗
is determine the relative speed of the motion, and Vf = B∗⊗X ⊕C∗ is defined the
sliding speed of the motion.

We represent movements in the E2
G plane as LMC

L′MC
; One of which is Lorentzian

homothetic multiplicative fixed plane L′MC and the other one is a Lorentzian ho-
mothetic multiplicative moving plane LMC that moves relative to the fixed plane.

If the matrices B and C are functions of a parameter t, this motion is called
a one-parameter Lorentzian homothetic multiplicative motion and is denoted by
B1 = LMC

L′MC
. By taking the derivatives with respect to t in 3.7, we get

(3.8) Y ?∗ = B∗∗ ⊗X ⊕ e2 ⊗ (B∗ ⊗X∗)⊕B ⊗X∗∗ ⊕ C∗∗,

(3.9) ba = br ⊕ bc ⊕ bf
where the velocities

(3.10) ba = Y ?∗, bf = B∗∗ ⊗X ⊕ C∗∗, br = B ⊗X∗∗ and bc = e2 ⊗ (B∗ ⊗X∗)
are called multiplicative absolute acceleration, multiplicative sliding acceleration,
multiplicative relative acceleration and multiplicative Coriolis accelerations, respec-
tively.

Definition 3.7. Let X be a point in the plane LMC . The speed of this point X
while drawing its orbit in the plane LMC is called relative speed. And this speed
is defined by Vr.

Definition 3.8. The relationship between the speeds of motion B1 is defined as

(3.11) Va = Vf ⊕ Vr
If X is a fixed point in plane LMC of motion B1, Vr is zero in the multiplicative
sense. Therefore Va = Vf .

The expression Va = Vf ⊕ Vr is called the law of velocities in the motion B1.

Theorem 3.9. In lorentzian homothetic multiplicative motion, the absolute velocity
vector is equal to the sum of the sliding velocity vector and the relative velocity
vectors. So it is

Va = Vf ⊕ Vr.

4. POLES OF ROTATING AND ORBIT IN LORENTZIAN
HOMOTHETİC MULTIPLICATIVE CALCULUS

Definition 4.1. In the sense of multiplicative calculus, the points where Vf = 1
are both LMC and L′MC fixed points. These points are called pole points of the
movement.

Theorem 4.2. In a motion B1 whose angular velocity is not zero (in the sense of
multiplicative calculus), there is a single point that remains constant in both LMC

and L′MC at each time t.

Proof. Vr = 1 because point X is fixed at LMC . and since the same point X is
fixed at L′MC , Vf = 1. For such points the equation Vf = 1 gives

(4.1) B∗ ⊗X ⊕ C∗ = 1,

and

(4.2) X = e−1 ⊗ (B∗)
m−inv ⊗ C∗
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where (B∗)
m−inv

is the multiplacative inverse of B∗. Since

B = eh ⊗
[
ecoshω esinhω

esinhω ecoshω

]
=

[
eh coshω eh sinhω

eh sinhω eh coshω

]
, C =

[
ec1

ec2

]
,

B∗ =

[
eh
′ coshω+hω′ sinhω eh

′ sinhω+hω′ coshω

eh
′ sinhω+hω′ coshω eh

′ coshω+hω′ sinhω

]
, C∗ =

[
ec
′
1

ec
′
2

]
we get detG(B∗) = e(h

′)2−(hω′)
2

Thus B∗ is regular and

(B∗)
m−inv

= e
1

(h′)2−(hω′)2 ⊗
[

eh
′ coshω+hω′ sinhω e−h

′ sinhω−hω′ coshω

e−h
′ sinhω−hω′ coshω eh

′ coshω+hω′ sinhω

]
.

Therefore, the equation of Vf = 1 has only one X solution. This point X is the
pole point of LMC . Accordingly, from 4.2 equation the result

X = P = e
1

(h′)2−(hω′)2 ⊗
[
e−c

′
1(h
′ coshω+hω′ sinhω)+c′2(h

′ sinhω+hω′ coshω)

ec
′
1(h
′ sinhω+hω′ coshω)−c′2(h

′ coshω+hω′ sinhω)

]
(4.3)

= e
1

(h′)2−(hω′)2 ⊗
[
e(−c

′
1h
′+c′2ω

′h) coshω+(−c′1hω
′+c′2h

′) sinhω

e(c
′
1hω

′−c′2h
′) cosh v+(c′1h

′−c′2hω
′) sinhω

]
(4.4)

is reached.
The pole point in the multiplicative fixed plane is

(4.5) P ′ = B ⊗ P ⊕ C

setting these values in their planes and calculating we have

P ′ = e
1

(h′)2−(hω′)2 ⊗

[
e−c

′
1h
′h+h2c′2ω

′

eh
2c′1ω

′−h′hc′2

]
⊕
[
ec1

ec2

]
(4.6)

=

 e
−c′1h′h+h2c′2ω′

(h′)2−(hω′)2
+c1

e
h2c′1ω′−h′hc′2
(h′)2−(hω′)2

+c2

(4.7)

or as a vector

(4.8) P ′ =

(
e
−c′1h′h+h2c′2ω′

(h′)2−(hω′)2
+c1 , e

h2c′1ω′−h′hc′2
(h′)2−(hω′)2

+c2

)
.

�

Here we assume that multiplicative ω∗(t) 6= 1 for all t. That is, multiplicative
angular velocity is not 1. In this case there exists a unique pole point in each of
the moving and fixed planes of each moment t.

Corollary 4.1. If ω(t) = t, then equation 4.3 will be obtained as

X = P = e
1

(h′)2−h2 ⊗
[
e(−c

′
1h
′+c′2h) coshω+(c′1h−c

′
2h
′) sinhω

e(c
′
1h−c

′
2h
′) coshω+(a′h′−b′h) sinhω

]
.

Corollary 4.2. For ω(t) = t and h(t) = 1, then equation 4.3 will be obtained as

X = P =

[
ec
′
1 sinhω−c′2 coshω

e−c
′
1 coshω+c′2 coshω

]
.
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Corollary 4.3. Let ω(t) = t, then equation 4.8 will be obtained as

P ′ =

(
e
−c′1h′h+h2c′2

(h′)2−h2 +c1 , e
h2c′1−h′hc′2
(h′)2−h2 +c2

)
.

Corollary 4.4. For ω(t) = t and h(t) = 1, then equation 4.8 will be obtained as

P ′ =
(
e−c

′
2+c1 , e−c

′
1+c2

)
.

Definition 4.3. The point P = (p1, p2) is called multiplicative instantaneous rota-
tion center or the pole at moment t of the one parameter motion B1 = LMC /L′MC

Theorem 4.4. The length of vector Vf is

‖Vf‖GL = exp

√(h′
h

)2

− (θ′)
2 ‖P ′Y ‖L

 .

Proof. The pole point in multiplicative moving plane Y = B ⊗X ⊕C implies that

(4.9) X = (B)
m−inv ⊗

(
Y ⊕ (e−1)⊗ C)

)
,

Vf = B∗ ⊗X ⊕ C∗ and B∗ ⊗X ⊕ C∗ = 1

that leads toX = P = e−1 ⊗ (B∗)
m−inv ⊗ C∗. Now let us find pole points in

multiplicative fixed plane. Then we have from equation

Y = B ⊗X ⊕ C.

Y ′ = P ′ = B ⊗
(
e−1 ⊗ (B∗)

m−imv ⊗ C∗)⊕ C
)
, Hence, we get

C∗ = B∗ ⊗ (B)
m−inv ⊗

(
C ⊕ (e−1 ⊗ P ′)

)
we substitute this values in the equation Vf = B∗ ⊗ X ⊕ C∗ we have Vf = B∗ ⊗
(B)

m−inv ⊗ P ′Y . Now let us calculate the value of B∗ ⊗ (B)
m−inv ⊗ P ′Y , where

P ′Y = (ey1−p1 , ey2−p2), then

Vf =

[
e

h′
h (y1−p1)−ω′(y2−p2)

eω
′(y1−p1)+

h′
h (y2−p2)

]
or as a vector

(4.10) Vf =
(
e

h′
h (y1−p1)+ω′(y2−p2), eω

′(y1−p1)+
h′
h (y2−p2)

)
.

then,

‖Vf‖GL = exp

√(h′
h

)2

− (θ′)
2 ‖P ′Y ‖L

 .

�

Corollary 4.5. If the scalar matrix h is constant, then the length of the sliding
velocity vector is

(4.11) ‖Vf‖GL = exp (|x| ‖P ′Y ‖L) .

Corollary 4.6. The speed that occurs when drawing the curve (P ) at point LMC

at X is called Vr. At the same time, Va is the speed that occurs when drawing the
(P )′ curve of this point in the plane L′MC . These velocities are equal to each other
at time t.
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Proof. Since Vf = 1, it is concluded from expression Va = Vf⊕Vr that Va = Vr. �

Definition 4.5. The vector Va is called multiplicative absolute acceleration vector
with respect to the plane L′MC of the point X and is denoted by ba. Since Va = Y ∗

then ba = V ∗a = Y ∗∗ .

Definition 4.6. Let X ∈ LMC be a fixed point in motion B1 = LMC /L′MC .
Multiplicative acceleration vector of X with respect to L′MC is called multiplicative
sliding acceleration vector. This multiplicative sliding acceleration vector is denoted
by bf .

Since acceleration of the multiplicative sliding acceleration X is a fixed point of
LMC , then bf = V ∗f = B∗∗ ⊗ C∗∗.

5. Accelerations And Union Of Accelerations In Lorentzian
Homothetic Multiplicative Calculus

Definition 5.1. We know that point X is multiplicative relative velocity vector Vr
to LMC . The vector br obtained by taking the derivative of Vr is called multiplica-
tive relative acceleration vector of X in plane LMC . This multiplicative relative
acceleration vector is represented by br. Considering point X as a moving point in
plane LMC , matrix B is taken as constant

Theorem 5.2. There is the following relationship between ba, br, bc and bf

ba = br ⊕ bc ⊕ bf .
Here bc = (e2 ⊗ (B∗ ⊗X∗) is called multiplicative Corilois acceleration.

Corollary 5.1. Let X be a point in the plane LMC . If point X is fixed at LMC ,
then ba = bf .

Proof. Note that
Va = B∗ ⊗X ⊕B ⊗X∗ ⊕ C∗,

Differentiating the both sides we have

V ∗a = B∗∗ ⊗X ⊕ e2 ⊗ (B∗ ⊗X∗)⊕B ⊗X∗∗ ⊕ C∗∗,
since the point X is constant its derivative is 1. Hence

ba = V ∗a

= B∗∗ ⊗X ⊕ C∗∗

= bf .

�

Theorem 5.3. The result of the multiplicative inner product of vectors bc and Vr
is

(5.1) 〈bc, Vr〉GL = exp
(
2hh′(x′1

2 − x′12
)
.

Proof.

Vr = B ⊗X∗,
bc = e2 ⊗ (B∗ ⊗X∗) ,

So it is obvious that

〈bc, Vr〉GL = exp
(
2hh′(x′1

2 − x′12
)

.
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�

Corollary 5.2. If the h value is taken as constant in 5.1 equation, then the Coriolis
acceleration bc is perpendicular to the relative velocity vector Vr at each instant
moment t.

6. The Acceleration Poles Of The Motions

The solution of the equation V ∗f = B∗∗ ⊗ X ⊕ C∗∗ gives us multiplicative
acceleration pole of multiplicative motion.V ∗f = B∗∗ ⊗ X ⊕ C∗∗ implies X =

e−1 ⊗ (B∗∗)
m−inv ⊗ C∗∗. Now calculating the matrices e−1 ⊗ (B∗∗)

m−inv
and

C∗∗, and setting these in X = P1 = e−1 ⊗ (B∗∗)
m−inv ⊗ C∗∗, we obtain

(6.1) X = P1 =

[
e

1
T (c′′1 (−r coshω+z sinhω)−c′′2 (r sinhω+z coshω))

e
1
T (c′′1 (r sinhω+z cosω)+c′′2 (−r coshω+z sinhω))

]
,

where (B∗∗)
m−inv

is the multiplicative inverse of B∗∗. Here P1 is called multi-
plicative pole curve in multiplicative moving plane. If multiplicative pole curve in
multiplicative fixed plane is denoted by P ′1 we get

(6.2) P ′1 = B ⊗ P1 ⊕ C

Hence

(6.3) P ′1 =

[
e

1
T (−hrc′′1−hzc

′′
2 )+c1

e
1
T (hzc′′1−hrc

′′
2 )+c2

]
where r = h′′ + h(ω′)2, z = 2h′ω′ + hω′′, T = r2 − z2

Corollary 6.1. If ω(t) = t, then equation 6.1 will be obtained as
(6.4)

X = P1 =

[
e

1
(h′′+h)2−4(h′)2 (c′′1 (−(h

′′+h) coshω+2h′ sinhω)−c′′2 ((h
′′+h) sinhω+2h′ cosω))

e
1

(h′′+h)2−4(h′)2 (c′′1 ((h
′′+h) sinhω+2h′ coshω)+c′′2 (−(h

′′+h) coshω+2h′ sinhω))

]
Corollary 6.2. If ω(t) = t and h(t) = 1, then equation 6.1 will be obtained as

(6.5) X = P1 =

[
e−c

′′
1 coshω+c′′2 sinhω

ec
′′
1 sinhω−c′′2 coshω

]
Corollary 6.3. If ω(t) = t, then equation 6.3 will be obtained as
(6.6)

P ′1 =

(
e

1
(h′′+h)2−4(h′)2 (h(h′′+h)c′′1−2hh

′c′′2 )+c1 , e
1

(h′′+h)2−4(h′)2 (−2hh′c′′1−h(h
′′+h)c′′2 )+c2

)
.

Corollary 6.4. If ω(t) = t and h(t) = 1, then equation 6.3,will be obtained as

(6.7) P ′1 =
(
e−c

′′
1 +c1 , e−c

′′
2 +c2

)
.

7. CONCLUSIONS

In multiplicative Lorentz multiplicative homothetic motions, velocities in plane
motion, the relationship between velocities, pole points, and pole curves are given.
Additionally, multiplicative Lorentz accelerations and multiplicative Lorentz accel-
eration combinations have been found.
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Abstract. Let F denote the free Leibniz algebra, which is generated by the
set X = {x1, ..., xn} over the field K with characteristic 0. Let R be an ideal

of F . This investigation begins by obtaining a specific matrix representation
for the IA-automorphisms of the Leibniz algebra F/R′. Following this, we

establish a necessary condition for an IA-endomorphism of F/R′ to qualify as

an IA-automorphism. This method is explicitly based on Dieudonné determi-
nant.

1. Introduction

Consider the Leibniz algebra F , the free algebra of finite rank n over a field K.
Let R be an ideal of F , and denote by R′ the commutator subalgebra of R. The
Leibniz algebra F/R′ of rank n is defined in the usual way.

In their work [2], Bahturin and Nabiev established an explicit matrix represen-
tation for automorphisms of a Lie algebra L/R′ that are congruent modulo R/R′,
where L is a free Lie algebra of rank n and R is an ideal of L. Shpilrain, in [9], pro-
vided a necessary condition for the invertibility of a matrix over the integral group
ring of a free group, utilizing a non-commutative determinant. Initially given for
free Lie algebras in [3], this condition was based on a non-commutative determinant.

Furthermore, in [14], the author and Ekici gave a criterion grounded in the
Dieudonné determinant with some applications. Recently, [11] addressed the com-
putation of valuations of Dieudonné determinants of matrices over discrete valuation
skew fields, exploring two applications stemming from this problem.

Leibniz algebras, serving as potential non-(anti)commutative extensions of Lie
algebras, were thoroughly examined in terms of homological algebra by Loday and
Pirashvili in [7]. Numerous findings in Leibniz algebras highlight their close re-
lationship with Lie algebras, prompting attempts to extend specific combinatorial
results from varieties of Lie algebras to their Leibniz counterparts.
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In [8], Mikhalev and Umirbaev derived significant results regarding subalgebras
of free Leibniz algebras. The author investigated the automorphisms of free Leibniz
algebras with rank two in the work documented in [12]. Additionally, Papistas and
Drensky, in their work [5] in 2005, examined automorphisms within the domain of
a free left nilpotent Leibniz algebra with finite rank. Meanwhile, free metabelian
Leibniz algebras were characterized in the reference [6].

On another note, explicit matrix forms for IA-automorphisms of free metabelian
Leibniz algebras were established for rank 3 in [15] and for rank n in [16]. A recent
study by the author in [13] contributed a necessary and sufficient condition for a
set of n elements in F/R′ to function as a generating set.

This study initially derives a matrix representation for the IA-automorphisms
of the Leibniz algebra F/R′, employing similar techniques as presented in [?].
Subsequently, we provide a necessary condition for the invertibility of a matrix
belonging to UL(F/R′). This condition establishes a means for identifying non-
automorphisms within the Leibniz algebra F/R′. Notably, our approach is ex-
plicitly grounded in a non-commutative determinant: the Dieudonné determinant.
Furthermore, we present several applications of this methodology.

2. Preliminaries

Loday and Pirashvili described free Leibniz algebras in [7]. Consider the Leibniz
algebra F generated freely by a set {x1, ..., xn} over a field K of characteristic 0.
Let Ann(F ) represent the ideal of F generated by elements {[x, x] : x ∈ F}. The
algebra FLie = F/Ann(F ) is identified as a Lie algebra. The notation Aut(F ) refers
to the automorphism group of F , while IAut(F ) designates the IA-automorphisms
of F . These automorphisms induce the identity mapping on the quotient algebra
F/F ′, where F ′ is the commutator ideal of F . Let R be a subalgebra of F , and
designate R′ as the derived subalgebra of R. The paper [7] introduces the univer-
sal enveloping algebra for the Leibniz algebra F. Denote by UL(F ), the universal
enveloping algebra of F , i.e., the free associative algebra with the generating set
{r1, ..., rn, l1, ..., ln}, where li = lxi

and ri = rxi
the universal operators of left and

right multiplication on xi. These elements satisfy the following relations

(rxi + lxi)lxj = 0

Denoted by ∆, the kernel of the homomorphism ε : UL(F ) → K defined by ε(rxi
) =

0, ε(lxi) = 0 for i = 1, 2, ..., n, that is augmentation ideal of UL(F ). That is also
an UL(F )-module generated by rxi , lxi , where i = 1, 2, ..., n. We represent the mth
associative power of ∆ as ∆m. Denoted by ∆R, the ideal of UL(F ) is defined as
the kernel of the natural homomorphism σR : UL(F ) → UL(F/R).

Let â represent the image of a ∈ F/R under the natural homomorphism F/R→
(F/R)Lie. Utilizing this homomorphism, we establish the mappinĝ: UL(F/R) → U((F/R)Lie)

where U((F/R)Lie) denotes the universal enveloping algebra of (F/R)Lie. Through-
out the subsequent discussion, we define the Lie algebra (F/R)Lie alongside its

corresponding subalgebra in U((F/R)Lie). This results in r̂x = x̂ and l̂x = −x̂. It
is evident that the kernel of the homomorphism̂is generated by rx + lx, x ∈ F/R.
This kernel is denoted as ∆Ann(F/R). According to the reference [7], the mapping

δ : U((F/R)Lie) → UL(F/R)
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is defined as δ(x̂) = rx. Notably, due to the equality δ̂(x̂) = r̂x = x̂, we establish
the identification of the algebra U((F/R)Lie) with its corresponding subalgebra in
UL(F/R).

3. Automorphisms of F/R′

Consider the abelian Leibniz algebra R/R′ that is freely generated by a set
{a1, a2, . . . , an} as a free K-module. Let F/R be a Leibniz algebra over K, func-
tioning as a free K-module. The wreath product of Leibniz algebras R/R′ and
F/R is defined in a standard manner, akin to the case of Lie algebras [10]. Denoted
as W = (R/R′)wr(F/R), it takes the form W = F/R ⊕ IR/R′ , where it is the
semidirect sum of F/R and the free F/R-module IR/R′ with the free generating
set {a1, a2, . . . , an}. Furthermore, R/R′ is not only a module on F/R but also a
UL(F/R)-module, where the module action is given by

u ∗ rv = [u, v]

u ∗ lv = [v, u]

for u ∈ R/R′, v ∈ F/R and rv, lv ∈ UL(F/R). Let x represent x+R′ ∈ F/R′, and
x denote x+R ∈ F/R.

The proof of the following theorem is identical to the one presented in the case
of Lie algebras, as detailed in [10].

Theorem 3.1. The mapping xj −→ xj + aj , j ∈ {1, 2, ..., n} extends to a
monomorphism µ : F/R′ −→ (R/R′)wr(F/R).

Let AutW represent the automorphism group of W . Consider a subgroup of
AutW denoted as AutW . The elements of AutW are characterized by their in-
variance of IR/R′ and F/R. In other words, if α ∈ AutW , then the automorphism
α :W →W satisfies α(IR/R′) ⊂ IR/R′ and α(F/R) ⊂ F/R.

The subsequent theorem analogies the embedding concept in Lie algebras, ini-
tially established by Bahturin and Nabiyev in [?]. The same arguments are em-
ployed to prove this theorem in the case of Leibniz algebras.

Theorem 3.2. An embedding denoted by ϑ : Aut(F/R′) → Aut((R/R′)wr(F/R))

exists, such that if α ∈ Aut(F/R′) preserves R/R′, and α̃ = ϑ(α), then α̃µ = µα,
where µ represents the embedding defined in Theorem 1.

The proof of the theorem at hand mirrors the demonstration employed by Bah-
turin and Nabiyev in establishing their result for Lie Algebras [?]. The author and
Tas Adiyaman have already given similar proofs in [15, 16] to obtain the explicit
matrix form of IA-automorphisms of the free metabelian Leibniz algebras, and the
theorem is a generalization of the corresponding result in [16].

Theorem 3.3. Let F/R′ be a Leibniz algebra of finite rank. Let G be the group
of invertible matrices of the form E + AQ, where E is the identity matrix, A =
[akj ]n×m is a fix matrix, Q = [qji]m×n is an arbitrary matrix both with coefficients

in UL(F/R), 1 ≤ i, k ≤ n, 1 ≤ j ≤ m. Then IAut(F/R′) ∼= G.
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4. The Dieudonné Determinant

Every invertible square matrix belonging to U((F/R)Lie) can be expressed as
a multiplication of elementary and diagonal matrices, as detailed in [3]. In this
context, elementary matrices differ from the identity matrix by, at most, a single
element outside the diagonal. Consider an algebra

(UL(F )/∆R)/(∆
m/∆R),m ≥ 2.

Denote by Hm the image of this algebra under the homomorphism ̂ and take the
multiplicative group H∗

m of all invertible elements of Hm. Since

(a+u+∆̂R)(a
−1−a−2u+. . .+(−1)m−1a−mum−1+∆̂R) = 1+∆̂R modulo ∆̂m/∆R,

we have

(a+ u+ ∆̂R)
−1 = a−1 − a−2u+ ...+ (−1)m−1a−mum−1 + ∆̂R modulo ∆̂m/∆R.

Therefore, the invertible elements in Hm can be expressed as

a+ u+ ∆̂R + ∆̂m/∆R

with u ∈ ∆̂ and 0 ̸= a ∈ K. Next, consider the commutator subgroup [H∗
m, H

∗
m]

within the group H∗
m. This subgroup is generated, modulo ∆̂m/∆R, by elements

characterized by the following expression

(1− u+ ∆̂R)(1− w + ∆̂R)(1− u+ ∆̂R)
−1(1− w + ∆̂R)

−1

Here, u and w belong to the set ∆. Let Sm be the subsemigroup of ̂UL(F )/∆R

generated by all such elements. For a matrix A belonging to the general linear
group GLn(Hm) over Hm, its Dieudonné determinant is defined by exploiting the
property that every invertible matrix over Hm can be diagonalized. For any arbi-
trary permutation σ ∈ Sn, we link it with the permutation matrix P (σ) = (δi,σ(j)),
where δ represents the Kronecker symbol.

For every invertible matrix A over a skew field, a decomposition A can be ex-
pressed as A = TDP (σ)V known as the Bruhat Normal Form, where

T =

 1 ∗ ∗
... ∗

0 1

 , D = diag(a1, ..., an), V =

 1 . 0
∗ .. .
∗ ∗ 1

 ,
σ is a permutation, P (σ) is the permutation matrix corresponding to σ. The
matrices D and σ are unique with these properties (refer to [4]). The Dieudonné
determinant of A is given by

Dm(A) = π(sgn(σ)a1...an),

where π is the canonical mapping H∗
m → H∗

m/ [H
∗
m, H

∗
m].

Theorem 4.1. Consider R as an ideal and F/R′ as a finitely generated Leibniz al-

gebra. Let M ∈ GLn(UL(F )/∆R) and detm(M) represent any preimage of Dm(M̂)
in UL(F )/∆R, where ∆R ⊂ ∆m for m ≥ 2. Then, for any arbitrary m,

detm(M) = (a+ ru)rgm modulo (∆m/∆R +∆Ann(F/R))

where a ∈ K \ {0}, u ∈ ∆̂R, gm ∈ Sm.
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Proof. Let M ∈ GLn(UL(F )/∆R). Since M is invertible over U(F )/∆R, then

M̂ , the image of M under the homomorphism̂: UL(F/R) → U((F/R)Lie), is an

invertible matrix over ̂UL(F )/∆R and it can be written as M̂ = E.D, where E is
the product of elementary matrices and

D = diag(a1 + ∆̂R, a2 + ∆̂R, ..., an + ∆̂R)

where 0 ̸= ai ∈ K by [14]. Given that the sole invertible elements within U(FLie)

are the elements belonging to the fieldK, the invertible elements within ̂UL(F )/∆R

can be expressed as

a1 + ∆̂R, a2 + ∆̂R, . . . , an + ∆̂R

where the elements a1, . . . , an are constrained to lie within the field K. Consider

the algebra Hm = ( ̂UL(F )/∆R)/(∆̂m/∆R). The image of M̂ over Hm remains

invertible. Consequently, the Dieudonné determinant of M̂ can be expressed as
follows

Dm(M̂) = a1.a2...an + ∆̂R + ( ̂∆m/∆R).

This representation implies that the Dieudonné determinant of M̂ can be further

written as a + u + w, where a = a1 · a2 . . . an ∈ K, u ∈ ∆̂R, and w ∈ ∆̂m/∆R.

Consider the algebra Hm = ( ̂UL(F )/∆R)/( ̂∆m/∆R). The image of M̂ over Hm is

also invertible. Therefore, the Dieudonné determinant of M̂ takes the form

Dm(M̂) = a1.a2...an + ∆̂R + ( ̂∆m/∆R).

This implies that the Dieudonné determinant of M̂ can be expressed as

a+ u+ w

where a = a1.a2 . . . an ∈ K, u ∈ ∆̂R, w ∈ ∆̂m/∆R. An arbitrary preimage detm(M̂)

of Dm(M̂) in ̂UL(F )/∆R is equal to

(a+ u)gm modulo( ̂∆m/∆R),

where, a = a1.a2...an, u ∈ ∆̂R, gm ∈ Sm. Through the homomorphism δ :
U((F/R)Lie) → UL(F/R) defined as δ(x) = rx, for x ∈ (F/R)Lie, it is clear

that any preimage detm(M) of detm(M̂) in UL(F )/∆R can be expressed as

(a+ ru)rgm modulo (∆m/∆R +∆Ann(F/R)),

where ∆Ann(F/R) is an ideal of UL(F/R) generated by the element rv + lv for
v ∈ F/R. □

Now we have

Theorem 4.2. Let ψ be an element of IAut(F/R′). Consider ψ̃ as the restricted
automorphism of ψ to IR/R′ , as defined in Theorem 3.2. Denote by M the matrix

corresponding to ψ̃, and let detm(M) represent an arbitrary preimage of Dm(M̂)
in UL(F )/∆R. It holds

detm(M) = (1 + ru)rgm mod (∆m/∆R +∆Ann(F/R))

where u ∈ ∆̂R and gm ∈ Sm for any m ≥ 2.
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Proof. Given an IA-automorphism ψ of F/R′. By the equality µψ = ψ̃µ from

Theorem 3.2 and the definition of the AutW , there exists an automorphism ψ̃
restricted to IR/R′ with an invertible corresponding matrix M over UL(F )/∆R.
Through the homomorphism

̂: UL(F/R) → U((F/R)Lie),

M̂ is also invertible over ̂UL(F )/∆R, expressed as

M̂ = E.D,

where E is the product of elementary matrices and D = diag(1+∆̂R, 1+∆̂R, ..., 1+

∆̂R). Consequently, this implies

Dm(M̂) = (1 + u)gm modulo ∆̂m/∆R

where, u ∈ ∆̂R and gm ∈ Sm. Thus, according to Theorem 4.1, the arbitrary
preimage of detm(M) in UL(F )/∆R is given by

(1 + ru)rgm modulo (∆m/∆R +∆Ann(F/R)).

□

Remark 4.3. Theorem 4.2 establishes a necessary condition for an IA-endomorphism
of F/R′ to qualify as an IA−automorphism. This condition provides a means to
identify the non-invertibility of a square matrix M over UL(F )/∆R. The process
involves computing detm(M), initiating from m = 1, and proceeding until the
condition outlined in the Theorem 4.2 is contradicted.

Example 4.4. Let R = γm(F ), m-th term of the lower central series of F , for
m ≥ 4 and ψ be the endomorphism of F/γm(F )′ defined as

ψ : x1 → x1 + [x1, x2] + [[x1, [x2, x3]], x4]

xi → xi + wi, i ̸= 1

where wi ∈ γm(F ). Through the verification of Theorem 3.3, it is determined that

the restriction of ψ̃ to IR/R′ is associated with the matrix M of the form
1 + rx2

rx1
+ rx3

lx1
rx4

lx2
.lx1

.rx4
... 0

u21 1 + u22 u23 ... u2n
u31 u32 1 + u33 ... u3n
. . . ... .
un1 un2 un3 ... 1 + unn


where uij ∈ ∆3. Let M be invertible in UL(F )/∆γm(F ). Then, M̂ is also invertible
and which is of the form

1 + x2 x1 − x3x1x4 x2x1x4 ... 0
û21 1 + û22 û23 ... û2n
û31 û32 1 + û33 ... û3n
. . . ... .
ûn1 ûn2 ûn3 ... 1 + ûnn

 .
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Since ∆γm(F ) ⊂ ∆3 for m ≥ 4, consider H3 = ̂U(F )/∆γm(F )/ ̂∆3/∆γm(F ). The

image of elements of M̂ in H3 determines
1 + x2 x1 0 ... 0

0 1 0 ... 0
0 0 1 ... 0
. . . ... .
0 0 0 ... 1

 .
Then, we obtain

D3(M̂) = 1 + x2 modulo (∆̂γm(F ) + ̂∆3/∆γm(F )).

Therefore,

det3(M) = 1 + rx2
+∆γm(F ) +∆3/∆

γm(F )
+∆Ann(F/R).

By Theorem 4.2,

1+rx2
+∆γm(F )+∆3/∆

γm(F )
+∆Ann(F/R) = 1+∆γm(F )+∆3/∆

γm(F )
+∆Ann(F/R).

Hence, it follows that rx2
∈ ∆γm(F ) +∆3/∆

γm(F )
+∆Ann(F/R). This is impossible,

thus, ψ̃ cannot be an automorphism.

Example 4.5. Let R = F ′, and consider the endomorphism ψ on F/R′ defined by
the following mappings

ψ : x1 → x1 + [[x1, x2] , x3] + w1,

xi → xi + wi, i ̸= 1.

where wi ∈ F ′′, i = 1, · · · , n. The associated matrix M is given in the form
1 + rx2

rx3
+ u11 lx1

rx3
+ u12 u13 .. u1n

u21 1 + u22 u23 ... u2n
u31 u32 1 + u33 ... u3n
. . . ... .
un1 un2 un3 ... 1 + unn

 ,
where wij ∈ ∆3. Let M be invertible in UL(F )/∆F ′′ . Hence, M̂ is

1 + x2x3 + û11 −x1x3 + û12 û13 ... û1n
û21 1 + û22 û23 ... û2n
û31 û32 1 + û33 ... û3n
. . . ... .
ûn1 ûn2 ûn3 ... 1 + ûnn


Since, ∆F ′′ ⊂ ∆3, take H3 = ̂UL(F )/∆

F ′′ /∆̂3/∆
F ′′ . M̂ in H3 is

1 + x2x3 −x1x3 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
. . . ... .
0 0 0 ... 1

 .
Then, we obtain

det3(M) = 1 + rx2
rx3

+∆
F ′′ +∆3/∆

F ′′ +∆Ann(F/R).
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By Theorem 4.2

1 + rx2
rx3

+∆
F ′′ +∆3/∆

F ′′ +∆Ann(F/R) = 1 +∆
F ′′ +∆3/∆

F ′′ +∆Ann(F/R).

This yields rx2
rx3

∈ ∆
F ′′ + ∆3/∆

F ′′ + ∆Ann(F/R). However, this is impossible.

Thus, ψ̃ and ψ are not automorphisms.

Example 4.6. Given an endomorphism ψ of F/F ′′ defined as

ψ : x1 → x1 + [[x2, x2] + [x2, x1] , x1]

xi → xi + [xi, xi] + [xi, x1], i ̸= 1

Its associated matrix M is
1 + lx2

rx1
(rx2

+ lx2
)rx1

0 ... 0
0 1 + rx2

+ lx2
+ rx1

0 ... 0
0 0 1 + rx3

+ lx3
+ rx1

... 0
. . . ... .
0 0 0 ... 1 + rxn

+ lxn
+ rx1


Then, M̂ is 

1− x2x1 0 0 ... 0
0 1 + x1 0 ... 0
0 0 1 + x1 ... 0
. . . ... .
0 0 0 ... 1 + x1


Since, ∆F ′′ ⊂ ∆2, consider H2 = ̂U(F )/∆

F ′′ /∆̂2/∆
F ′′ . M̂ in H2 is

1 0 0 ... 0
0 1 + x1 0 ... 0
0 0 1 + x1 .. 0
. . . ... .
0 0 0 ... 1 + x1


Then,

D3(M̂) = 1 + n.x1 + ...+ (x1)
nmodulo (∆̂

F ′′ + ∆̂2/∆
F ′′ ).

Hence, we obtain

det2(M) = 1 + nrx1
+ ...+ (rx1

)n +∆
F ′′ +∆2/∆

F ′′ +∆Ann(F/R).

By Theorem 4.2, we can express the equation as follows

1+nrx1
+...+(rx1

)n+∆
F ′′+∆2/∆

F ′′+∆Ann(F/R) = 1+∆
F ′′+∆2/∆

F ′′+∆Ann(F/R).

This yields nrx1
+ ... + (rx1

)n ∈ ∆
F ′′ + ∆2/∆

F ′′ + ∆Ann(F/R) and consequently,

nrx1
∈ ∆

F ′′ +∆2/∆
F ′′ +∆Ann(F/R). However, this is impossible. Therefore, ψ is

not an automorphism.

Conclusion

This study initially derives a matrix representation of the IA-automorphisms
on the Leibniz algebra F/R′. Following this, we set forth a prerequisite for an
IA-endomorphism of F/R′ to qualify as an IA-automorphism. In this criterion, we
identify the non-invertibility of a square matrixM over UL(F )/∆R. This approach
explicitly relies on the Dieudonn’e determinant.
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Abstract. In this manuscript, the eigenvalues and eigenfunctions of the two-
point fuzzy boundary value problem (FBVP) are analyzed under the concept of

interactivity between the fuzzy numbers found in the boundary conditions. A

fuzzy solution is provided for this problem via sup-J extension, which can be
seen as a generalization of Zadeh’s extension principle. Finally, an example is

presented in order to compare the given features.

1. Introduction

In this paper, the FBVP is considered

(1.1) û′′ + λû = 0, t ∈ [a, b]

which satisfies the conditions

â1û (a)−h â2û′ (a) = 0(1.2)

b̂1û (b)−h b̂2û′ (b) = 0(1.3)

where â1, â2, b̂1, b̂2 non-negative triangular fuzzy numbers, λ > 0, at least one of the

numbers â1 and â2 and at least one of the numbers b̂1 and b̂2 are nonzero and −h is
Hukuhara difference.

Fuzzy differential equation (FDE) is utilized to model problems in science and
engineering.In most of the problems there are uncertain structural parameters. In-
stead, many researchers have modeled these uncertain structural parameters as fuzzy
numbers in this area [4, 10]. This occurs a fuzzy boundary value problem with fuzzy
boundary conditions.

The studies of two-point FBVP have been made with the Hukuhara derivative
[11, 14] and generalized Hukuhara derivative [6, 15, 22, 27–29]. But in some cases

Date: Received: 2023-10-12; Accepted: 2024-07-29 1.
Key words and phrases. Fuzzy eigenfunction, Zadeh’s extension principle, Sup-J extension prin-

ciple, Interactive fuzzy numbers.
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the fuzzy solutions with Hukuhara derivative suffer from certain disadvantages since
the diameter of the solutions is unbounded as time increases [13, 14] and the fuzzy
solutions with generalized Hukuhara derivative have some not interval solutions which
are associated with the existence of switch points [20]. Moreover, Gasilov et al. argued
that the solutions obtained with the method of Khastan and Nieto [15] are difficult
to interpret because the solutions of the four different problems may not reflect the
nature of the studied phenomenon [9].

Another approach to solving FBVP has been proposed, including the Zadeh’s ex-
tension principle [1,17]. For a boundary value problem, the associated crisp problem
is solved and in the solution, the fuzzy boundary value is substituted instead of the
real constant. Then the arithmetic operations are regarded as operations on fuzzy
numbers [16].

Recently, several authors have used the concept of interactivity to study fuzzy
differential equations (FDEs) [5, 25]. The relation of interactivity between two fuzzy
numbers arises in the presence of a joint possibility distribution J for them. In this
case, the solution is obtained in terms of the sup−J extension principle of the solution
of an associated classical BVP. Moreover, this proposed approach always produces
a proper fuzzy solution, in contrast to other methods presented in the literature
[14, 15, 23]. This means that its α− cuts are proper intervals. Moreover, the fuzzy
solution obtained by this approach always has a smaller or equal to the solution via
Zadeh’s extension [12,17].

This paper analyses FBVP with fuzzy boundary values given by interactive fuzzy
values. The fuzzy solution is obtained using the sup − J extension principle [5]. In
order to illustrate the utility of this sup− J proposal, the solution of a second order
FBVP is presented.

2. Preliminaries

2.1. Solution for a crisp boundary value problem. Let the fuzzy problem (1.1-
1.3) be considered as a crisp problem.

Then we shall make use of solutions of (1.1) defined by initial conditions instead
of boundary conditions in a manner similar to Titchmarsh’s method [24].

Lemma 2.1. ( [24]) For any λ > 0 the equation

u′′ + λu = 0, t ∈ [a, b]

has a unique solution u = u (t, λ) satisfying the initial conditions

u (a) = a2, u′ (a) = a1 ( or u (b) = b2, u′ (b) = b1) .

For each t ∈ [a, b] , u (t, λ) is an entire function of λ

Two solutions Φλ (t) and Ψλ (t) of the equation (1.1) are defined as follows. Let
Φλ (t) = Φ (t, λ) be the solution of equation (1.1) on [a, b], which satisfies the initial
conditions

(2.1)

(
u (a)

u′ (a)

)
=

(
a2
a1

)
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and Ψλ (t) = Ψ (t, λ) be the solution of equation (1.1) on [a, b], which satisfies the
initial conditions

(2.2)

(
u (b)

u′ (b)

)
=

(
b2
b1

)
.

Let us consider the following linear and homogeneous differential equation with
(2.1) and (2.2) initial conditions, where a1, a2, b1, b2 ∈ R, given by

(2.3)

{
Φ′′ + λΦ = 0

Φ (a) = a2, Φ′ (a) = a1

and

(2.4)

{
Ψ′′ + λΨ = 0

Ψ (b) = b2, Ψ′ (b) = b1.

First, let’s search for the solution of the problem in (2.3) with the help of the
algorithm created by Sanchez et al. [19]. Then a solution is found for the problem
(2.4) by doing similar operations.

Firstly, the general solution of (2.3) is given

(2.5) Φλ(t) = C1Φ1(t) + C2Φ2(t),

where Φ1, Φ2 are linearly independent solutions of the homogeneous differential equa-
tion which is given as in (2.3).

The scalar coefficients C1 and C2 are determined from the initial values a2 and
−a1:

C1 =
Φ2(a)(a1) + Φ′2(a)a2

Φ1(a)Φ′2(a)− Φ2(a)Φ′1(a)
and C2 = − Φ1(a)(a1) + Φ′1(a)a2

Φ1(a)Φ′2(a)− Φ2(a)Φ′1(a)
.

Thus, from (2.5), the general solution of (2.3) is given by

(2.6) Φλ(t) = a1m1(t) + a2m2(t),

where m1(t) and m2(t) are defined for Φ1(a)Φ′2(a)− Φ2(a)Φ′1(a) 6= 0 as follows [9]:

(2.7) m1(t) =
Φ2(a)Φ1(t)− Φ1(a)Φ2(t)

Φ1(a)Φ′2(a)− Φ2(a)Φ′1(a)
, and m2(t) =

Φ′2(a)Φ1(t)− Φ′1(a)Φ2(t)

Φ1(a)Φ′2(a)− Φ2(a)Φ′1(a)
.

Similarly, the general solution of (2.4) is given by

(2.8) Ψλ (t) = b1m3(t) + b2m4(t),

where m3(t) and m4(t) are defined for Φ1(b)Φ′2(b)− Φ2(b)Φ′1(b) 6= 0 as follows

(2.9) m3(t) =
Φ2(b)Φ1(t)− Φ1(b)Φ2(t)

Φ1(b)Φ′2(b)− Φ2(b)Φ′1(b)
, and m4(t) =

Φ′2(b)Φ1(t)− Φ′1(b)Φ2(t)

Φ1(b)Φ′2(b)− Φ2(b)Φ′1(b)
.

Then this solutions Φλ(t) and Ψλ (t) are put in the Wronskians function

(2.10) w(λ) = Wλ (Φ,Ψ; t) = Φλ (t) Ψ′λ (t)− Φ′λ (t) Ψλ (t)

which are independent of t ∈ [a, b]. For each fixed t these functions and derivatives
are entire in λ [24].

Lemma 2.2. ( [24] If λ = λ0 is an eigenvalue, then Φ (t, λ0) and Ψ (t, λ0) are linearly
dependent and eigenfunctions corresponding to this eigenvalue .
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Theorem 2.3. ( [24]) The eigenvalues of the problem (1.1-1.3) are the zeros of the
function w (λ).

In Section 3, equations (2.6) and (2.8) will be used to define the fuzzy solution of
the second order two point boundary values problem with fuzzy boundary values.

Before the approach applied to solve an FBV problem is introduced, it is necessary
first to review some concepts of fuzzy sets theory.

2.2. Basic concepts of fuzzy sets.

Definition 2.4. ( [18]) Let E be a universal set. A fuzzy subset Â of E is given by
its membership function µÂ : E → [0, 1], where µÂ (t) represents the degree to which

t ∈ E belongs to Â. We denote the class of the fuzzy subsets of E by the sembol
F (E).

Definition 2.5. ( [16]) The α− cut of a fuzzy set Â ⊆ Edenoted by
[
Â
]α

, is defined

as
[
Â
]α

=
{
x ∈ E : Â (t) ≥ α

}
, ∀α ∈ (0, 1]. If E is also topological space, then the 0−

cut is defined as the closure of the support of Â ,that is,
[
Â
]0

=
{
x ∈ E : Â (t) > 0

}
.

The 1− cut of a fuzzy subset Â is also called as core of Â and denoted by
[
Â
]1

=

core
(
Â
)

Definition 2.6. ( [21]) A fuzzy subset û on R is called a fuzzy real number (fuzzy
interval), whose α− cut set is denoted by [û]

α
, i.e., [û]

α
= {x : û (t) ≥ 0}, if it satisfies

two axioms:
i. There exists r ∈ R such that û (r) = 1 ,
ii. For all 0 < α ≤ 1 , there exist real numbers −∞ < u−α ≤ u+α < +∞ such that

[û]
α

is equal to the closed interval [u−α , u
+
α ].

The set of all fuzzy real numbers (fuzzy intervals) is denoted by RF . FK (R), the
family of fuzzy sets of R whose α− cuts are nonempty compact convex subsets of
R. If û ∈ RF and û (t) = 0 whenever t < 0, then û is called a non-negative fuzzy
real number and R+

F denotes the set of all non-negative fuzzy real numbers. For all

û ∈ R+
F and each α ∈ (0, 1], real number u−α is positive.

Definition 2.7. ( [7]) An arbitrary fuzzy number û in the parametric form is repre-
sented by an ordered pair of functions [u−α , u

+
α ], 0 ≤ α ≤ 1, which satisfy the following

requirements
i. u−α is bounded non-decreasing left continuous function on (0, 1] and right- con-

tinuous for α = 0 ,
ii. u+α is bounded non- increasing left continuous function on (0, 1] and right-

continuous for α = 0 ,
iii. u−α ≤ u+α , 0 < α ≤ 1 .

Definition 2.8. ( [2,10]) A fuzzy number Â is said to be triangular if the parametric
representation of its α− cut is of the form for all α ∈ [0, 1]
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Â
]α

= [(m− a−α )α+ a−α , (m− a+α )α+ a+α ], where
[
Â
]0

= [a−α , a
+
α ] and core

(
Â
)

=

mȦ triangular fuzzy number is denoted by the triple (a−α ;m; a+α ).

Zadeh’s extension principle is a mathematical method to extend classical functions
to deal with fuzzy sets as input arguments [26]. For multiple fuzzy variables as
arguments, Zadeh’s extension principle is defined as follows.

Definition 2.9. ( [1]) Let f : X1 ×X2 → Z a classical function and let Âi ∈ F (Xi),

for i = 1, 2. The Zadeh’s extension f̂ of f , applied to (Â1, Â2), is the fuzzy set f̂

(Â1, Â2) of Z, whose membership function is defined by

f̂(Â1, Â2)(z) =

 sup
(x1,x2)∈f−1(z)

min{Â1(x1), Â2(x2)}, if f−1(z) 6= ∅,

0 , if f−1(z) = ∅

where f−1(z) = {(x1, x2) ∈ X1 ×X2 : f(x1, x2) = z} .

We can apply Zadeh’s extension principle to define the standard arithmetic for
fuzzy numbers [26] . Let [û]α = [u−α , u

+
α ] and [v̂]α = [v−α , v

+
α ]. For all α ∈ [0, 1] and

λ ∈ R , we have

[û⊕ v̂]α = [û]α + [v̂]α = {x+ y : x ∈ [û]α, y ∈ [v̂]α},
[λ� û]α = λ� [û]α = {λx : x ∈ [û]α}.

Theorem 2.10. ( [2]) Let X and Y be topological spaces, f : X → Y be a continuous

function and Â a fuzzy subset of XṠo for all α ∈ [0, 1], we have

[f̂(Â)]α = f
([
Â
]α)

.

As a consequence of Theorem 2.10, it is obtained that f̂(Â) is a fuzzy number

whenever the function f : X → Y be a continuous function and Â is a fuzzy number.
The concept of interactivity between fuzzy numbers is based on the notion of joint

possibility distributions [5]. More precisely, a fuzzy subset J of Rn is called a joint

possibility distribution of Â1, ..., Ân ∈ RF if

Âi(xi) = sup
xj∈R,j 6=i

J (x1, ..., xn) ,

for all xi ∈ R and for all i = 1, ..., n . Moreover, the fuzzy numbers Â1, ..., Ân are
said to be non-interactive if their joint possibility distribution is given by and for all

i = 1, ..., n. Moreover, the fuzzy numbers Â1, ..., Ân are said to be non-interactive if
their joint possibility distribution is given by

(2.11) Jˆ(x1, ..., xn) = min{Â1(x1), ..., Ân(xn)},∀(x1, ..., xn) ∈ R

Otherwise, the fuzzy numbers Â1, ..., Ân are said to be interactive . Next, the
notion of sup− J extension principle proposed by Carlsson et al. is presented [5].
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Definition 2.11. ( [5]) Let Â1, ..., Ân ∈ RF and f : Rn → R. Given a joint possibility

distribution J of Â1, ..., Ân , the sup − J extension of f at (Â1, ..., Ân) is the fuzzy

set f̂(J) := fJ(A1, ..., An) of R whose membership function is given by

f̂(J) (z) = sup
f(x1,...,xn)=z

J (x1, ..., xn) ,∀z ∈ R

for all z ∈ R, where f−1(z) = {(x1, ..., xn) : f((x1, ..., xn)) = z}.

Remark 2.12. If Â1, ..., Ân ∈ RF are non-interactive that is, if the corresponding
joint possibility distribution J is defined as in (2.11), then the sup − J extension
principle corresponds to the Zadeh’s extension principle of a function f : Rn → R
at (Â1, ..., Ân) ∈ RnF . In this case, the symbol f̂(Â1, ..., Ân) is used simply instead of

fJ(Â1, ..., Ân) to denote the Zadeh’s extension of f at (Â1, ..., Ân).

The next corollary is an immediate consequence of Theorem 2.10

Corollary 2.13. ( [5]) Let Â1, ..., Ân ∈ RF and let f : Rn → R be a continuous

function. If J is a joint possibility distribution of the fuzzy numbers Â1, ..., Ân, then
we have [

fJ(Â1, ..., Ân)
]
α

= f ([J ]α)

for all α ∈ [0, 1] .

The usual arithmetic operations of addition, subtraction, multiplication, and divi-
sion for fuzzy numbers are defined Definition 2.14. Other forms of arithmetic opera-
tions between fuzzy numbers can be established using the notion of sup−J extension
principle. Next, an arithmetic defined for the class of the linearly correlated (or
completely correlated) fuzzy numbers is presented [1].

Definition 2.14. ( [3,5]) Two fuzzy numbers A and B are linearly correlated if there
exists q, r ∈ R, q 6= 0, such that [B]α = q[A]α + r for each α ∈ [0, 1] or, equivalently,
if A and B are interactive with respect to JL given cutwise by

[JL]α = {(xq + r : x ∈ [A]α} .

In this case, we may simply write B = qA+ r is written.

If A and B are linearly interactive fuzzy numbers [B]α = q[A]α + r, with [A]α =
[a−α , a

−
α ] and [B]α = [b−α , b

+
α ], then the addition (+L) subtraction (−L) are given bye

(2.12) [B +L A]
α

= (q + 1) [A]α + r =

 [b−α + a−α , b
+
α + a+α ] if q > 0,

[b+α + a−α , b
−
α + a+α ] if − 1 ≤ q < 0,

[b−α + a+α , b
+
α + a−α ] if q < −1,

(2.13) [B −L A]
α

= (q − 1) [A]α + r =

 [b−α − a−α , b+α − a+α ] if q ≥ 1,
[b+α − a+α , b−α − a−α ] if 0 ≤ q < 1,
[b−α − a+α , b+α − a−α ] if q < 0,

for all α ∈ [0; 1] [3].
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Definition 2.15. ( [23]) Let û ∈ E and for α ∈ [0, 1], [û]α = [u−α , u
+
α ]. Then −h[û]α

is defined as follows:

−h[û]α = −h
[
u−α , u

+
α

]
= 0−h

[
u−α , u

+
α

]
=
[
−u−α ,−u+α

]
.

3. Solution Method of the FBVP

In this section we concern with the fuzzy initial value problems obtained by re-

placing the initial values a1, a2 and b1, b2 with fuzzy numbers â1, â2 and b̂1, b̂2 in
Equations (2.3) and (2.4). More precisely, let us consider the following FIVPs:

(3.1)

{
Φ′′ + λΦ = 0

Φ (a) = â2, Φ′ (a) = â1

and

(3.2)

{
Ψ′′ + λΨ = 0

Ψ (b) = b̂2, Ψ′ (b) = b̂1

where â1 = (a10, a1, a11), â2 = (a20, a2, a21), b̂1 = (b10, b1, b11) ,̂b2 = (b20, b2, b21) ∈
RF , λ is crisp number and λ = p2, p > 0.

We present two different methods such as sup-J and Zadeh extension principle to
solve the FIVPs (3.1) and (3.2).

Let Φ(.; a1, a2) and Ψ(.; b1, b2) be the deterministic solution of the associated IVPs
of equations (3.1) and (3.2), given in (2.6) and (2.8), where a1, a2, b1, b2 are the initial
conditions. Let’s first consider solution Φ and then similarly we get solution Ψ. Let U

be an open subset of R2 such that
(

[â1]
0 × [â2]

0
)
⊂ U . For each t, let be the operator

St : U → R ,given by

St (Φ0) = Φ (t,Φ0)

and J = JL be a joint possibility distribution of â1, â2 ∈ RF . The fuzzy solution of
(3.1) via sup− J extension principle is given by

Φ̂J (t) = St (â1, â2) .

If St is a continuous function, then by Corollary 2.13 , we have ( [19]):

Φ̂J (t) = [(St)J (â1, â2)]
α

= (St) ([J ]
α

)

=
{
St (z, qz + r) : z ∈ [â2]

α
=
[
(a2)

−
α , (a2)

+
α

]}
= m1 (t) z +m2 (t) (qz + r) : z ∈ [â2]

α
(3.3)

= (m1 (t) + qm2 (t))
[
(a2)

−
α , (a2)

+
α

]
+ rm2 (t)

for all α ∈ [0, 1].
If the initial conditions are non interactive fuzzy numbers, we can use Zadeh’s

extension principle to obtain a solution given by

Φ̂ (t) =
[
Ŝt (â1, â2)

]α
= St ([â1]

α × [â2]
α

)

=
{
St (â1, â2) : z ∈ [â2]

α
=
[
(a2)

−
α , (a2)

+
α

]}
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for all t ∈ [t0, T ]. If St is a continuous function, then by Corollary 2.13, we have:

Φ̂ (t) =
[
Ŝt (â1, â2)

]
(3.4)

=
{
St (z, qz + r) : a1 ∈ [â1]

α
=
[
(a1)

−
α , (a1)

+
α

]
, a2 ∈ [â2]

α
=
[
(a2)

−
α , (a2)

+
α

]}
= m1 (t)

[
(a2)

−
α , (a2)

+
α

]
+m2 (t)

[
(a1)

−
α , (a1)

+
α

]
for all α ∈ [0, 1].

Theorem 3.1. ( [8]) Let Φ̂ (t) and Φ̂J (t) be the Zadeh and linear linear interactive

solutions to the FIVP, respectively. Thus, Φ̂J (t) ⊆ Φ̂ (t) for all t ∈ R.

Similarly, we get Ψ̂ (t) and Ψ̂J (t) be the Zadeh and linear interactive solutions to
the FIVP, respectively.

The above theorem reveals that the linear interactive solution is contained in
Zadeh’s fuzzy solution. In fact, this result holds for every joint possibility distri-
bution J , such that J ⊆ J∧ [8].

Since λ is crisp (non-fuzzy) we substitute classical cases of the obtained fuzzy

solutions Φ̂λ (t) = Φ̂ (t, λ) and Ψ̂λ (t) = Ψ̂ (t, λ) in (2.10). So we get the Wronskian
function as follows

(3.5) w(λ) = Wλ (Φ,Ψ; t) = Φλ (t) Ψ′λ (t)− Φ′λ (t) Ψλ (t) .

Definition 3.2. ( [11]) Let [û (t, λ)]
α

= [u−α (t, λ) , u+α (t, λ)] be a solution of the fuzzy
differential equation 1.1 where α ∈ [0, 1]. If the fuzzy differential equation 1.1 has
the nontrivial solutions such that u−α (t, λ) 6= 0 and u+α (t, λ) 6= 0, then the λ = λ0 is
eigenvalue of (1.1)

Theorem 3.3. ( [11]) The roots of equations (3.5) coincide with the eigenvalues of
the fuzzy boundary value problem (1.1-1.3).

The next section presents an example of FBVP with interactive and non-interactive
boundary values.

4. Example

Consider the two point fuzzy boundary value problem

û′′ + λû = 0(4.1)

2̂u (0) + 1̂u′ (0) = 0(4.2)

4̂u (1) + 3̂u′ (1) = 0(4.3)

where 1̂ = (0, 1, 2), 2̂ = (1, 2, 3), 3̂ = (2, 3, 4) , 4̂ = (3, 4, 5)and λ = p2, p > 0.
From (4.1-4.3) problem and Definition 2.15, we get two FIVPs involving a crisp

differential equation (4.1) with fuzzy initial values as follows:

(4.4) Φ′′ + p2Φ = 0, Φ (0) = 1̂, Φ′ (0) = −h2̂
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Figure 1. The function W (λ) =
(

3p+ 8
p

)
sin (p) + (2) cos (p)

and

(4.5) Ψ′′ + p2Ψ = 0, Ψ (1) = 3̂, Ψ′ (1) = −h4̂

We shall define two solutions Φ̂λ (t) and Ψ̂λ (t) of the equations (4.4) and (4.5). The
linearly independent classical solution the homogeneous ODE of (4.4) are given

Φ1(x) = cos(pt), and Φ2(x) = sin(pt).

Thus, we have from 2.7

m1(t) = − sin(pt)

p
and m2(t) = cos(pt)

First the solution obtained from the Zadeh’s extension principle (3.4) is provided,
which is given by[

Φ̂ (t, λ)
]α

= m1(t) [α, 2− α] +m2(t) [α+ 1, 3− α](4.6)

= −1

p
sin (pt) [α, 2− α] + cos (pt) [α+ 1, 3− α]

for all α ∈ [0, 1] and t ∈ [0, 3.5].

Analogically Ψ̂ (t, λ) is obtained as follows[
Ψ̂ (t, λ)

]α
= m1(t) [α+ 2, 4− α] +m2(t) [α+ 3, 5− α](4.7)

= −1

p
sin (pt− p) [α+ 2, 4− α] + cos (pt− p) [α+ 3, 5− α]

for all α ∈ [0, 1] and t ∈ [0, 3.5].
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These Φ̂ (t, λ) and Ψ̂ (t, λ) have unique solution [24]. Then putting the classical
cases of (4.6) and (4.7) in equation (3.5), Wronskian function is obtained as

(4.8) w(p) =

(
3p+

8

p

)
sin (p) + (2) cos (p) .

From Theorem 3.3 , the eigenvalues of the fuzzy problem (4.1)-(4.3) are zeros the
functions w(λ) in (4.8).

If the values satisfying the equation (4.8) compute with Matlab Program, then
eigenvalues of fuzzy problem are obtained in Table 1. as follows:

pn λn
n = 1 2.9709 8.8262
n = 2 6.1827 38.2257
n = 3 9.3557 87.5291
n = 4 12.514 156.6

n ≈ nπ (nπ)
2

Table 1. Eigenvalues of the fuzzy problem

The first five eigenvalues are found numerically and then the approximation of the
remaining eigenvalues will be used. From Figure 1 It can be seen that the graphs
intersect at infinitely many point pn ≈ nπ (n = 1, 2, 3...), where the error in this
approximation approaches zero as n→∞. Given this estimate, Matlab program can
be used to compute pn more accurately.

From the equations (4.6) and (4.7)

(4.9)
[
Φ̂ (t, λn)

]α
= − 1

pn
sin (pnt) [α, 2− α] + cos (pnt) [α+ 1, 3− α]

and

(4.10)
[
Ψ̂ (t, λn)

]α
= − 1

pn
sin (pnt− pn) [α+ 2, 4− α]+cos (pnt− pn) [α+ 3, 5− α]

are eigenfunctions associated with λn = (pn)
2
.

In particular, p1 = 2.9709 is selected in Table 1 and substituted this value respec-
tively in (4.9) and (4.10).

First the solutions obtained from the Zadeh’s extension principle 3.4 are provided
,which are given by[

Φ̂ (t, p1)
]α

= m1 (t, p1) [α, 2− α] +m2 (t, p1) [α+ 1, 3− α](4.11)

= − 1

2.9709
sin (2.9709t) [α, 2− α] + cos (2.9709t) [α+ 1, 3− α]

and [
Ψ̂ (t, p1)

]α
= m1 (t, p1) [α+ 2, 4− α] +m2 (t, p1) [α+ 3, 5− α]

= − 1

2.9709
sin (2.9709t− 2.9709) [α+ 2, 4− α](4.12)

+ cos (2.9709t− 2.9709) [α+ 3, 5− α]

for all α ∈ [0, 1] and for all t ∈ [0, 3.5].
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Figure 2. The gray-scale lines varying from white to black represent
the α−cuts of the fuzzy solution (4.11 ) via sup−J extension princi-
ple, where their endpoints for varying from 0 to 1. Black dashed lines
represent the 0-cut of the fuzzy solution (4.13) via Zadeh extension

principle of Φ̂

Then, it is assumed that 1̂, 2̂ and 3̂, 4̂ are linearly interactive, then there exists
(q, r) such that B = qA + r with (q = 1, r = 1 for 1̂, 2̂ and 3̂, 4̂ linearly interactive

numbers). In this case the solutions Φ̂j and Ψ̂j obtained from the sup− j extension
principle by means of 3.3 whose α−cut is given by[

Φ̂j (t, p1)
]α

= (m1 (t, p1) + qm2 (t, p1)) [α, 2− α] + rm2 (t, p1)

=

(
− 1

2.9709
sin (2.9709t) + q cos (2.9709t)

)
[α, 2− α](4.13)

+r cos (2.9709t)

and [
Ψ̂j (t, p1)

]α
= (m1 (t, p1) + qm2 (t, p1)) [α, 2− α] + rm2 (t, p1)

= − 1

2.9709
sin (2.9709t− 2.9709) [α+ 2, 4− α](4.14)

+ cos (2.9709t− 2.9709) [α+ 3, 5− α]

for all α ∈ [0, 1] and for all t ∈ [0, 3.5]. Fig. 2 and Fig. 3 illustrate the fuzzy solutions
(4.13) and (4.14) of this FBVP for the cases where the boundary values are interactive
as well as non-interactive.

Note that the solution via sup-J extension principle is contained in the solution via
Zadeh’s extension principle, corroborating the statement provided in [12].
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Figure 3. The gray-scale lines varying from white to black represent
the α−cuts of the fuzzy solution (4.12 ) via sup−J extension princi-
ple, where their endpoints for varying from 0 to 1. Black dashed lines
represent the 0-cut of the fuzzy solution (4.14) via Zadeh’s extension

principle of Ψ̂

5. Conclusion

This manuscript studies linear ordinary differential equations with two point bound-
ary values given by interactive fuzzy numbers. The solution is obtained by means of
the sup − J and Zadeh’s extension principle from the deterministic solutions of the
associated BVP. The boundary values are non-interactive fuzzy numbers, then the
fuzzy solution is given via Zadeh’s extension principle.

We study linear two point FBVP with boundary values given by interactive and
non-interactive fuzzy numbers. We show that the interactive fuzzy solution is con-
tained in the non-interactive fuzzy solution by Fig.2 and Fig. 3. So it can be con-
cluded that the fuzzy interactive solution with uncertain boundary conditions (with a
membership degree given by their α-cuts) that is closer to the classical deterministic
solution.

The approach via H-derivative or gH-derivative for two-point FBVP is equivalent
to the study some systems of classical differential equations, which can result in an
additional study of switching points. In contrast to this approach, the fuzzy solutions
obtained by means of the extension principle are always well defined and do not require
the analysis of the existence of switching points. Moreover from Zadeh’s extension
principle, the sign of the solution is not considered itself and the signs of its first and
second derivatives.
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Abstract. The aim of this study is to redesign the space curve and its Frenet
framework, which are extremely important in terms of differential geometry, by

using conformable derivative arguments. In this context, conformable counter-

parts of basic geometric concepts such as angle, vector, line, plane and sphere
have been obtained. The advantages of the conformable derivative over the

classical (Newton) derivative are mentioned. Finally, new concepts produced

by conformable derivative are supported with the help of examples and figures.

1. Introduction

Perhaps the most interesting and well representative field of study of differential
geometry is the theory of curves. Examination of the local properties of the curves
yields different and important results. This theory has very different applications
in linear and nonlinear differential equations and physics. Frenet equations are at
the forefront of the most widely used and natural structure of the theory of curves.
These equations have a very elite status in geometry and have many different uses.
These formulas were first used in 1847 and discovered and published by Frenet J.F.
Unaware of him, Serret J.A. calculated the same formulas in 1851. For this reason,
these formulas are called the Frenet-Serret formulas by giving the names of both
today. In this way, many new curve concepts have joined the geometry family with
the help of Frenet-Serret vectors. The best examples of this are Bertrand curve
pair, Mannheim curve pair and Involute-Evolute curve pair. In addition, Bishop,
Darboux and Sabban frames in Euclidean and Minkowski spaces are different ap-
proaches to describing the motion of the curve. With the help of these approaches,
many studies are carried out for the properties or characterization of curves in
3-dimensional Euclidean and Minkowski spaces according to Frenet, Bishop and
Darboux frame [1, 2, 3].
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Classical analysis, a mathematical theory widely used today, was discovered by
Leibniz G. and Newton I. in the second half of the 17th century, based on the
concepts of derivative and integral, and are also referred to as Newtonian analy-
sis. Over time, alternative analyses to Newton analysis are tried to be produced.
Fractional analysis can be considered as the most important of these. Fractional
analyses, which is first mentioned in Leibniz’s letter to L’Hospital in 1695, aim
to expand integer order derivatives to fractional orders. This theory, which is not
widely accepted at first, are gained a place in every field today. The most impor-
tant reason for this is the assumption that fractional analyzes have some advantages
over Newtonian analysis. It is a fact that fractional analysis gives more numerical
results than Newtonian analysis, especially in the solutions of some special differen-
tial equations [4, 5, 6, 7]. In this context, fractional analysis are become extremely
popular and as a result, many types of fractional analysis are emerged. In general,
fractional derivatives are grouped under two headings: global fractional derivative
and local fractional derivative. The most important of the global fractional deriva-
tives are Riemann-Liouville, Caputo, Grünwald-Letnikov, Wely, Riesz [8, 9, 10, 11].
The most important of the local fractional derivatives are proven themselves today
as conformable, M -derivative and V -derivative [12, 13, 14, 15]. Global and local
fractional derivatives have a big distinction within themselves. The most important
difference between them is that global derivatives do not satisfy Leibniz and the
chain rule as in the classical derivative, while local fractional derivatives do not have
such a disadvantage. In addition, in global fractional derivatives, the derivative of
the constant is not zero except for the Caputo derivative, but this is not the case
in local derivatives. This situation is made local derivatives more indispensable in
some matters.

The theory of curves and surfaces can be defined as the study of the motion of
a point in a space with the help of linear algebra and calculus. Moreover, Leib-
niz and the chain rule are two indispensable elements when making calculations
in differential geometry. For this reason, if fractional analysis is to be applied in
differential geometry, the most appropriate one is local fractional derivatives. Frac-
tional calculus has been used effectively in the field of differential geometry for the
last decade, as it has proven itself in every field. This adventure was first started
when Yajima T. and Kamasaki K. examined the Caputo fractional derivative of
surfaces [16]. Additionally, Yajima T. et al. succeeded in creating the Frenet frame
using fractional calculus [17]. Lazopoulos K.A. and Lazopoulos A.K. are made frac-
tional calculations on manifolds [18]. Evren M.E. explained that local fractional
derivatives are more useful and advantageous than global fractional derivatives in
differential geometry [19]. Has A. et al obtained some advantages of the conformable
derivative in terms of geometry compared to the classical derivative [20]. Gozutok
and colleagues created the Frenet frame using conformable derivatives [21]. Fol-
lowing these developments, the use of fractional analysis in differential geometry
has increased tremendously and many studies have been carried out on this subject
[22, 23, 24, 25, 26, 27, 28, 29, 30].

In this study, the basic geometric properties of the curves were reconstructed
using compatible derivative arguments. In the first stage, the main concepts of
angle, vector, line, plane and sphere, which are geometric concepts, were redesigned
with the help of conformable calculus. In addition, the orthogonal and orthonormal
systems, which can be considered the basis of vectors, have been redefined in a
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similar way. Afterwards, with these of the conformable concepts obtained, the
conformable space curve and the conformable Frenet framework at any point of it
were created. In the final, examples were given and enriched with figures to make
the subject more fluent.

2. Preliminaries

Khalil R. et al. are introduced a new derivative called the conformable fractional
derivative of order α of the function f , which is defined as [12]:

Dα(f)(s) = lim
ε→0

f(s+ εs1−α)− f(s)

ε
.

where f : [0,∞) → R and 0 < α < 1. The relationship between the conformable
derivative and the classical derivative, where f ′(s) = df(s)/ds, is obtained as fol-
lows:

Dαf(s) = s1−α
d

ds
f(s).

We say with the next theorem that the conformable derivative satisfies some
properties such as linearity, Leibniz’s rule and chain rule, as in the conventional
derivative.

Theorem 2.1. Let f : [0,∞) → R and 0 < α < 1. The following are provided as
functions f, g are α-differentiable functions. For all a, b, p, λ ∈ R [12],

(1) Dα(af + bg)(s) = aDαf(s) + bDαg(s),
(2) Dα(sp) = psp−α,
(3) Dα(λ) = 0,
(4) Dα(fg)(s) = f(s)Dαg(s) + g(s)Dαf(s),

(5) Dα( fg )(s) = g(s)Dαf(s)−f(s)Dαg(s)
g2(s) ,

(6) Dα(g ◦ f)(s) = fα−1(s)Dαf(s)Dαg(f(s)).

The conformable integral was defined by Khalil R. et al. as the inverse operator
of the conformable derivative operator. Accordingly, the conformable integral of
the α−differentiable function f and for [t, s], is as follows [12]

Iαt f(s) = Ist (sα−1f) =

∫ s

t

f(s)

s1−α
ds.

In addition, f being a conformable differentiable function is given below for t > 0

DαIα[f(s)] = f(s)

The derivative limit of vector-valued functions has also been investigated by
means of conformal analysis. We give this in the following theorem.

Theorem 2.2. Let the function f be a function with n variables and each compo-
nent is conformable differentiable. Then the conformable derivative of the function
f is [32]

Dαf(f1(s), fn(s), ...fn(s)) = f(Dαf1(s), Dαfm(s), ..., Dαfn(s)).
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3. Some concepts of conformable differential geometry

In this section, the most basic concepts of geometry will be reconstructed with
conformable arguments.
Notation: Along the study, expressions that are equal to 1 when α → 1 will be
denoted as 1α and expressions that are equal to 0 when α → 1 will be denoted
as 0α. In addition, in order to avoid confusion between classical and conformable
concepts, Cα will be left in charge of conformable concepts.

Remark 3.1 (A geometric approach to conformable derivative). The geo-
metric interpretation of the conformable derivative is based on the notion of fractal
geometry. In fractal geometry, objects exhibit self-similarity at different scales. The
conformable derivative captures this self-similar behavior of a function by consider-
ing its local fractional variations. Geometrically, it can be understood as analyzing
the ”zooming in” behavior of the function at that point, similar to the classical de-
rivative capturing the local linear behavior. Overall, the geometric interpretation
of the conformable derivative relates to the self-similarity and scaling properties
of functions, enabling us to understand their behavior at different levels of detail
and resolution. More specifically, the conformable derivative can be explained as a
measure of how much a straight line and plane bend to form a curve and a surface.
Figure 3 shows how a line is curved with the conformable calculus effect.

There are no Euclidean lines in the Cα−(conformable) space, this only happens
when α→ is 1. We present this in Figure 3. This situation leads us to define a new
angle in Cα− space. Because we cannot measure the angle between the classical
angle and the lines in Cα− space. This new angle is called the Cα− angle, and it
measures the angle between the Cα−lines.

Let ‖u‖ = 1α and v are Cα−unit vector that is, they are vectors of the form
‖u‖ = 1α and ‖v‖ = 1α. Then, the α−conformable radian measure of Cα−angle
between u and v is defined by

θα = arccos

(
〈u,v〉
‖u‖‖v‖

)
.

It is also said that u and v are Cα−orthogonal when the following condition is
proved,

〈u,v〉 = 0α.

When x=1, Cα− space has a different structure than Euclidean space, so the concept
of Cα− orthogonality will differ from. For example, let’s consider the vectors u =
(s1−α, 1 − α, 1

s1−α ) and v = ( 1−α
sα , sα, 2 − 2α) in Cα− space. Since 〈u,v〉 = 0α,

vectors u and v are Cα−orthogonal. We showed this in Figure 1.
As in Euclidean space, in Cα−space the vector u × v is Cα−orthogonal to the

vectors u and v. For example, if u = (s1−α, 1−α, 1
s1−α ) and v = ( 1−α

sα , sα, 2− 2α),

u×v = (2α2−4α−s2α−1 +2, 2αs1−α−2s1−α− α
s + 1

s ,−α
2s−α+2αs−α−s−α+s)

is obtained. It is also seen that 〈u × v,u〉 = 0α and 〈u × v,v〉 = 0α. We showed
this in Figure 2.
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Figure 1. Cα−orthogonal vectors.

Figure 2. Cα−orthogonal system.

Definition 3.2. Cα−line l with a direction v through the point Pα = ((p1)α, (p2)α)
is a subset of E2 is defined as

l = {X ∈ E2 : X = Pα + vαf(t)}

where f(t) =
∫
t1−αdt, vα = ((v1)α, (v2)α) and Pα is the point whose coordinates

contain α.

Example 3.3. Let consider the s 7→ x(s) = (s,
∫
s1−αds), Cα−line passing through

the point P = (0, 0) and whose direction is v = (s1−α, s1−α).
In Fig. (3) we present the graph of the Cα−line for different α values.

Definition 3.4. Cα−plane Γ passing through a point Pα = ((p1)α, (p2)α, (p3)α)
and Cα−orthogonal to v is a subset of E3 defined by (see Fig. 4)

Γ = {X ∈ E3 : 〈X − Pα,vα〉 = 0α}

where X = (Iaαx1, I
a
αx2, I

a
αx3), vα = ((v1)α, (v2)α, (v3)α) and Pα is the point whose

coordinates contain α.

Example 3.5. Let X be a representation point of the Cα−plane that contains the
point P = (0, 0, 0) and whose normal is v = (21−α,−31−α, 0). If X representative
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Figure 3. Cα−lines.

point is chosen as follows

x1(s) =

∫
x1−αdx,

x2(s) =

∫
y1−αdy,

x3(s) = 0

we get the Cα−plane. In Fig. (4) we present the graph of the Cα−plane for different
α values.

Figure 4. Cα−plane for different α values.

Definition 3.6. Cα−sphere with radius rα and centered Cα = ((x0)α, (y0)α, (z0)α)
is a subset of E3 defined by (see Fig. 5)

S2α(Cα, rα) = {X ∈ E3 : ‖X − Cα‖ = rα}
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where X = (Iaαx1, I
a
αx2, I

a
αx3). It should be noted here that the rα and Cα values

are not constant values. That is, the center and radius of the Cα−sphere change for
each value of α. We shall denote by S2α the Cα−sphere with radius 1α and centered
at Cα = (0α, 0α, 0α).

Example 3.7. Let S2α(Cα, rα) be a Cα−sphere in R3 parameterized by ϕ. If the
coordinate functions of ϕ is chosen as follows,

f1(u, v) = −
∫ ∫

vα−1uα−1 sinu cos vdudv

f2(u, v) =

∫ ∫
vα−1uα−1 sinu sin vdudv

f3(u, v) =

∫
uα−1 cosudu

we get the Cα−sphere as ϕ(u, v) = (f1(u, v), f2(u, v), f3(u, v)). In Fig. (5), we
present the graph of the Cα−sphere for different α values.

Figure 5. Cα−sphere for different α values.

4. Cα−parametrized curves and their Cα−frame

Given that a 3-dimensional vector valued function to the Cα− space as follow

x : I ⊂ R→ E3(4.1)

s→ x(s) = (x1(s),x2(s),x3(s))(4.2)

We call x that satisfies the following equation Cα−naturally parameterized curve.

‖Dαx(s)‖ = s1−α

where Dαx(s) = (Dαx1(s), Dαx2(s), Dαx3(s)). Also, when Dαx(s) 6= 0α, x is
called a Cα−regular curve and Dαx(s) ×D2

αx(s) 6= 0α, x is called a Cα−biregular
curve in Cα−space for each s ∈ I.
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We named the triple apparatus {E1, E2, E3}, defined as follows, as the Cα−frame
vectors at point s ∈ I of Cα−naturally parameterized curve x:

(4.3) E1(s) = Dαx(s), E2(s) =
DαE1(s)

‖DαE1(s)‖
, E3(s) = E1(s)× E2(s).

The E1, E2 and E3 trio are called the Cα tangent, principle normal and binormal
at the point s ∈ I of x, respectively. Moreover, the vectors of the Cα−frame E1,
E2 and E3 are Cα−orthogonal and Cα−orthonormal.

Theorem 4.1. The conformable derivative change of the Cα−frame at point s ∈ I
of the Cα−naturally parameterized x curve is as follows

(4.4)

DαE1

DαE2

DαE3

 =

 0 κα 0
−κα 0 τα

0 −τα 0

E1

E2

E3

 .
Proof. Considering Eq. (4.3), as follows

E1 = s1−αT,(4.5)

E2 =
(1− α)s1−2α√

(1− α)2s2−4α + s4−4ακ2
T +

s2−2ακ√
(1− α)2s2−4α + s4−4ακ2

N,(4.6)

E3 =
s3−3ακ√

(1− α)2s2−4α + s4−4ακ2
B.(4.7)

Differentiating of both sides of the above first equation α-th order conformable
derivative as for s, we obtain

(4.8) DαE1 = (1− α)s1−2αT + s2−2ακN.

and

(4.9) ‖DαE1‖ =
√

(1− α)2s2−4α + s4−4ακ2.

Let’s consider the κα = ‖DαE1‖ equation here and use this equation in Eqs. (4.5),
(4.6) and (4.7), we get

E1 = s1−αT,(4.10)

E2 =
(1− α)s1−2α

κα
T +

s2−2ακ

κα
N,(4.11)

E3 =
s3−3ακ

κα
B.(4.12)

Since the triple {E1, E2, E3} is Cα−orthogonal basis in E3,the following equation
exist

(4.13) DαE1 = a11E1 + a12E2 + a13E3.

On the other hand, let’s consider the definition of κα and Eq. (4.3)

DαE1 = καE2

is obtained. Considering this equation in Eq. (4.13), we can be write as

a12 = κα.

Now, considering Eqs. (4.9), (4.10) and (4.11) by taking advantage of the scalar
product of Eq. (4.13) with E1, we get

〈DαE1, E1〉 = a11〈E1, E1〉+ a12〈E1, E2〉+ a13〈E1, E3〉,
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(1− α)s2−3α = a11s
2−2α + κα

(1− α)s2−3α

κα
.

So we get the following result as
a11 = 0.

Anologously, considering Eqs. (4.7) and (4.8), by taking advantage of the scalar
product of Eq. (4.13) with E3, we get

a13 = 0.

The other part of the theorem is proved similarly. �

Conclusion 1. There is a relationship between the conformable derivative and
the classical (Newton) derivative. When α → 1 is selected in the Conformable
derivative, it is possible to return to the classical derivative results. Similarly, since
the Cα−frame is obtained by conformable derivative, when α → 1 is selected, the
Cα−frame turns into a classical Frenet frame. For this reason, a curve can be
examined and compared both in Cα−space and Euclidean space.

Conclusion 2. The conformable derivative has some advantages over the classical
derivative in terms of geometric meaning. The most important of these advan-
tages is that conformable derivatives can be defined at points where the classical
derivative is not defined. Thus, at points where tangents cannot be created with
the classical derivative, alternative tangents can be created with the help of con-
formable derivative. For example, the derivative of the function f(x) = 2

√
x is not

defined at x = 0. Then it is impossible to create a tangent at x = 0. However,
if the conformable derivative is applied by selecting α = 1

2 in the function f(x),
Dαf(x) = 0. In other words, while a classical tangent cannot be mentioned at
the point x = 0, a conformable tangent can be mentioned. The most important
element of the Frenet frame is the tangent vector. Because other Frenet vectors
can be obtained depending on the tangent vector. Thus, at points where the Frenet
frame cannot be created, the curve can be examined by creating a Cα−frame.

Example 4.2. Let x : I ⊂ R → E3 be a Cα−naturally parametrized curve in R3

parameterized by

x(s) =
(

2s
1
2 , s

3
2 , s

5
2

)
.

The classical derivative of x and the conformable derivative for α = 1
2 are as follows

x′(s) =

(
s

−1
2 ,

3

2
s

1
2 ,

5

2
s

3
2

)
,(4.14)

D 1
2
x(s) =

(
1,

3

2
s,

5

2
s2
)
.(4.15)

where x′(s) and D 1
2
x(s) are the classical tangent and Cα−tangent of x(s), respec-

tively. Considering Eqs. (4.14) and (4.14), while x′(0) is undefined for s=0, D 1
2
x(0))

is defined. We show this situation in Figure 6.

Moreover, as mentioned in Conclusion 1, while a Frenet frame cannot be obtained
at points where there is no derivative of a curve, a Cα−frame can be established at
the same point.

Theorem 4.3. Let x = x(s) be Cα−naturally parametrized curve in the Euclidean
3−space where s measures its Cα−arc length. When α → 1, its curvature and
torsion are κα → κ and τα → τ , respectively.
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Figure 6. Classical tangent and Cα−tangent of the curve x(s).

Figure 7. Frenet frame and Cα−frame of the curve x(s) at s = 0.

Proof. Let x = x(s) be a regular Cα−curve x. Here let’s consider the definition of
κα and Eq. (4.9), we have

(4.16) κα = s1−α
√

(1− α)2s−2α + s2−2ακ2.

Also considering the definition of τα and Eqs. (4.11), (4.12) we get

(4.17) τα =
s5−5ακ2

κ2α
τ.

Here is seen, while α→ 1, κα → κ and τα → τ . �

Example 4.4. Let x : I ⊂ R→ E3 be a Cα−naturally parametrized curve in R3

parameterized by

x(s) =

(
3

5
cos s,

3

5
sin s,

4

5
s

)
.

From Eqs. (4.5), (4.6) and (4.7), we get
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E1 =
(
−3s1−α

5 sin s, 3s
1−α

5 cos s, 4s
1−α

5

)
,

E2 =
(
−3(1−α)s1−2α sin s−3s2−2α cos s

5κα
, 3(1−α)s

1−2α cos s−3s2−2α sin s
5κα

, 4(1−α)s
1−2α

5κα

)
,

E3 =
(

4s3−3α

5κα
sin s, −4s

3−3α

5κα
cos s, 3s

3−3α

5κα

)
.

In addition, the Cα−curvature and torsion of the Cα−curve x is calculated as in
Eqs. (4.16) and (4.17) as follows

κα =
s1−α

5

√
25(1− α)2s−2α + 9s2−2α,

τα =
36s3−3α

125(1− α)2s−2α + 45s2−2α
.

For different values of α the graphs of the curvature κα and torsion τα with
fractional-order as in following Fig. 8 and Fig. 9.

Figure 8. Cα−curvatures, κα.

Figure 9. Cα−torsion, τα.

Example 4.5. Let x : I ⊂ R → E3 be a Cα−naturally parametrized curve in E3

parameterized by

x(s) =
(
− 225

16

∫
sα−1(sin 25s+ sin 9s)ds, 225

16

∫
sα−1(cos 25s− cos 9s)ds, − 225

8

∫
sα−1 sin 17sds

)
.

In Fig. (10) we present the graph of the Cα−naturally parametrized curve for
different α values
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Figure 10. Cα−naturally parameterized curve for different α values.

5. Conclusion

In this study, we want to bring a new perspective to some problems that cannot
be solved in Euclidean space, with the help of conformable derivatives. Alternatives
have been created for some concepts that cannot be defined in Euclidean space with
the help of conformable derivatives and have now become examinabla. In addition,
one of the most attractive features of this situation is that new concepts can be
compared with their classical forms since the return to Euclidean space is achieved
at α→ 1.
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Abstract. For a coloring set B ⊆ Zn, by considering the Fox n-coloring of

any knot K and using the knot semigroup KS , we show that the set B is

actually the same with the set C in the alternating sum semigroup AS(Zn, C).
Then, by adapting some results on Fox n-colorings to AS(Zn, B), we obtain

some new results over this semigroup. In addition, we present the existence of

different homomorphisms (or different isomorphisms in some cases) between
the semigroups KS and AS(Zn, B), and then obtained the number of homo-

morphisms is in fact a knot invariant. Moreover, for different knots K1 and

K2, we establish one can obtain a homomorphism or an isomorphism from the
different knot semigroups K1

S and K2
S to the same alternating sum semigroup

AS(Zn, B).

1. Introduction

It is known that the knots are equalivance classes of topological inclusions from
S1 to S3 under ambient isotopes which these isotopes give the smooth deformations
between two knots. We may refer the classical book [8] for the details in knot
theory. In here, we will mainly give our interest to Torus knots and Pretzel links
during the construction of our theories.

As indicated in [7], the fundamental quandle of a knot was defined in a similar
manner to the fundamental group of a knot, which made quandles are important
tools in knot theory. The number of homomorphisms from the fundamental quandle
to a fixed finite quandle has an interpretation as colorings of knot diagrams by
quandle elements, and has been widely used as a knot invariant. Furthermore
involutary quandles are defined on a single binary operation ([10]). In detail, they
are the algebraic way to represent the Reidemeister movements ([1]) and so they are
important to obtain new knot invariants and also important to investigate knots.
On the other hand, Fox n-colorings are actually the best known involutary quandles.
These colorings will be briefly indicated in coming next subsection, and also one
part of the main result will be constructed the base on this subject (see Theorem
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2.1 in below). In fact the other whole main theorems (which are about Pretzel links
and Torus knots) given in this paper can be thought as consequences of Theorem
2.1.

Figure 1.

Let P (p1, p2, · · · , pn) be an n-Pretzel link S3 in where pi ∈ Z represents the
number of half twists (or, we can call it as regions) as depicted in Figure 1. If
n = 3, then it is called a classical pretzel link P (p, q, r). If n is odd, then an
n-Pretzel link P (p1, p2, ..., pn) is a knot if and only if none of two pi’s are even.
If n is even, then P (p1, p2, ..., pn) is a knot if and only if only one of the pi’s is
even. Generally the number of even pi’s is the number of components unless pi’s
are all odd. On the other hand, Torus knots are identified by the number of times
the strand wraps around the torus meridionally and longitudinally. We speak of a
Torus knot Tp,q, where p and q are relatively prime; when p and q are not relatively
prime, we obtain a link of two or more components ([15]).

Let K be an oriented knot (or link) with n crossings. Label those crossings
by 1, 2, · · · , n and label the n arcs by a1, a2, · · · , an. Construct an n × n matrix
M such that each row r corresponds to the crossing labeled by again r and each
column s corresponds to the arc labeled by again s. Suppose that at crossing r the
over-passing arc is labeled ai, that the arc aj ends at crossing r, and that the arc
ak begins at crossing r. Suppose also that i, j and k are mutually distinct. Assume
also that crossing r is positive. Then, for a real number t, the entries will be the
formed as M(r, i) = 1 − t, M(r, j) = −1 and M(r, k) = t. When crossing r is
negative, then M(r, i) = 1− t, M(r, j) = t, M(r, k) = −1 and other elements of M
are zero.

The Alexander matrix AK is defined as to be the matrix obtained from the matrix
M by deleting row n and column n. It is also known that the Alexander polynomial
∆K(t) of a knot K is the determinant of it’s Alexander matrix (see, for instance,
[2, 11]), and the Alexander polynomial at t = −1 (and then taking absolute value)
defines the determinant of a knot K. We recall that the Alexander polynomial is
the first invariant polynomial defined on knots. The invariant property of these
polynomials of the knots that belongs to the same equivalence classes are the same.
We note that while the Alexander polynomials of a Torus Tp,q (cf. [15]) and a
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Pretzel link P (p, q, r) (cf. [19]) are

∆Tp,q
(t) =

(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
and

∆P (p,q,r)(t) =
1

4

[
(pq + pr + qr)(t− 2 + t−1) + (t+ 2 + t−1)

]
,

respectively, the determinants of them are calculated by

(1.1) ∆Tp,2(−1) = p and ∆P (p,q,r)(−1) = pq + pr + qr ,

and respectively.

1.1. Quandles and Fox n-Coloring. For any set Q, by defining two binary op-
erations x . y and x .−1 y which satisfy (x . y) .−1 y = x, one can obtain a quandle
over Q. If only (x . y) . y = x holds, then it is named as involutory quandle. On
the other hand, the other important quandle is the named as Alexander quandle
which consists of a quandle with a left action given by a . b = ta + (1 − t)b. The
importance of Alexander quandle comes from the fact that it is another way the
computation of Alexander polynomials. On the other hand, if we take t = −1 in an
Alexander quandle, then we get the dihedral quandle. The dihedral quandles are
placed into knot colorings (in some sources, authors use the term Fox n-coloring).
We may refer, for instance, [4, 5, 6, 7, 9, 10, 14] for more details on quandles, color-
ings and some other well known types. In this paper, we will apply Fox n-coloring
to the knots in terms of dihedral quandles by following the fact that they are knot
invariant and very useful for the characterization of a knot.

At this point let us briefly indicate the meaning of Fox n-coloring. For a knot
K and a diagram D of K, let A be the set of arcs in D. Now let us matching (not
necessarily one to one) the elements of A by the elements of Zn. Also, for each
matching, let us consider the equivalence

(1.2) a . b ≡ c ≡ −a+ 2b (mod n) such that n ≥ 2

such that a and c represent the numerical values in Zn for the bottom arcs, re-
spectively, while b represents the numerical value in Zn for the upper arc. After
all, if whole equivalences satisfy up to Zn then we say that the knot K is named
as Fox n-colorable (or shortly n-colorable). The subject Fox n-coloring is actually
correspondent to the involutory quandle ([10]). In here, we strongly note that since
the matrix obtained by deleting the last row and column of the coefficient matrix
of n-coloring equations and the matrix obtained by replacing t = −1 in Alexander
matrix of K are the same, we get that the positive integer n is the determinant of
K itself (in other words n = ∆K(−1)) or it is a positive integer that divides this
determinant (in other words n | ∆K(−1)).

Now let us denote the number of colorings of K in terms of the quandle Q by
ColQ(K). Then we have the following lemma.

Lemma 1.1 ([7]). The quandle Q distinguishes knots K and K ′ if ColQ(K) 6=
ColQ(K ′).

1.2. Semigroups KS and AS(G,B). Recently, it has been defined a new semi-
group under the name of knot semigroups and denoted by KS (cf. [18]). The
elements of KS are the arcs of the knot K and the relations are every crossings on
K. In fact for a single crossing as in Figure 2, we have two relations xy = yz and
zy = yx, where x, y and z are the generators.
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Figure 2. Two relations xy = yz and zy = yx obtained from a single crossing

There are some immediate examples that can be given. Firstly, since the un-
knot (or, equivalently, a circle), notated by 01, contains a unique arc without any
crossing, then the knot semigroup of unknot is actually a free semigroup with a
single generator which can be expressed as KS(01) = 〈x ; 〉. Second example can be
given on torus knots Tp,q, where p and q are relatively prime; when p and q are not
relatively prime we obtain a link of two or more components. By taking q = 2, we
obtain the torus knot semigroups

KSTp,2
= 〈 a0, a1, a2, ..., ap−1 ; a0a1 = a1a2, a1a2 = a2a3, · · · , ap−2ap−1 = ap−1a0,

a0ap−1 = ap−1ap−2, ap−1ap−2 = ap−2ap−3,

· · · , a2a1 = a1a0 〉 .(1.3)

The diagram for the torus knot semigroup

KST3,2
= 〈x, y, z ; xy = yz, zy = yx, yx = xz, zx = xy, xz = zy, yz = zx〉

is drawn in Figure 3.

Figure 3. The diagram of the knot semigroup KST3,2
and its presentation

In the following, we will give our attention to important terminologies, namely
alternating sum and alternating sum semigroups, for the knot semigroups. The
details and some properties on them can be found in [18].

Definition 1.2 ([18]). Let G be a group as the form of either Zn or Z, and let
B ⊆ G. For any positive word b1b2b3 · · · bk ∈ B+, the alternating sum of this word
is the value of the expression

b1 − b2 + b3 · · · (−1)k+1bk

that is calculated in G. Further, any such two words u, v ∈ B+ are in relation ∼ if
and only if the length of u is equal to the length of v and the alternating sum of u
is equal to the alternating sum of v.

Moreover since the relation ∼ is a congruence on the set B+, we then get a factor
semigroup B+/ ∼. Let us denote it shortly by AS(G,B) and call it an alternating
sum semigroup.
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Another version of the alternating sum semigroup has also been defined in [18]
under the name of strong alternating sum semigroups which will not be needed in
this paper.

Since one of our main aim is to obtain a homomorphism (or an isomorphism in
some special cases) between knot semigroups and alternating sum semigroups, in
the following we will give some fundamental facts about it.

Suppose that A+/κ is a knot semigroup, where A is the set of arcs and κ is the
cancellative congruence on the free semigroup A+ induced by the defining relations
of the knot semigroup. Also similarly as above, let ∼ be a congruence on B+, where
B is an alphabet of the same size as A. To obtain an isomorphism between A+/κ
and B+/ ∼, the following lemma is useful.

Lemma 1.3 ([18]). Let us consider a bijection φ : A → B that in fact induces an
isomorphism φ : A+ → B+. Consider a congruence κ on A+ and a congruence ∼
on B+ such that for each u, v ∈ A+, if uκv then φ(u) ∼ φ(v). Then φ induces not
only a mapping but also a homomorphism ψ : A+/κ→ B+/ ∼. Additionally let us
suppose that there exists a subset, namely set of canonical words, of B+ such that
in each class of ∼ there is exactly one canonical word and at least one word of each
class of κ is mapped by φ to a canonical word. Then ψ is actually an isomorphism.

By considering Lemma 1.3, it has been proved the following theory in [18].

Proposition 1 ([18]). The knot semigroup KSTp, 2
of the torus knot diagram Tp, 2

(where p is odd) is isomorphic to the alternating sum semigroup AS(Zp,Zp).

In this paper, it will be detailed this isomorphism defined in Proposition 1 up to
decomposition of p. More clearly, we will say that the set B is changed depends on
the value of p or the label corresponding an arc on the diagram of the torus. (See
Theorem 2.12, Corollary 3 below).

2. Main Results

Under this section, we will present our main theorems to reach the aim of this
paper.

2.1. Connection Fox n-Coloring and Alternating Sum Semigroup. In this
first result section, by comparing the Fox n-Coloring which is used for coloring of
knots and the alternating sum semigroup, we will get the number of homomorphism
from first to second, and also solve a conjecture given in [18, Conjecture 24]. In
fact our approximation solve a more general case.

Theorem 2.1. Let C be a set for using n-coloring of the knot K. Then there
exists a homomorphism1 from the knot semigroup KS of K to the alternating sum
semigroup AS(G,C), where the set G is actually Zn that is used for n-coloring. In
fact the reverse part is also valid.

Proof. By the meaning of Fox n-coloring, each arc in the knot was matched with
an element of Zn and the values obtained after each matching had to be satisfied
Equation (1.2) which was written for each crossing of the knot. On the other hand,
the relations of the knot semigroup KS are the relations of the form xy = yz and

1We should note that when we define such a homomorphism, we assume that the numerical
value of each arc in the knot diagram and the values of these arcs in the semigroup AS(Zn, C)

are equal.
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zy = yx that were written for each crossing. It is easy to see that if we carry these
relations to any alternating sum semigroup AS(G,C) such that C ⊆ G, then they
become the form of x − y = y − z and z − y = y − x since the subset C contains
the relations that satisfy the equations x− y = y − z, z − y = y − x in AS(G,C).

Now let us rewrite the equation given in (1.2) as c−b ≡ b−a (mod n), and let us
renamed the values a, b and c as z, y and x, respectively. Also take G = Zn. Then
the elements used in Fox n-coloring and the elements of B become same. According
to the above replacements and equations, since x−y = y−z = −(z−y) = −(y−x),
it will enough to obtain the values that satisfy the equation either x− y = y− z or
z − y = y − x. �

Example 2.2. For a Torus knot T3,2, since the determinant ∆T3,2(−1) = 3 by
Equation (1.1), the knot T3,2 can be colored in terms of G = Z3. Further, since the
number of colors is 9, it can be defined 9 different homomorphisms from KST3,2

to
AS(Z3, C). Additionally the total number of the set C using the coloring of T3,2 is
4 which are defined as

C = {0}, C = {1}, C = {2}, C = {0, 1, 2} .

By considering these sets, the 9 homomorphisms defined from KST3,2 to AS(Z3, C)
are as presented in Table 2.2. We strictly note that 6 of among these 9 homomor-
phisms are actually isomorphisms. As a result of this, one can easily say that the
homomorphisms defined from KST3,2

to AS(Z3, C) are not unique.

Homomorphism
φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

E
le

m
en

ts x 0 1 2 0 0 1 1 2 2
y 0 1 2 1 2 0 2 0 1
z 0 1 2 2 1 2 0 1 0

The first consequence of Theorem 2.1 is the following.

Corollary 1. For the value t in the homomorph semigroup AS(Zt, B) of KS, we
have either t = ∆K(−1) or t | ∆K(−1).

Proof. According to Theorem 2.1, the knot K can be colored in terms of the subset
B in the semigroup AS(Zt, B). However it is well known that to a knot K be
colored by modulo n, the value n must satisfy n = ∆K(−1) or n | ∆K(−1). Thus
it is seen that t = n or t | n which implies that t = ∆K(−1) or t | ∆K(−1). �

Depends on the above corollary, if a knot K can be colored by modulo t then it
can be colored by modulo kt as well. In fact the importance of this theory for us is
the values of t which satisfies t ≤ ∆K(−1).

The following lemma is important for the characterization of a knot.

Proposition 2 ([3]). If a knot can be colored by modulo n > 2, then it cannot be
deformed to an unknotted curve.

Now by considering Corollary 1 and Proposition 2 together, one can decide
whether a knot can be deformed to an unknot via homomorphisms.
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Corollary 2. If there exists a homomorphism from the knot semigroup KS of a
knot K to any alternating sum semigroup AS(G,B), then K cannot be deformed to
an unknot. In here, KS and AS(G,B) are different than KS(01) and N, respectively.

Proof. Assume that such a homomorphism exists with the certain rule of not every
element of KS mapped to a single element in AS(G,B). Under this rule, since the
images of all values are same then the knot is colored by a unique color obviously.
On the other hand, by Theorem 2.1, the subset B can be used for Fox n-coloring
as well. Then, by Proposition 2, K cannot be unknot, as required.

Note that, sinceKS(01) is actually an unknot (circle), the homomorphismKS(01) →
N obviously cannot imply a deformation as required. �

In [18, Conjecture 24], it has been recently stated that a knot diagram has the
knot semigroup isomorphic to N if and only if it is a diagram of the trivial knot. In
the following, by considering a splittable knot, we present a more effective situation.

Lemma 2.3 ([16]). If a link is splittable then it can be colored by modulo n ≥ 2.

Therefore we have the following result which has a direct proof by Lemma 2.3
and Theorem 2.1.

Theorem 2.4. Suppose K is a splittable knot. Then one can define a non-trivial
homomorphism from the knot semigroup KS to the alternating sum semigroup
AS(Zn, B).

2.2. Results on the links P (u,m, 1), P (−u,−u,−u) and Tp,2. In this section,
by obtaining knot semigroups of some special Pretzel and Torus links, we will
formulate how one can establish the elements of the alternating sum semigroups
AS(G,B) that are homomorph of the knot semigroups of these links. Moreover,
depends on these formulas, we will give another formulate concerning about the
number of homomorphisms from the knot semigroups of these links to the related
semigroups AS(G,B).

Unless stated otherwise throughout this section n,m, p ∈ Z+.
First of all, we should note that the diagram of the Pretzel link P (u1, u2, u3) can

be drawn as in Figure 4 according to the famous book [12]. Thus, by considering
the crossing as indicated in Section 1.2 over the diagram in Figure 4, we obtain the
following lemma. In fact the proof of it will be omitted since it is basically based
on the idea in Section 1.2.

Lemma 2.5. The knot semigroup for the Pretzel link P (u1, u2, u3) is defined as
KSP (u1,u2,u3) = 〈A ; R〉, where A = {a0, a1, a2, · · · , au1+u2+u3−1} and the relation
set R is
(2.1)

From regions u1 : au1+1au1
= au1

au1−1 = · · · = a1a0 ,
a0a1 = a1a2 = · · · au1−1au1

= au1
au1+1 ,

From regions u2 : au1au1+2 = au1+2au1+3 = · · · = a0au1+u2+1 ,
au1+u2+1a0 = a0au1+u2 = · · · = au1+3au1+2 = au1+2au1 ,

From regions u3 : au1+2au1+1 = au1+1au1+u2+2 = · · · = au1+u2+1a1 ,
a1au1+u2+1 = au1+u2+1au1+u2+u3−1 = · · · = au1+1au1+2 .


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Figure 4. The diagram for the Pretzel link P (u1, u2, u3).

Although Lemma 2.5 will not be directly needed in our theories, it will be used
as an adaption to the cases P (u,m, 1) and P (−u,−u,−u) in below. By replacing
the link P (u1, u2, u3) to the link P (u,m, 1), the first related result is obtained as
in the following.

Theorem 2.6. The knot semigroup KSP (u,m,1) of the Pretzel Link P (u,m, 1) is
homomorphic to the semigroup AS(Zt, B), where
(2.2)
B = {x0 + rk ; r = 0, 1, 2, · · · , u+ 1 } ∪ {x0 + [s(u+ 1)− 1] k ; s = 2, 3, 4, · · · ,m }

such that x0, k ∈ Zt are arbitrary elements and

(2.3) either t = (m+ 1)(u+ 1)− 1 or t | (m+ 1)(u+ 1)− 1 .

Remark 2.7. The set B in (2.2) is the same set with C in Fox n-coloring (used
in Theorem 2.1), and the number t in (2.3) is giving the number n in the Fox
n-colorings. These correspondents are also valid for Theorems 2.9 and 2.12.

Proof. By Lemma 2.5, it is clear that the generating set is given asA = {a0, a1, a2, . . . , au+m}.
On the other hand, by considering the diagram in Figure 5 and then replacing the
equations in (2.1) to the case P (u,m, 1), the relation set R can be obtained as in
Eq. (2.4) below.

Figure 5. Diagram for the Pretzel link P (n,m, 1).
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(2.4)

From the region u : au+1au = auau−1 = · · · = a1a0 ,
a0a1 = a1a2 = · · · = au−1au = au1

au+1 ,

From the region m : auau+2 = au+2au+3 = · · · = au+ma0 = a0au+1 ,
au+1a0 = a0au+m = · · · = au+2au ,

From the region 1 : au+2au+1 = au+1a1 ,
au+1au+2 = a1au+1 .


Let us match each ai with an element xi ∈ Zt. Now, by the diagram in Figure

5, if we translate a general relation aiaj = ajak (where i, j and k are the elements
of the set {a0, a1, · · · , au+1}) to the alternating sum, then we clearly get

xi − xj = xj − xk .
Thus, if we apply same translation to the first row of “From the region u” in Eq.
(2.4), then we get

(2.5) xu+1 − xu = xu − xu−1 = · · · = x1 − x0 .
To simplify of the calculation, let us equalize the equation in (2.5) to an arbitrary
value k ∈ Zt. After that, by assuming the initial value as x0 = x0, we have

(2.6) x1 = x0+k , x2 = x0+2k , · · · , xu = x0+uk , xu+1 = x0+(u+1)k .

Similarly as in (2.5), by applying the alternating sum to the first row of “From
the region m” in Eq. (2.4) and by the last term

(2.7) x0 − xu+1 = −(u+ 1)k

of Eq. (2.6), we clearly have

xu − xu+2 = xu+2 − xu+3 = · · · = x0 − xu+1 = −(u+ 1)k .

In the last equality, let us think each difference pairs separately as in Eq. (2.7). In
that case, we obtain the following systematical equations.

xu − xu+2 = −(u+ 1)k ⇒ xu+2 = x0 + 2 [(u+ 1)− 1] k

by the equality in (2.7)

xu+2 − xu+3 = −(u+ 1)k ⇒ x0 + 2 [(u+ 1)− 1] k − xu+3 = −(u+ 1)k

⇒ xu+3 = x0 + 3 [(u+ 1)− 1] k

by iteratively using of the equality in (2.7)

...
...

...

xu+m−1 − xu+m = −(u+ 1)k ⇒ xu+m = xu+m−1 + (u+ 1)k ⇒
⇒ xu+m = x0 +m [(u+ 1)− 1] k(2.8)

by iteratively using of the equality in (2.7)

xu+m − x0 = −(u+ 1)k ⇒ xu+m = x0 − (u+ 1)k .(2.9)

Now, by equalizing the values of the term xu+m in Eqs. (2.8) and (2.9), we
obtain

(2.10) (mu+m+ u)k = 0 or equivalently (mu+m+ u)k ≡ 0 (mod t)
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In here, the congruence (mu+m+u)k ≡ 0 (mod t) gives the correctness of equations
in (2.3), as required.

At this point we should note that one can also take t = k or t | k to be held
the congruency in (2.10). So this will also give that since all xi’s are equal to each
other, the equations for alternating sum semigroup still hold. However, since such
these solutions will imply infinite number of homomorphisms, we only consider the
cases t = ∆K(−1) or t | ∆K(−1).

To end up the proof, let us express how can one define a homomorphism as
required in theorem. For the semigroups KSP (u,m,1) = A+/κ and AS(Zt, B) =

B+/ ∼, where A = {a0, a1, a2, . . . , au+m} (which is the set of arcs), B is as in the
expression of theorem, κ is the set of relations as given in (2.4) and ∼ is the set
of relations correspond to the relations in (2.4) which we have already obtained in
above. Now, since for each ai (0 ≤ i ≤ u + m) we obtain a different corresponds
value xi up to choosing of x0, k and t, this will imply that we have a finite number
of different functions φj : A → B with the rule ai → xi. Thus, by Lemma 1.3,
there must exists a unique homomorphism from A+/κ to B+/ ∼ for each of these
different functions. In fact the number of such these different homomorphisms is
defined in Theorem 2.16 below.

Hence the result. �

Example 2.8. For P (u,m, 1), if one choose x0 = 0, k = 1 and t = (m+1)(u+1)−1,
then the number of elements in sets A and B become equal. Therefore we have a
one-to-one matching between each ai and xi which implies that we obtain not only
a homomorphism from KSP (u,m,1) to AS(Zt, B) but also an isomorphism. In here,
the set B is defined as

{0, 1, 2, · · · , u, u+ 1, 2(u+ 1)− 1, 3(u+ 1)− 1, · · · , m(u+ 1)− 1} .

By applying a quite similar progress as in the case of P (u,m, 1), we can obtain
similar results for the Pretzel link P (−u,−u,−u) and the Torus knot Tp,2. In the
following, by omitting the proofs but considering Lemma 1.3, we will indicate the
existence of homomorphisms from the knot semigroup KSP (−u,−u,−u) to AS(Zt, B)
as in the coming result which is another version of Theorem 2.6. We first note
that, by [12], the diagram of the Pretzel link P (−u,−u,−u) is drawn as in Figure
6, and so as a consequence of Lemma 2.5 one can easily obtain the generating set
A = {a0, a1, a2, . . . , a3u−1} while the set of relations R as defined in Eq. (2.11)
below.

(2.11)
From the first region −u : au+1au = auau−1 = · · · = a1a0 ,

a0a1 = a1a2 = · · · = au−1au = auau+1 ,

From the second region −u : au+2au+1 = au+1au+3 = · · · = a2ua2u+1 = a2u+1a2 ,
a2a2u+1 = a2u+1a2u = · · · = au+3au+1 = au+1au+2 ,

From the third region −u : auau+2 = au+2a2u+2 = · · · = a3u−1a0 = a0a2u+1 ,
a2u+1a0 = a0a3u−1 = · · · = a2u+2au+2 = au+2au .


Thus the other main result of this paper is the following.
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Figure 6. Diagram for the Pretzel link P (−u,−u,−u).

Theorem 2.9. We always have a finite number of homomorphisms from KSP (−u,−u,−u)
to the alternating sum semigroup AS(Zt, B), where

B = {x0 + rk ; r = 0, 1, · · · , u+ 1 } ∪ {x0 + (u+ 2s)k ; s = 1, 2, · · · , u− 1 }
such that x0, k are arbitrary elements of Zt and either t = 3u or t | 3u.

On the other hand the existence of isomorphism is defined as follows.

Theorem 2.10. For only u = 1, there exists KSP (−u,−u,−u) ∼= AS(Zt, B).

Proof. If u = 1, then the diagram and knots of the P (−1,−1,−1) are the same
with the diagram and knots of Torus knot T3,2. So, by Proposition 1, we have
KST3,2

∼= AS(Z3,Z3). On the other hand, if u 6= 1, then the number of arcs in the
diagram of P (−u,−u,−u) is 3u (which gives the cardinality of the generating set
A) and so the number of elements in the set B is (u+2)+(u−1) = 2u+1. However,
for all u > 1, since it is always true that 3u > 2u+ 1, we obtain the number of arcs
in P (−u,−u,−u) is greater than the number of elements of B which implies that
it cannot be defined an isomorphism. �

It is known that tricolorability (i.e. Fox n-coloring when u = 3) is an invariant
under Reidemeister moves (cf. [1]). Since invariant property is an important tool
in every branch of mathematics, it is good enough to study tricolorability for our
cases. In fact, by the condition t = 3u or t | 3u in Theorem 2.9, it is not hard to
see that t can be choosed as 3. That means there exists a homomorphism from the
semigroup KSP (−u,−u,−u) to AS(Z3, B). Therefore we have the following result.

Theorem 2.11. All Pretzel links P (−u,−u,−u) are tricolorability.

Now let us give our attention to the Torus knot. In the remaining part of this
section, we will adapt the theories on P (u,m, 1) and P (−u,−u,−u) to the Torus
knot Tp,2. Recall that the case p = 3 in Torus knot gives P (−1,−1,−1) and so
there is nothing to do since we have already obtained previously. Therefore in the
following result the case p = 3 coincides with Theorems 2.9, 2.10 and 2.11.

Theorem 2.12. Consider the Torus knot Tp,2 (where p and 2 are relatively prime)
as defined in (1.3). Then we have a homomorphism from the Torus knot semigroup
KSTp,2 to the alternating sum semigroup AS(Zt, B), where

B = {x0 + rk ; r = 0, 1, 2, · · · , p− 1 } ,
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x0, k ∈ Zt and either t | ∆Tp,2
(−1) or t = ∆Tp,2

(−1) such that ∆Tp,2
(−1) = p by

(1.1).

Proof. In the proof, we will actually follow a similar way as in the proof of Theorem
2.6. Now if we translate the relations defined in (1.3) to the relations of AS(Zt, B),
then we have

(2.12) x0 − x1 = x1 − x2, x1 − x2 = x2 − x3, · · · , xp−2 − xp−1 = xp−1 − x0 .
By rearranging and then equalizing a constant k, we also get

x0 − x1 = x1 − x2 = x2 − x3 = · · · = xp−2 − xp−1 = xp−1 − x0 = k ,

which can be clearly written as

x1 = x0 + k, x2 = x0 + 2k, · · · , xp−1 = x0 + (p− 1)k ,

In (2.12), as the general term, let us take xp−2−xp−1 = xp−1−x0 = k and then
replace the xi values all the related places. So

x0 + (p− 2)k − (x0 + (p− 1)k) = x0 + (p− 1)k − x0 = −k = (p− 1)k

=⇒ pk ≡ 0 (mod t) .

Therefore, by this last congruence, we must have t | p or t = p, where p = ∆Tp,2
(−1).

The set of arcs (or equivalently the generating set) is defined asA = { a0, a1, a2, · · · , ap−1}
while the set of xi values is given by B = {x0 + rk ; r = 0, 1, 2, ..., p− 1 }. Hence,
by applying Lemma 1.3, we reached that there exists a homomorphism from KSTp,2

to AS(Zt, B), as required. �

Example 2.13. In Theorem 2.12, if we choose x0 = 0, k = 1 and t = ∆Tp,2(−1) =
p, then the set B is given by {0, 1, 2, · · · p− 2, p− 1}. Therefore the number of arcs
in Torus knot Tp,2 and the cardinality of B are both p, and so there is a one-to-one
correspondence between each arc in A and each element in B. So, by Lemma 1.3,
we obtain an isomorphism KSTp,2

∼= AS(Zp, B).

Remark 2.14. We strictly note that a similar situation in Example 2.13 (which
is an example of Theorem 2.12) was given as a result in the paper [18, Theorem
3] by considered with only a unique isomorphism. Nevertheless, Example 2.13
actually shows that different choices for arbitrary x0, k and p will imply different
isomorphisms between KSTp,2

and AS(Zp, B).

The situation depicted in Example 2.13 and Remark 2.14 can be summarized
with the following theorem.

Theorem 2.15. To define an isomorphisms between KSTp,2
and AS(Zt, B), it must

be held k 6= 0, k - p and t = p.

Proof. Without loss of the generality, let us investigate the cases as k = 0, k | p
and t 6= p, respectively.

• Let k = 0. If we write 0 instead of k in the set B in Theorem 2.12,
then we have B = {x0}. But, in this case, whole elements of Tp,2 map
to a single element in the homomorphism from KSTp,2

to AS(Zt, B) which
clearly breaks down the isomorphism.

• Assume k | p. Let us reconsider the set B in Theorem 2.12. By the
assumption, for any ri 6= 0 (0 ≤ i ≤ p − 1), we get rik ≡ 0 (mod p). But,
since this will imply that x0+0k = x0+rik (as the meaning of congruence
classes), we cannot reach the isomorphism.
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• Suppose t < p and t | p. Remember that the set B in Theorem 2.12 was
obtained by considered the equivalence over modulo t = p. However, when
we take it as t < p and t | p, clearly the cardinality t of B will be definitely
less than p. On the other hand, the number of arcs in the knot diagram
(or equivalently, the number of generators in the knot semigroup) is still
p. This means that we cannot define an isomorphism between KSTp,2

and
AS(Zt, B) since the cardinality of B is less than p.

As a result of these above facts, we say that to define an isomorphism from KSTp,2

to AS(Zt, B) (or vice versa), all conditions in theorem must be satisfied. �

Finally, we can bring together Theorems 2.6, 2.9 and 2.12 in a common point as
in the following.

Theorem 2.16. For simplicity, let N denotes one of P (u,m, 1), P (−u,−u,−u)
or Tp,2. Then the number of homomorphisms from each of the knot semigroups
KSN to the alternating sum semigroup AS(Zt, B) is

χ−1∑
i=1

t2i

such that ti | ∆N (−1) and χ is the number of ti’s that divides t.

Proof. In Theorems 2.6, 2.9 and 2.12, we established that if one wants to define
a homomorphism from one of the knot semigroups of P (u,m, 1), P (−u,−u,−u)
ve Tp,2 to the alternating sum semigroup AS(Zt, B), then the value t must be
satisfied t | ∆N (−1) or t = ∆N (−1), and additionally, for each of these theorems,
we presented the related B set while t = ∆N (−1). Remember that the elements
x0, k ∈ Zt were chosen arbitrarily in these B sets. It easy to verify that each of x0
and t can be chosen t different ways from Zt which imply that the values of x0 and
t can be totally chosen as t2 different options. On the other hand, since we obtain
different B sets up to for each different choices of x0 and k, we get t2 different
homomorphisms that can be defined on these B sets.

For t = ∆N (−1), now let us consider the ti | t values and say χ to the number of
such ti’s. In here we must consider 1 does not count in χ since Fox n-colorings start
always from n ≥ 2 (by Lemma 2.3 or more generally Equation (1.2)) and so ti 6= 1.
Let Bi denotes a congruence class of the elements in B depends on the value ti.
According to Theorems 2.6, 2.9 and 2.12, one can define a homomorphism from the
knot semigroup to the semigroup AS(Zti , Bi) in which x0, k ∈ Zti . With the same
idea as in the above paragraph, ti

2 different choices can be applied to x0 and k in
Zti , and since each of those gives a new homomorphism, we get total ti

2 different
homomorphisms for each ti from the knot semigroup to the semigroup AS(Zti , B).
Hence, since this situation can be seen for all ti | t, we say that the total number

of homomorphisms is

χ−1∑
i=1

t2i , as required. �

Remember that the number of colorings of a knot K in terms of the quandle Q
was denoted by ColQ(K). By considering Lemma 1.1, we can give the following
result as a consequence of Theorems 2.1 and 2.16.
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Theorem 2.17.

ColQ(N ) =

χ−1∑
i=1

t2i .

One may also present the following particular corollary as a consequence of
Theorems 2.1, 2.12 and 2.16.

Corollary 3. For a prime p, there are total p2 homomorphisms and p2 − p iso-
morphisms from KSTp,2

to AS(Zp, B).

3. CONCLUSION

In this study, the homomorphism relations between the nodal semigroups and
the alternative total semigroups of some pretzel chains and torus chains are in-
vestigated and the number of homomorphisms and isomorphisms in some special
cases are given.
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(Mehmet CITIL) Kahramanmaraş Sütçü İmam University, Department of Mathematics,

46100, Kahramanmaraş, Turkey
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Abstract. In a recent paper (Cf. [1]), we have introduced the definitions

and studied the essential properties of the generalized topological operators

g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) (g-Tg-derived and g-Tg-coderived oper-

ators) in a generalized topological space Tg = (Ω,Tg) (Tg-space). Mainly,
we have shown that (g-Derg, g-Codg) ∶ P (Ω) ×P (Ω) Ð→ P (Ω) ×P (Ω)
is a pair of both dual and monotone g-Tg-operators that is (∅,Ω), (∪,∩)-

preserving, and (⊆,⊇)-preserving relative to g-Tg-(open, closed) sets. We have

also shown that (g-Derg, g-Codg) ∶ P (Ω) ×P (Ω) Ð→ P (Ω) ×P (Ω) is a

pair of weaker and stronger g-Tg-operators. In this paper, we define by trans-

finite recursion on the class of successor ordinals the δth-iterates g-Der
(δ)
g ,

g-Cod
(δ)
g ∶ P (Ω) Ð→ P (Ω) (g-T

(δ)
g -derived and g-T

(δ)
g -coderived operators)

of g-Derg, g-Codg ∶P (Ω)Ð→P (Ω), respectively, and study their basic prop-

erties in a Tg-space. Moreover, we establish the necessary and sufficient condi-

tions for (g-Der
(δ)
g , g-Cod

(δ)
g ) ∶P (Ω)×P (Ω)Ð→P (Ω)×P (Ω) to be a pair of

g-Tg-derived and g-Tg-coderived operators in Tg. Finally, we diagram various

relationships amongst der
(δ)
g , g-Der

(δ)
g , cod

(δ)
g , g-Cod

(δ)
g ∶ P (Ω) Ð→ P (Ω)

and present a nice application to support the overall study.

1. Introduction

Axiomatically, a generalized derived operator (g-Ta-derived operator) in an or-
dinary (a = o) or generalized (a = g) topological space Ta = (Ω,Ta) (Ta-space)

is a set-valued map
g-Dera ∶ P (Ω) Ð→P (Ω)

Sa z→ g-Dera (Sa)
satisfying the following

g-Ta-derived operator axioms:
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– AxDE,1 (g-Dera)
def←→ g-Dera (∅) = ∅

– AxDE,2 (g-Dera)
def←→ g-Dera (Rg) = g-Dera(Ra ∩ g-Opa ({ξ}))

– AxDE,3 (g-Dera)
def←→ g-Dera ○g-Dera (Ra) ⊆Ra ∪ g-Dera (Ra)

– AxDE,4 (g-Dera)
def←→ g-Dera (Ra ∪Sa) = ⋃

Ua=Ra,Sa

g-Dera (Ua)

for any ({ξ} ,Ra,Sa) ∈ ⨉α∈I∗3 P (Ω) such that {ξ} ⊂ g-Dera (Ra) [1, 2, 3, 4, 5,

6, 7, 8, 9]. A generalized coderived operator (g-Ta-coderived operator) in the Ta-

space Ta is a set-valued map
g-Coda ∶ P (Ω) Ð→P (Ω)

Sa z→ g-Coda (Sa)
satisfying the

following g-Ta-coderived operator axioms:

– AxCD,1 (g-Coda)
def←→ g-Coda (Ω) = Ω

– AxCD,2 (g-Coda)
def←→ g-Coda(Ug) = g-Coda(Ua ∪ {ζ})

– AxCD,3 (g-Coda)
def←→ g-Coda ○g-Coda (Ua) ⊇ Ua ∩ g-Coda (Ua)

– AxCD,4 (g-Coda)
def←→ g-Coda (Ua ∩ Va) = ⋂

Wa=Ua,Va

g-Coda (Wa)

for any ({ζ} ,Ua,Va) ∈ ⨉α∈I∗3 P (Ω) [1, 2, 3, 4, 5, 6, 7, 8, 9]. Alternative axiomatic
descriptions for g-To-derived and g-To-coderived operators in To-spaces can be
found in the paper of Lei and Zhang [10].

If (Sa,g-Opea) ∈P (Ω) × {g-Dera,g-Coda} be arbitrarily given, then β factors

g-Opea ∶ P (Ω) Ð→P (Ω)
Sa z→ g-Opea (Sa)

yields:

Z0
+ ∋ β ←→ g-Ope(β)a (Sa) = g-Opea ○ ⋯ ○ g-Opea (Sa) def= ◯α∈I0

β
g-Opea (Sa)

Thus,
(g-Der(β)a ,g-Cod(β)a ) ∶ P (Ω) Ð→P (Ω)

Sa z→ (g-Der(β)a ,g-Cod(β)a ) (Sa)
is the βth

order of
(g-Dera,g-Coda) ∶ P (Ω) Ð→P (Ω)

Sa z→ (g-Dera,g-Coda) (Sa)
and, for any pair

(Sa,g-Opea) ∈P (Ω) × {g-Dera,g-Coda}, it holds that:

[(∃β ∈ Z0
+)(g-Ope(β)a (Sa) = ∅)] ∨ [(∀β ∈ Z0

+)(g-Ope(β)a (Sa) ≠ ∅)]

If g-Ope(β)a (Sa) = ∅ for some β ∈ Z0
+, then β is a type of density measure of Sa to

achieve emptiness (if this is ever achieved). But if S
(λ)
a

def= ⋂
β∈Z∗+

g-Ope(β)a (Sa) ≠ ∅,

then λ is a type of limit order of Sa, in which case the g-Ta-operators g-Ope(1)a ,

g-Ope(2)a , . . . ∶ P (Ω) Ð→ P (Ω) can again be applied on S
(ω)
a ∈ P (Ω), yield-

ing g-Ope(λ+1)a (Sa), g-Ope(λ+2)a (Sa), . . .. Viewing δ = 0, 1, 2, . . . as successor
ordinals while δ = λ as limit ordinal, the foregoing descriptions surprisingly intro-
duce by transfinite recursion on the class of successor ordinals the definitions of

the δth-iterates
g-Der(δ)a , g-Cod(δ)a ∶ P (Ω) Ð→P (Ω)

Sa z→ g-Der(δ)a (Sa) , g-Cod(δ)a (Sa)
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( g-T
(δ)
a -derived and g-T

(δ)
a -coderived operators) of the g-Ta-derived and g-Ta-

coderived operators
g-Dera, g-Coda ∶ P (Ω) Ð→P (Ω)

Sa z→ g-Dera (Sa) , g-Coda (Sa) ,
respectively, in a Ta-space.

In a Tg-space Tg = (Ω,Tg), by virtue of AxDE,1 (g-Codg), . . ., AxDE,4 (g-Codg)
and AxCD,1 (g-Codg), . . ., AxCD,4 (g-Codg), generalized characterizations of Tg ∶
P (Ω) Ð→ P (Ω) in the Tg-space Tg can be realized by specifying either the

g-Tg-derived operator
g-Derg ∶ P (Ω) Ð→P (Ω)

Sg z→ g-Derg (Sg)
or the g-Tg-coderived

operator
g-Codg ∶ P (Ω) Ð→P (Ω)

Sg z→ g-Codg (Sg) ,
respectively [1]. Moreover, if the

δth-iterates
g-Der(δ)g , g-Cod(δ)g ∶ P (Ω) Ð→P (Ω)

Sg z→ g-Der(δ)g (Sg) , g-Cod(δ)g (Sg)
are

also themselves g-Tg-derived and g-Tg-coderived operators in the Tg-space Tg, then
similar roles can be played, thereby realizing other generalized characterizations of
Tg ∶ P (Ω)Ð→P (Ω) in Tg.

Although the literature of Ta-spaces contains a wealth of information on the
study of different types of Tg, g-Tg-operators in Tg-spaces [2, 3, 4, 5, 6, 7, 8, 9, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], including the study of g-T
(δ)
o -derived and

g-T
(δ)
o -coderived operators in To-spaces [23, 24, 25, 26, 27], it does, unfortunately,

not contain a study of any g-T
(δ)
g -derived and g-T

(δ)
g -coderived operators in Tg-

spaces.
In investigating the convergence of Fourier series, Cantor [23, 24] has intro-

duced and considered
dero∣R ∶ P (R) Ð→P (R)

So z→ dero∣R (So)
in R. He has also con-

sidered its iteration, thereby introducing the notion of ordinal and then the def-

inition of
der
(δ)
o∣R ∶ P (R) Ð→P (R)

So z→ der
(δ)
o∣R (So)

in R for some ordinal δ. Later on,

Rutt [25] has introduced a weaker form of
dero ∶ P (Ω) Ð→P (Ω)

So z→ dero (So)
and in-

vestigated some of its properties as well as the properties of its δth-order iterate

der(δ)o ∶ P (Ω) Ð→P (Ω)
So z→ der(δ)o (So)

from a sequential point of view. Adopting a

point of view similar to Rutt [25], Tucker [26] has presented a theorem concern-

ing the period of periodic sequences of To-derived sets with respect to the T
(δ)
o -

derived operator
der(δ)o ∶ P (Ω) Ð→P (Ω)

So z→ der(δ)o (So)
and has studied other prop-

erties in a To-space. Noticing that, for a large class of real To∣R-spaces of the type

To∣R = (R,To∣R), the To∣R-derived operator
der
(δ)
o∣R ∶ P (R) Ð→P (R)

So z→ der
(δ)
o∣R (So)

it-

self realizes an ordinary characterization of To∣R ∶ P (R) Ð→ P (R) in the To∣R-
space To∣R, Higgs [27] has given characterizations of To∣R-spaces for which the δth-

iterate
der
(δ)
o∣R ∶ P (R) Ð→P (R)

Sg z→ der
(δ)
o∣R (So)

is a To∣R-derived operator. He has also
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considered the unfortunate extent to which δth-iteration fails to relate well to sev-
eral To∣R-concepts and defined the limit δth-iterate of the T

(δ)
o∣R-derived operator in

To∣R.
Having introduced the definitions and then investigated the properties of a new

type of g-Tg-derived and g-Tg-coderived operators in Tg-spaces [1], it may be an-
other good research investigation to introduce the definitions and then investigate
the properties of the δth-order derivative g-Tg-derived and g-Tg-coderived opera-
tors defined by transfinite recursion on the class of successor ordinals in Tg-spaces.
Such inquiry is what we endeavor to undertake in the present paper.

Hereafter, the paper is structured as thus: In § 2, the preliminary and main
concepts are described in §§ 2.1 and §§ 2.2, respectively. The main results are
reported in § 3. In § 4, the various relationships amongst the Ta, g-Ta-derived and
Ta, g-Ta-coderived operators in a Ta-space are diagrammed in §§ 4.1, and a nice
application supporting the overall study is presented in §§ 4.2. Finally, the work is
concluded in § 5.

2. Theory

2.1. Preliminary Concepts. The standard reference for Ta-space notations and
notions is the Ph.D. Thesis of Khodabocus, M. I. [9], whereas that for Ta, g-Ta-
derived and Ta, g-Ta-coderived operators notations and preliminary concepts in
Ta-spaces is our recent paper on the subject matter [1] (Cf. [2, 3, 4, 5, 6, 7, 8]).

The notation Ta = (Ω,Ta) designates a topological structure called Ta-space
on which no separation axioms are assumed unless otherwise mentioned [7, 8, 9].
The relation (α1, α2, . . .)RA1 ×A2 × ⋯ is made a rule to mean α1RA1, α2RA2,
. . . where R =∈, ⊂, ⊃, . . .. Accordingly, (I0n, I∗n) = (v0, nw, v1, nw) ⊂ Z0

+ × Z∗+ and

(I0∞, I∗∞) = (v0,∞w, v1,∞w) ∼ Z0
+ × Z∗+ are pairs of finite and infinite index sets,

respectively, [8, 9]. For any Ta-space Ta = (Ω,Ta), the relations Γ ⊂ Ω, Oa ∈ Ta,

Ka ∈ ¬Ta
def= {Ka ∶ ∁Ω (Ka) ∈ Ta} and Sa ⊂ Ta state that Γ, Oa, Ka and Sa

are a Ω-subset, Ta-open set, Ta-closed set and Ta-set, respectively [8, 9]. The Ta-

operators
inta, cla ∶ P (Ω) Ð→P (Ω)

Sa z→ inta (Sa) , cla (Sa)
are the Ta-interior and

Ta-closure operators, respectively [8, 9]. Let the class of all possible pairs of compo-

sitions of these Ta-operators in Ta be La [Ω] def= {opa,ν = (opa,ν ,¬opa,ν) ∶ ν ∈ I03},
where

⟨opa,ν ∶ ν ∈ I03 ⟩ = ⟨inta, cla ○ inta, inta ○ cla, cla ○ inta ○ cla⟩
⟨¬opa,ν ∶ ν ∈ I03 ⟩ = ⟨cla, inta ○ cla, cla ○ inta, inta ○ cla ○ inta⟩

Then, Sa ⊂ Ta is called a g-Ta-set if and only if it holds that

(∃ξ)[(ξ ∈Sa) ∧ ((Sa ⊆ opa (Oa)) ∨ (Sa ⊇ ¬opa (Ka)))](2.1)

for some (Oa,Ka,opa) ∈ Ta×¬Ta×La [Ω]. In this way, the derived class g-ν-S[Ta] =
⋃

E∈{O,K}
g-ν-E[Ta] collects all g-Ta-sets of category ν ∈ I03 (g-ν-Ta-sets), whereas

g-S [Ta] = ⋃
ν∈I0

3

g-ν-S [Ta] = ⋃
(ν,E)∈I0

3×{O,K}
g-ν-E [Ta] = ⋃

E∈{O,K}
g-E [Ta]

(2.2)
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collects all g-Ta-sets irrespective of their categories in Ta [8, 9]. In particular,
S [Ta] = ⋃

(ν,E)∈{0}×{O,K}
g-ν-E [Ta] = ⋃

E∈{O,K}
E [Ta] collects all Ta-sets in Ta [8, 9].

Definition 2.1 (g-ν-Ta-Interior, g-ν-Ta-Closure Operators [2, 3]). In a Ta-space
Ta = (Ω,Ta), the one-valued maps

g-Inta,ν ∶ P (Ω) Ð→ P (Ω)(2.3)

Sa z→ ⋃
Oa∈Csub

g-ν-O[Ta][Sa]
Oa

g-Cla,ν ∶ P (Ω) Ð→ P (Ω)(2.4)

Sa z→ ⋂
Ka∈Csup

g-ν-K[Ta][Sa]
Ka

where Csub
g-ν-O[Ta] [Sa] def= {Oa ∈ g-ν-O[Ta] ∶ Oa ⊆ Sa} and Csup

g-ν-K[Ta] [Sa] def=
{Ka ∈ g-ν-K[Ta] ∶ Ka ⊇ Sa} are called g-ν-Ta-interior and g-ν-Ta-closure opera-

tors, respectively. Then, g-I [Ta] def= {g-Inta,ν ∶ ν ∈ I03} and g-C [Ta] def= {g-Cla,ν ∶
ν ∈ I03} are the classes of all g-Ta-interior and g-Ta-closure operators, respectively.

Definition 2.2 (g-ν-Ta-Vector Operator [2, 3]). In a Ta-space Ta = (Ω,Ta), the
two-valued map

g-Ica,ν ∶ P (Ω) ×P (Ω) Ð→ P (Ω) ×P (Ω)(2.5)

(Ra,Sa) z→ (g-Inta,ν (Ra) ,g-Cla,ν (Sa))

is called a g-ν-Ta-vector operator. Then, g-IC [Ta] def= {g-Ica,ν = (g-Inta,ν ,g-Cla,ν) ∶
ν ∈ I03} is the class of all g-Ta-vector operators.

Remark 2.3 (Ta-Vector Operator [1]). For each ν ∈ I03 , g-Ica,ν = ica
def= (inta, cla) if

based on O [Ta]×K [Ta]. Then,
ica ∶ P (Ω) ×P (Ω) Ð→P (Ω) ×P (Ω)

(Ra,Sa) z→ (inta (Ra) , cla (Sa))
is a Ta-vector operator in a Ta-space Ta = (Ω,Ta).

Definition 2.4 (Complement g-Ta-Operator [2, 3]). Let Ta = (Ω,Ta) be a Ta-
space. Then, the one-valued map

g-Opa,Ra
∶ P (Ω) Ð→ P (Ω)(2.6)

Sa z→ ∁
Ra

(Sa)

where ∁Ra
∶ P (Ω)Ð→P (Ω) denotes the relative complement of its operand with

respect to Ra ∈ g-S [Ta], is called a natural complement g-Ta-operator on P (Ω).

For the sake of clarity, g-Opa,Ra
= g-Opa whenever Ra = Ω, and g-Opa,Ra

=
Opa,Ra

whenever Ra ∈ S [Ta] in which case, the term natural complement Tg-
operator is employed and it stand for Opa,Ra

∶ P (Ω)Ð→P (Ω).

Definition 2.5 (g-ν-Ta-Derived, g-ν-Ta-Coderived Operators [1]). Let g-Inta,ν ,
g-Cla,ν ∶ P (Ω) Ð→ P (Ω), respectively, denote the g-ν-Ta-interior and g-ν-Ta-
closure operators and, g-Opa ∶ P (Ω) Ð→P (Ω) denote the absolute complement
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g-Ta-operator in a Ta-space Ta = (Ω,Ta). Then, the one-valued maps

g-Dera,ν ∶ P (Ω) Ð→ P (Ω)(2.7)

Sa z→ {ξ ∈ Ta ∶ ξ ∈ g-Cla,ν(Sa ∩ g-Opa ({ξ}))}

g-Coda,ν ∶ P (Ω) Ð→ P (Ω)(2.8)

Sa z→ {ζ ∈ Ta ∶ ζ ∈ g-Inta,ν(Sa ∪ {ζ})}

on P (Ω) ranging in P (Ω) are called, respectively, a g-Ta-derived operator of

category ν and a g-Ta-coderived operator of category ν. The classes g-DE [Ta] def=
{g-Dera,ν ∶ ν ∈ I03} and g-CD [Ta] def= {g-Coda,ν ∶ ν ∈ I03} are called, respectively,
the class of all g-Ta-derived operators and the class of all g-Ta-coderived operators.

Remark 2.6 (g-Ta-Derived, g-Ta-Coderived Sets [1]). In a Ta-space Ta, suppose
(g-Dera (ξ;Sa) ,g-Coda (ζ;Sa)) denotes a pair (ξ, ζ) ∈ Ta ×Ta of g-Ta-derived and

g-Ta-coderived points of Sa ∈P (Ω), then (g-Dera (Sa) ,g-Coda (Sa)) denotes the
pair of g-Ta-derived and g-Ta-coderived sets of Sa in Ta, where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

g-Dera (Sa) def= {g-Dera (ξ;Sa) ∶ ξ ∈ Ta}

g-Coda (Sa) def= {g-Coda (ζ;Sa) ∶ ξ ∈ Ta}
(2.9)

denote the pair of g-Ta-derived and g-Ta-coderived sets of Sa in Ta.

Definition 2.7 (g-Ta-Vector Operator [1]). Let Ta = (Ω,Ta) be a Ta-space. Then,
an operator of the type

g-Dca,ν ∶ ⨉α∈I∗2 P (Ω) Ð→ ⨉
α∈I∗2

P (Ω)(2.10)

(Ra,Sa) z→ (g-Dera,ν (Ra) ,g-Coda,ν (Sa))

on ⨉α∈I∗2 P (Ω) ranging in ⨉α∈I∗2 P (Ω) is called a g-Ta-vector operator of category

ν and, g-DC [Ta] def= {g-Dca,ν = (g-Dera,ν ,g-Coda,ν) ∶ ν ∈ I03} is called the class of
all such g-Ta-vector operators.

Remark 2.8 (Ta-Vector Operator [1]). For any ν ∈ I03 , g-Dca,ν = dca
def= (dera, coda)

if based on (clg, intg). Then,
dca ∶ P (Ω) ×P (Ω) Ð→P (Ω) ×P (Ω)

(Ra,Sa) z→ (dera (Ra) , coda (Sa))
is a Ta-vector operator in a Ta-space Ta = (Ω,Ta).

Accordingly,

g-DC [Ta] def= {g-Dca,ν = (g-Derν ,g-Coda,ν) ∶ ν ∈ I03}

⊆ {g-Dera,ν ∶ ν ∈ I03} × {g-Coda,ν ∶ ν ∈ I03}
def= g-DE [Ta] × g-CD [Ta](2.11)

Then, g-DC [Ta] denotes the class of all g-Ta-vector operators in the T -space Ta =
(Ω,Ta); g-DE [Ta] denotes the class of all g-T-derived operators while g-CD [Ta]
denotes the class of all g-Ta-coderived operators in the Ta-space Ta = (Ω,Ta).



134 M. I. KHODABOCUS, N. -UL. -H. SOOKIA, AND R. D. SOMANAH

2.2. Main Concepts. The main concepts underlying the δth-order derivative g-Tg-
derived and g-Tg-coderived operators defined by transfinite recursion on the class
of successor ordinals in Tg-spaces, a ∈ {o,g}, are now presented.

For any (Sg,g-Opeg) ∈P (Ω) × {g-Derg,g-Codg}, consider the description:

0 ←→ g-Ope(0)g (Sg) def= ◯α∈I0
0
g-Opeg (Sg)

1 ←→ g-Ope(1)g (Sg) def= ◯α∈I0
1
g-Opeg (Sg)

2 ←→ g-Ope(2)g (Sg) def= ◯α∈I0
2
g-Opeg (Sg)

⋮
β − 1 ←→ g-Ope(β−1)g (Sg) def= ◯α∈I0

β−1
g-Opeg (Sg)

β ←→ g-Ope(β)g (Sg) def= ◯α∈I0
β
g-Opeg (Sg)

(2.12)

where ◯α∈I0
0
g-Opeg (Sg) ←→ Sg; next, ◯α∈I0

1
g-Opeg (Sg) ←→ g-Opeg (Sg) and

◯α∈I0
2
g-Opeg (Sg)←→ g-Opeg ○g-Opeg (Sg); more generally,

◯α∈I0
β
g-Opeg (Sg)←→ g-Opeg ○g-Opeg ○⋯ ○ g-Opeg (Sg)

β factors g-Opeg. Thus, g-Der(0)g , g-Der(1)g , g-Der(2)g , . . ., g-Der(β)g , . . . ∶ P (Ω) Ð→
P (Ω) are the 0th, 1st, 2nd, . . ., βth, . . . order derivative g-Tg-derived operators

of g-Derg ∶ P (Ω) Ð→ P (Ω); g-Cod(0)g , g-Cod(1)g , g-Cod(2)g , . . ., g-Cod(β)g , . . . ∶
P (Ω)Ð→P (Ω) are the 0th, 1st, 2nd, . . ., βth, . . . order derivative g-Tg-coderived

operators of g-Codg ∶ P (Ω)Ð→P (Ω). Then, for any pair (Sg,g-Opeg) ∈P (Ω)×
{g-Derg,g-Codg}, it holds that:

[(∃β ∈ I0∞)(g-Ope(β)g (Sg) = ∅)] ∨ [(∀β ∈ I0∞)(g-Ope(β)g (Sg) ≠ ∅)]

Suppose the statement preceding ∨ hold, then the number of iterations of the g-Tg-
operator g-Opeg ∶ P (Ω) Ð→ P (Ω) required to achieve emptiness (if this is ever
achieved) is a type of density measure of Sg ∈P (Ω). But if the statement following

∨ holds, then S
(λ)
g

def= ⋂
β∈I∗∞

g-Ope(β)g (Sg) ≠ ∅. Therefore, the g-Tg-operators

g-Ope(1)g , g-Ope(2)g , . . ., g-Ope(β)g , . . . ∶ P (Ω) Ð→ P (Ω) can again be applied on

S
(ω)
g ∈ P (Ω), yielding g-Ope(λ+1)g (Sg), g-Ope(λ+2)g (Sg), . . ., g-Ope(λ+β)g (Sg),

. . ., with g-Opeg ∈ {g-Derg,g-Codg}.
In view of the above descriptions, 1, 2, . . ., β, . . . may be viewed as successor

ordinals while λ as limit ordinal and, despite the absence of a predecessor ordinal,
0 may, for conveniency, be included in the class of successor ordinals. To define the
notion of ordinal, the concepts of everywhere-ordered set, similarity and order-type
in chronological order have first to be defined. The definition of the first concept
(everywhere-ordered set) follows.

Definition 2.9 (Everywhere-Ordered Set). An ”everywhere-ordered set” is an or-
dered structure of the type

W
def= (W ,≼) def←→ ⟨α0, α1, α2, . . . , αν , . . .⟩(2.13)
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in which W ⊂ U is an ”underlying set” and,

≼ ∶ W ×W Ð→ W def= {α ≼ β ∶ (α,β) ∈ W ×W }(2.14)

(α,β) z→ α ≼ β
is a ”2-ary rule” satisfying these ”everywhere-ordering relation axioms:”

– Ax1 (≼)
def←→ (∀α ∈W)[α ≼ α ←→ α = α]

– Ax2 (≼)
def←→ (∀ (α,β) ∈W2)[(α ≼ β) ∧ (β ≼ α)Ð→ α = β]

– Ax3 (≼)
def←→ (∀ (α,β, γ) ∈W3)[(α ≼ β) ∧ (β ≼ γ)Ð→ α ≼ γ]

– Ax4 (≼)
def←→ (∀V ⊆W)[V def←→ ⟨β0, β1, β2, . . .⟩Ð→ β0 ≼ β1 ≼ β2 ≼ ⋯]

The above definition requires some few explanations. By Ax1 (≼), Ax2 (≼) and
Ax3 (≼) are meant that

≼ ∶ W ×W Ð→W
(α,β) z→ α ≼ β is reflexive, antisymmetric and

transitive, respectively; by Ax4 (≼) is meant that any ordered structure V = (V ,≼)
derived from W = (W ,≼) has a first element (i.e., β0 ∈ V ⊆ W). Moreover, the
following statement holds true:

(∀ (α,β) ∈W ×W)[(α ≼ β) ∨ (β = α) ∨ (β ≼ α)](2.15)

Thus, given (α,β) ∈W×W then, either α preceeds β (i.e., α ≼ β), α is of the same
order as β (i.e., β = α) or α succeeds β (i.e., β ≼ α). The remark below is presented
in order to avoid any danger of confusing the notations of underlying (not ordered)
and everywhere-ordered sets.

Remark 2.10 (Everywhere-Ordered Set). Instead of such plain sets notations as
α ∈ W , (α,β) ∈ W × W , . . . which, in actual fact, are improper, the ordered sets
notations α ∈ W, (α,β) ∈ W ×W, . . . are employed solely to stress that α, β, . . .
are elements of their ordered set W, not of the underlying set W of the ordered set
W. Indeed, in the present context, it does not hold that ⟨α0, α1, α2, . . . , αν , . . .⟩ ≠
{α0, α1, α2, . . . , αν , . . .}, though it does hold that {α ∶ α ∈W} = {α ∶ α ∈ W }.

For each U ∈ {V ,W }, set WU = {α ≼U β ∶ (α,β) ∈ WU × WU }. Then, the
second concept (similarity) may be defined as thus.

Definition 2.11 (Similarity). The everywhere-ordered sets V = (V ,≼V ) and W =
(W ,≼W ), where

≼V ∶ V × V Ð→WV

(α,β) z→ α ≼V β
and

≼W ∶ W ×W Ð→WW

(α,β) z→ α ≼W β,
respectively, are said to be ”similar,” written V ≈ W, if and only if there is an
”order isomorphism” φ ∶ V ≅ W relating the elements α0, α1, α2, . . . of V to the
elements β0, β1, β2, . . . of W as:

V = (V ,≼V )
def←→ ⟨α0, α1, α2, . . .⟩

≈ ←→ φ

W = (W ,≼W )
def←→ ⟨β0, β1, β2, . . .⟩

(2.16)

From this definition, given Y = (Y ,≼Y ) ←→ ⟨γ0, γ1, γ2, . . . , γν , . . .⟩ with

(Y,Y , γ) ∈ {(V,V , α) , (W,W , β)} and φ ∶ V ≅W, then α0 ≼V α1
φÐ→ β0 ≼W β1,

α1 ≼V α2
φÐ→ β1 ≼W β2, . . ., αν−1 ≼V αν

φÐ→ βν−1 ≼W αν , . . .. For any
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(V,W,Y) ∈ ⨉µ∈I∗3 {Wν = (Wν ,≼ν) ∶ ν ∈ I∗∞}, the relations V ≈V, V ≈W←→W ≈V
and (V ≈W) ∧ (W ≈Y) Ð→ (V ≈Y) hold. Therefore, the relation of similarity
≈ ∶ (V,W)z→V ≈W is reflexive, symmetrical and transitive.

The definition of the third concept (order-type) may be stated as thus.

Definition 2.12 (Order-Type). An operator of the type

OTyp ∶ Wz→ OTyp (W) def= τW(2.17)

assigning to any everywhere-ordered set W = (W ,≼W ) a uniquely determined sym-
bol τW is called the ”order-type” of W, provided that if V = (V ,≼V ) be any
other everywhere-ordered set together with its uniquely determined order-type

OTyp (V) def= τV , the following statement holds:

V ≈W ←→ τV = τW .(2.18)

Clearly, the manner of proceeding from the relation of similarity to the concept
of order-type is exactly the same as that from the relation of equivalence to the
concept of cardinal number. For, given any V = (V ,≼V ) and W = (W ,≼W ), then
V ≈ W ←→ OTyp (V) = OTyp (W) is analogous to V ∼ W ←→ card (V ) =
card (W ).

Remark 2.13. By V ≈ W ←→ τV = τW is meant that a uniquely determined
symbol actually is assigned not to a single set but to a class of everywhere-ordered
sets which are similar to each other.

Granted the definitions of the concepts of everywhere-ordered set, similarity and
order-type, the definition of the concept of ordinal may be stated as thus.

Definition 2.14 (Ordinal). The order-type OTyp (W) = τW of an everywhere-

ordered set W = (W ,≼W ) is called ”ordinal,” written ord (W) def= δW . Moreover:

– i. δW is called a ”predecessor ordinal” if and only if there exists no ordinal
ord (W) such that δW = ord (W) + 1.

– ii. δW is called a ”successor ordinal” if and only if there exists an ordinal
ord (W) such that δW = ord (W) + 1.

– iii. δW is called a ”limit ordinal,” denoted as δW
def= λW , if and only if it

has no immediate predecessor.

Let the symbols 0, δ, and λ (instead of the symbols 0W , δW , and λW ) stand
for predecessor ordinal, successor ordinal and limit ordinal, respectively. Then,
the definitions of the notions of ordered derivative g-Tg-derived and g-Tg-coderived
operators of g-Derg, g-Codg ∶ P (Ω)Ð→P (Ω), respectively, may well be stated as
thus.

Definition 2.15 (δth-Iterations: g-ν-Tg-Derived, g-ν-Tg-Coderived Operators).
Let g-Derg,ν , g-Codg,ν ∶ P (Ω) Ð→ P (Ω), respectively, be a g-Tg-derived and
a g-Tg-coderived operators of category ν in a Tg-space Tg = (Ω,Tg). Then:

— I. The ”δth-iterate of g-Derg,ν ∶ P (Ω) Ð→P (Ω)” is a set-valued map

g-Der(δ)g,ν ∶ Sg ∈P (Ω)z→ g-Der(δ)g,ν (Sg) defined by transfinite recursion on
the class of successor ordinals as,

– i. g-Der(0)g,ν (Sg)
def←→ Sg
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– ii. g-Der(1)g,ν (Sg)
def←→ g-Derg,ν (Sg)

– iii. g-Der(δ+1)g,ν (Sg)
def←→ g-Derg,ν ○g-Der(δ)g,ν (Sg)

– iv. g-Der(λ)g,ν (Sg)
def←→ ⋂

δ≺λ
g-Der(δ)g,ν (Sg)

— II. The ”δth-iterate of g-Codg,ν ∶ P (Ω)Ð→P (Ω)” is a set-valued map

g-Cod(δ)g,ν ∶ Sg ∈ P (Ω) z→ g-Cod(δ)g,ν (Sg) defined by transfinite recursion
on the class of successor ordinals as,

– i. g-Cod(0)g,ν (Sg)
def←→ Sg

– ii. g-Cod(1)g,ν (Sg)
def←→ g-Codg,ν (Sg)

– iii. g-Cod(δ+1)g,ν (Sg)
def←→ g-Codg,ν ○g-Cod(δ)g,ν (Sg)

– iv. g-Cod(λ)g,ν (Sg)
def←→ ⋂

δ≺λ
g-Cod(δ)g,ν (Sg)

In the following remark, the concepts of g-Tg-derived and g-Tg-coderived sets of

category ν and order δ (g-ν-T
(δ)
g -derived, g-ν-T

(δ)
g -coderived sets) are presented.

Remark 2.16 (g-ν-T
(δ)
g -Derived, g-ν-T

(δ)
g -Coderived sets). Suppose (R(δ)g ,Sg) ∈

⨉α∈I∗2 P (Ω) such that R
(δ)
g = g-Der(δ)g,ν (Sg) for some ordinal δ, then R

(δ)
g may

be called a g-Tg-derived set of Sg of category ν and order δ. Likewise, given

(U (δ)
g ,Vg) ∈ ⨉α∈I∗2 P (Ω) such that U

(δ)
g = g-Cod(δ)g,ν (Vg) for some ordinal δ, then

U
(δ)
g may be called a g-Tg-coderived set of Vg of category ν and order δ. Hence,

any {ξ} ∈P (Ω) such that (ξ ∈R
(δ)
g ∈P (Ω))∧(ξ ∉R

(δ+1)
g ∈P (Ω)) may be called

a g-Tg-derived unit set of Rg of category ν and order δ, and any {ζ} ∈P (Ω) such
that (ζ ∈ U

(δ)
g ∈ P (Ω)) ∧ (ζ ∉ U

(δ+1)
g ∈ P (Ω)) may be called a g-Tg-coderived

unit set of Ug of category ν and order δ.

Evidently, the use of derg, g-Derν , der ∶ P (Ω) Ð→P (Ω) instead of g-Derg,ν ∶
P (Ω) Ð→ P (Ω) introduce the notions of Tg-derived set of Sg of order δ, g-T-
derived set of Sg of category ν and order δ, and T-derived set of Sg of order δ,
respectively; the use of docg, g-Codν , cod ∶ P (Ω) Ð→P (Ω) instead of g-Codg,ν ∶
P (Ω) Ð→P (Ω) introduce the notions of Tg-coderived set of Sg of order δ, g-T-
coderived set of Sg of category ν and order δ, and T-coderived set of Sg of order
δ, respectively.

Of the notations To = (Ω,To) and T = (Ω,T ), either the first will be used
instead of the second, or both will be used interchangeably.

3. Main Results

In this section, the basic properties of the g-T
(δ)
g -derived and g-T

(δ)
g -coderived

operators g-Der(δ)g , g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω), respectively, are studied in Tg-
spaces.

In a Tg-space, every g-Tg-derived set is contained in all the preceding g-Tg-
derived sets and, every g-Tg-coderived set contains all the preceding g-Tg-coderived
sets. The theorem follows.

Theorem 3.1. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a
g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-
space Tg = (Ω,Tg). Then:
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– i. g-Der(δ+1)g (Sg) ⊆ g-Der(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ+1)g (Sg) ⊇ g-Cod(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ+1)g (Sg) ⊆ g-Der(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]
– Case i. Let 1 = δ. Since g-Clg (Sg) ⊇ g-Derg (Sg), it follows that

g-Derg ∶ g-Derg (Sg) z→ {ξ ∈ Tg ∶ ξ ∈ g-Clg(g-Derg (Sg) ∩ g-Opg ({ξ}))}
⊆ {ξ ∈ Tg ∶ ξ ∈ g-Clg ○g-Clg (Sg)}
←→ {ξ ∈ Tg ∶ ξ ∈ g-Clg (Sg)}
←→ {ξ ∈ Tg ∶ ξ ∈ g-Clg(Sg ∩ g-Opg ({ξ}))}
←→ g-Derg (Sg)

Thus, g-Derg ○g-Derg (Sg) ⊆ g-Derg (Sg). But, g-Derg (Sg) ←→ g-Der(1)g (Sg)
and g-Der(2)g (Sg) ←→ g-Derg ○g-Derg (Sg). Thus, g-Der(2)g (Sg) ⊆ g-Der(1)g (Sg),
implying P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ+1)g (Sg) ⊆ g-Der(δ)g (Sg) and consequently, it results that

g-Derg ○g-Der(δ+1)g (Sg) ⊆ g-Derg ○g-Der(δ)g (Sg). But, for each η ∈ {δ, δ + 1},

g-Derg ○g-Der(η)g (Sg)←→ g-Der(1)g ○g-Der(η)g (Sg) ←→ g-Der(η+1)g (Sg)

Hence, g-Der((δ+1)+1)g (Sg) ⊆ g-Der(δ+1)g (Sg), implying P (δ + 1) = 1. The inductive
case therefore holds.

Since P (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that

g-Der(λ+1)g (Sg) ←→ g-Derg ○g-Der(λ)g (Sg)

←→ g-Derg(⋂
δ≺λ

g-Der(δ)g (Sg))

⊆ g-Derg ○g-Der(δ)g (Sg)←→ g-Der(δ+1)g (Sg)

⊆ g-Der(δ)g (Sg)
for all δ such that 1 ≺ δ ≺ λ, from which P (λ) = 1 follows.

— II. Introduce the Boolean-valued propositional formula

B ∋ Q (δ) def←→ g-Cod(δ+1)g (Sg) ⊇ g-Cod(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
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Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (0) = 1) ∧ (Q (δ) = 1 Ð→ Q (δ + 1) = 1)]
– Case i. Let 1 = δ. Since g-Intg (Sg) ⊆ g-Codg (Sg), it results that

g-Codg ∶ g-Codg (Sg) z→ {ζ ∈ Tg ∶ ζ ∈ g-Intg(g-Codg (Sg) ∪ {ζ})}
⊇ {ζ ∈ Tg ∶ ζ ∈ g-Intg ○g-Intg (Sg)}
←→ {ζ ∈ Tg ∶ ζ ∈ g-Intg (Sg)}
←→ {ζ ∈ Tg ∶ ξ ∈ g-Intg(Sg ∪ {ζ})}
←→ g-Codg (Sg)

Thus, g-Codg ○g-Codg (Sg) ⊇ g-Codg (Sg). But, g-Codg (Sg) ←→ g-Cod(1)g (Sg)
and g-Cod(2)g (Sg) ←→ g-Codg ○g-Derg (Sg). Thus, the relation g-Cod(2)g (Sg) ⊇
g-Cod(1)g (Sg) holds true, implying Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ+1)g (Sg) ⊇ g-Cod(δ)g (Sg) and consequently, it results that

g-Codg ○g-Cod(δ+1)g (Sg) ⊇ g-Codg ○g-Cod(δ)g (Sg). But, for each η ∈ {δ, δ + 1},

g-Codg ○g-Cod(η)g (Sg)←→ g-Cod(1)g ○g-Cod(η)g (Sg) ←→ g-Cod(η+1)g (Sg)

Hence, g-Cod((δ+1)+1)g (Sg) ⊇ g-Cod(δ+1)g (Sg), implying Q (δ + 1) = 1. The induc-
tive case therefore holds.

Since Q (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that
g-Cod(λ+1)g (Sg) ←→ g-Codg ○g-Cod(λ)g (Sg)

←→ g-Codg(⋂
δ≺λ

g-Cod(δ)g (Sg))

⊇ g-Codg ○g-Cod(δ)g (Sg)←→ g-Cod(δ+1)g (Sg)

⊇ g-Cod(δ)g (Sg)
for all δ such that 1 ≺ δ ≺ λ, from which Q (λ) = 1 follows. The proof of the theorem
is complete. □

The corollary stated below is an immediate consequence of the above theorem.

Corollary 3.2. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a
g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-
space Tg = (Ω,Tg). Then:

– i. g-Der(δ)g (Sg) ⊆ g-Derg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Sg) ⊇ g-Codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

In a Tg-space, just as g-Derg ∶ P (Ω)Ð→P (Ω) is coarser (or, smaller, weaker)
than derg ∶ P (Ω) Ð→ P (Ω) (or, derg ∶ P (Ω) Ð→ P (Ω) is finer (or, larger,

stronger) than g-Derg ∶ P (Ω) Ð→ P (Ω)) [1], so is g-Der(δ)g ∶ P (Ω) Ð→ P (Ω)
coarser (or, smaller, weaker) than der(δ)g ∶ P (Ω)Ð→P (Ω) (or, der(δ)g ∶ P (Ω)Ð→
P (Ω) finer (or, larger, stronger) than g-Der(δ)g ∶ P (Ω) Ð→P (Ω)); likewise, just
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as g-Codg ∶ P (Ω) Ð→P (Ω) is finer (or, larger, stronger) than codg ∶ P (Ω) Ð→
P (Ω) or, codg ∶ P (Ω) Ð→P (Ω) is coarser (or, smaller, weaker) than g-Codg ∶
P (Ω) Ð→P (Ω) [1], so is g-Cod(δ)g ∶ P (Ω) Ð→P (Ω) finer (or, larger, stronger)

than cod(δ)g ∶ P (Ω) Ð→P (Ω) (or, cod(δ)g ∶ P (Ω) Ð→P (Ω) coarser (or, smaller,

weaker) than g-Cod(δ)g ∶ P (Ω)Ð→P (Ω)). Accordingly, the proposition follows.

Proposition 1. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(δ)g (Sg) ⊆ der(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Sg) ⊇ cod(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let Tg = (Ω,Tg) be a Tg-space. Suppose g-Dcg ∈ g-DC [Tg] and dcg ∈
DC [Tg] be given and Sg ∈P (Ω) be arbitrary. Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ)g (Sg) ⊆ der(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]
– Case i. Let 1 = δ. Then, g-Derg (Sg) ⊆ derg (Sg) holds true, implying

P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ)g (Sg) ⊆ der(δ)g (Sg) and consequently, it follows that

g-Der(δ+1)g (Sg) ←→ g-Derg ○g-Der(δ)g (Sg)

⊆ g-Derg ○der(δ)g (Sg)

⊆ derg ○der(δ)g (Sg) ←→ der(δ+1)g (Sg)

Hence, g-Der(δ+1)g (Sg) ⊆ der(δ+1)g (Sg), implying P (δ + 1) = 1. The inductive case
therefore holds.

Since P (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that
g-Der(λ+1)g (Sg) ←→ g-Derg ○g-Der(λ)g (Sg)

⊆ derg ○der(λ)g (Sg)

←→ derg(⋂
δ≺λ

der(δ)g (Sg))

⊆ derg ○der(δ)g (Sg)←→ der(δ+1)g (Sg)

⊆ der(δ)g (Sg)
for all δ such that 1 ≺ δ ≺ λ, from which P (λ) = 1 follows.
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— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ) def←→ g-Cod(δ)g (Sg) ⊇ cod(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (1) = 1) ∧ (Q (δ) = 1 Ð→ P (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Codg (Sg) ⊇ codg (Sg) holds true, implying
Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ)g (Sg) ⊇ cod(δ)g (Sg) and consequently, it follows that

g-Cod(δ+1)g (Sg) ←→ g-Codg ○g-Cod(δ)g (Sg)

⊇ g-Codg ○ cod(δ)g (Sg)

⊇ codg ○ cod(δ)g (Sg) ←→ cod(δ+1)g (Sg)

Hence, g-Cod(δ+1)g (Sg) ⊇ cod(δ+1)g (Sg), implying Q (δ + 1) = 1. The inductive case
therefore holds.

Since Q (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that

g-Cod(λ+1)g (Sg) ←→ g-Codg ○g-Cod(λ)g (Sg)

⊇ codg ○ cod(λ)g (Sg)

←→ codg(⋂
δ≺λ

cod(δ)g (Sg))

⊇ codg ○ cod(δ)g (Sg)←→ cod(δ+1)g (Sg)

⊇ cod(δ)g (Sg)

for all δ such that 1 ≺ δ ≺ λ, from which Q (λ) = 1 follows. The proof of the
proposition is complete. □

For any δ such that 1 ≼ δ ≺ λ, g-Der(δ)g ∶ P (Ω)Ð→P (Ω) is coarser (or, smaller,
weaker) than derg ∶ P (Ω) Ð→ P (Ω) or, derg ∶ P (Ω) Ð→ P (Ω) is finer (or,

larger, stronger) than g-Der(δ)g ∶ P (Ω) Ð→ P (Ω); g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω)
is finer (or, larger, stronger) than codg ∶ P (Ω) Ð→ P (Ω) or, codg ∶ P (Ω) Ð→
P (Ω) is coarser (or, smaller, weaker) than g-Cod(δ)g ∶ P (Ω) Ð→P (Ω). Accord-
ingly, the following corollary is an immediate consequence of the above proposition.

Corollary 3.3. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(δ)g (Sg) ⊆ derg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Sg) ⊇ codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
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For any δ such that 1 ≼ δ ≺ λ, the notions of δth-order Tg, g-Tg-derived set opera-

tors can be interrelated among themselves and presented δth-order Tg, g-Tg-derived

set operators finness-coarseness diagrams; similarly, the notions of δth-order Tg,
g-Tg-coderived set operators can be interrelated among themselves and presented

δth-order Tg, g-Tg-coderived set operators finness-coarseness diagrams. A further
corollary follows.

Corollary 3.4. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω)Ð→P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators derg,
codg ∶ P (Ω)Ð→P (Ω) in a Tg-space Tg = (Ω,Tg), then:

– i. For any Rg ∈P (Ω),

g-Der(δ)g (Rg) ⊆ g-Derg (Rg) g-Der(δ)g (Rg) ⊆ derg (Rg)

der(δ)g (Rg) ⊆ derg (Rg) (∀δ ∶ 1 ≼ δ ≺ λ)

(3.1)

– ii. For any Sg ∈P (Ω),

g-Cod(δ)g (Sg) ⊇ g-Codg (Sg) g-Cod(δ)g (Sg) ⊇ codg (Sg)

cod(δ)g (Sg) ⊇ codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

(3.2)

For any δ such that 1 ≼ δ ≺ λ, the δth-order g-Tg-derived set operator is ∅-
grounded (alternatively, ∅-preserving); the δth-order g-Tg-coderived set operator
is Ω-grounded (alternatively, Ω-preserving). These are embodied in the following
theorem.

Theorem 3.5. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a
g-Tg-coderived operators, respectively, in a strong Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(δ)g (∅) = ∅ (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Ω) = Ω (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, in a strong Tg-space Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ)g (∅) = ∅ (∀δ ∶ 1 ≼ δ ≺ λ)

Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Der(1)g (∅)←→ g-Derg (∅) = ∅. Thus, g-Der(1)g (∅) =
∅, implying P (1) = 1. The base case therefore holds.
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– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ)g (∅) = ∅ and consequently, it follows that

g-Der(δ+1)g (∅)←→ g-Derg ○g-Der(δ)g (∅)←→ g-Derg (∅) = ∅

Hence, g-Der(δ+1)g (∅) = ∅, implying P (δ + 1) = 1. The inductive case therefore
holds.

Since P (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that

g-Der(λ+1)g (∅) ←→ g-Derg ○g-Der(λ)g (∅)

←→ g-Derg(⋂
δ≺λ

g-Der(δ)g (∅))←→ g-Derg (∅) = ∅

for all δ such that 1 ≺ δ ≺ λ, from which P (λ) = 1 follows.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ) def←→ g-Cod(δ)g (Ω) = Ω (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (1) = 1) ∧ (Q (δ) = 1 Ð→ Q (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Cod(1)g (Ω)←→ g-Codg (Ω) = Ω. Thus, g-Cod(1)g (Ω) =
Ω, implying Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ)g (Ω) = Ω and consequently, it follows that

g-Cod(δ+1)g (Ω)←→ g-Codg ○g-Cod(δ)g (Ω)←→ g-Codg (Ω) = Ω

Hence, g-Cod(δ+1)g (Ω) = Ω, implying Q (δ + 1) = 1. The inductive case therefore
holds.

Since Q (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that

g-Cod(λ+1)g (Ω) ←→ g-Codg ○g-Cod(λ)g (Ω)

←→ g-Codg(⋂
δ≺λ

g-Cod(δ)g (Ω))←→ g-Codg (Ω) = Ω

for all δ such that 1 ≺ δ ≺ λ, from which Q (λ) = 1 follows. The proof of the theorem
is complete. □

For any δ such that 1 ≼ δ ≺ λ, the δth-order g-Tg-derived set operator is ∪-
additive (alternatively, ∪-distributive); the δth-order g-Tg-coderived set operator is
∩-additive (alternatively, ∩-distributive). The theorem follows.

Theorem 3.6. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a
g-Tg-coderived operators, respectively, and let (Rg,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary

in a Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(δ)g (Rg ∪Sg) = ⋃
Wg=Rg,Sg

g-Der(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)
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– ii. g-Cod(δ)g (Rg ∩Sg) = ⋂
Wg=Rg,Sg

g-Cod(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let (Rg,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary in a

Tg-space Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ)g (Rg ∪Sg) = ⋃
Wg=Rg,Sg

g-Der(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)

Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Derg (Rg ∪Sg) = ⋃
Wg=Rg,Sg

g-Derg (Wg) holds true,

implying P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ)g (Rg ∪Sg) = ⋃
Wg=Rg,Sg

g-Der(δ)g (Wg) and consequently,

it follows that

g-Der(δ+1)g (Rg ∪Sg) ←→ g-Derg ○g-Der(δ)g (Rg ∪Sg)

= g-Derg( ⋃
Wg=Rg,Sg

g-Der(δ)g (Wg))

= ⋃
Wg=Rg,Sg

g-Derg ○g-Der(δ)g (Wg)

←→ ⋃
Wg=Rg,Sg

g-Der(δ+1)g (Wg)

Hence, g-Der(δ+1)g (Rg ∪Sg) = ⋃
Wg=Rg,Sg

g-Der(δ+1)g (Wg), implying P (δ + 1) = 1.

The inductive case therefore holds.
Since P (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that P (λ) = 1 states that

⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Der(δ)g (Wg)) ←→ ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Der(δ)g (Wg))

and it is evident that any element in ⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Der(δ)g (Wg)) is contained

in ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Der(δ)g (Wg)). Thus, in order to prove that any element in

⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Der(δ)g (Wg)) is also in ⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Der(δ)g (Wg)), let it be sup-

posed that ξ ∈ ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Der(δ)g (Wg)) such that, for some (α,β) ≺ (λ,λ)
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where α ≼ β, say, the statement ξ ∈ ⋂
Wg=Rg,Sg

( ⋂
δ=α,β

g-Der(δ)g (Wg)) holds true. Then,

ξ ∈ ⋂Wg=Rg,Sg
g-Der(α)g (Wg) and therefore ξ ∈ ⋂

δ≺λ
( ⋂

Wg=Rg,Sg

g-Der(δ)g (Wg)), imply-

ing P (λ) = 1 holds.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ) def←→ g-Cod(δ)g (Rg ∩Sg) = ⋂
Wg=Rg,Sg

g-Cod(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)

Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (1) = 1) ∧ (Q (δ) = 1 Ð→ Q (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Codg (Rg ∩Sg) = ⋂
Wg=Rg,Sg

g-Codg (Wg) holds

true, implying Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ)g (Rg ∩Sg) = ⋂
Wg=Rg,Sg

g-Cod(δ)g (Wg) and consequently,

it follows that

g-Cod(δ+1)g (Rg ∩Sg) ←→ g-Codg ○g-Cod(δ)g (Rg ∩Sg)

= g-Codg( ⋂
Wg=Rg,Sg

g-Cod(δ)g (Wg))

= ⋂
Wg=Rg,Sg

g-Codg ○g-Cod(δ)g (Wg)

←→ ⋂
Wg=Rg,Sg

g-Cod(δ+1)g (Wg)

Hence, g-Cod(δ+1)g (Rg ∩Sg) = ⋂
Wg=Rg,Sg

g-Cod(δ+1)g (Wg), implying Q (δ + 1) = 1.

The inductive case therefore holds.
Since Q (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that Q (λ) = 1 states that

⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Cod(δ)g (Wg)) ←→ ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Cod(δ)g (Wg))

and it is evident that any element in ⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Cod(δ)g (Wg)) is contained

in ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Cod(δ)g (Wg)). Thus, in order to prove that any element in

⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Cod(δ)g (Wg)) is also in ⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Cod(δ)g (Wg)), let it be sup-

posed that ζ ∈ ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Cod(δ)g (Wg)) such that, for some (α,β) ≺ (λ,λ)
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where α ≼ β, say, the statement ζ ∈ ⋂
Wg=Rg,Sg

( ⋂
δ=α,β

g-Cod(δ)g (Wg)) holds true.

Then, ζ ∈ ⋂
Wg=Rg,Sg

g-Cod(α)g (Wg) and therefore, it follows that the statement

ζ ∈ ⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Cod(δ)g (Wg)) holds, implying Q (λ) = 1 holds. The proof of

the theorem is complete. □

The corollary stated below is an immediate consequence of the above theorem.

Corollary 3.7. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω), dcg ∈ DC [Tg] be a given pair of Tg-operators derg,
codg ∶ P (Ω) Ð→ P (Ω), and (Rg,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary in a Tg-space

Tg = (Ω,Tg), then:
– i. g-Der(δ)g (Rg ∪Sg) ⊆ ⋃

Wg=Rg,Sg

der(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Rg ∩Sg) ⊇ ⋂
Wg=Rg,Sg

cod(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)

For any (δ, η) such that 1 ≼ δ ≺ η ≺ λ, g-Der(η)g ∶ P (Ω) Ð→ P (Ω) is coarser

(or, smaller, weaker) than g-Der(δ)g ∶ P (Ω) Ð→ P (Ω) or, g-Der(δ)g ∶ P (Ω) Ð→
P (Ω) is finer (or, larger, stronger) than g-Der(η)g ∶ P (Ω) Ð→ P (Ω); g-Cod(η)g ∶
P (Ω) Ð→ P (Ω) is finer (or, larger, stronger) than g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω)
or, g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω) is coarser (or, smaller, weaker) than g-Cod(η)g ∶
P (Ω)Ð→P (Ω). Accordingly, the proposition follows.

Proposition 2. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and
a g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a
Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(η)g (Sg) ⊆ g-Der(δ)g (Sg) (∀ (δ, η) ∶ 1 ≼ δ ≺ η ≺ λ)

– ii. g-Cod(η)g (Sg) ⊇ g-Cod(δ)g (Sg) (∀ (δ, η) ∶ 1 ≼ δ ≺ η ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg). Then:

— I. Set η = δ + ε, where 1 ≼ ε, introduce B = {0,1} as Boolean domain and
introduce the Boolean-valued propositional formula

B ∋ P (ε) def←→ g-Der(δ+ε)g (Sg) ⊆ g-Der(δ)g (Sg) (∀ε ∶ 1 ≼ ε)

Then, to prove Item i., it only suffices to prove that,

(∀ε ∶ 1 ≼ ε)[(P (1) = 1) ∧ (P (ε) = 1 Ð→ P (ε + 1) = 1)]

– Case i. Let 1 = ε. Then, g-Der(δ+1)g (Sg) ⊆ g-Der(δ)g (Sg), implying P (1) = 1.
The base case therefore holds.
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– Case ii. Let 1 ≺ ε and assume that the inductive hypothesis P (ε) = 1

holds true. Then, g-Der(δ+ε)g (Sg) ⊆ g-Der(δ)g (Sg) and consequently, it results

that g-Derg ○g-Der(δ+ε)g (Sg) ⊆ g-Derg ○g-Der(δ)g (Sg). But,

g-Derg ○g-Der(δ+ε)g (Sg) ←→ g-Der(δ+(ε+1))g (Sg)

⊆ g-Derg ○g-Der(δ)g (Sg)

←→ g-Der(δ+1)g (Sg) ⊆ g-Der(δ)g (Sg)

Hence, g-Der(δ+(ε+1))g (Sg) ⊆ g-Der(δ)g (Sg), implying P (ε + 1) = 1. The inductive
case therefore holds.

Since P (δ) = 1 for all δ such that 1 ≺ δ ≺ η ≺ λ, it follows that

g-Der(λ+1)g (Sg) ←→ g-Derg ○g-Der(λ)g (Sg)

←→ g-Derg(⋂
η≺λ

g-Der(η)g (Sg))

⊆ g-Derg ○g-Der(η)g (Sg)

←→ g-Der(η+1)g (Sg) ⊆ g-Der(δ+1)g (Sg)

⊆ g-Der(η)g (Sg) ⊆ g-Der(δ)g (Sg)

for all δ such that 1 ≺ δ ≺ η ≺ λ, from which P (λ) = 1 follows.

— II. Set η = δ + ε, where 1 ≼ ε, introduce B = {0,1} as Boolean domain and
introduce the Boolean-valued propositional formula

B ∋ Q (ε) def←→ g-Cod(δ+ε)g (Sg) ⊇ g-Cod(δ)g (Sg) (∀ε ∶ 1 ≼ ε)

Then, to prove Item ii., it only suffices to prove that,

(∀ε ∶ 1 ≼ ε)[(Q (1) = 1) ∧ (Q (ε) = 1 Ð→ Q (ε + 1) = 1)]

– Case i. Let 1 = ε. Then, g-Cod(δ+1)g (Sg) ⊇ g-Cod(δ)g (Sg), implying Q (1) = 1.
The base case therefore holds.

– Case ii. Let 1 ≺ ε and assume that the inductive hypothesis Q (ε) = 1 holds

true. Then, g-Cod(δ+ε)g (Sg) ⊇ g-Cod(δ)g (Sg) and consequently, it results that

g-Codg ○g-Cod(δ+ε)g (Sg) ⊇ g-Codg ○g-Cod(δ)g (Sg). But,

g-Codg ○g-Cod(δ+ε)g (Sg) ←→ g-Cod(δ+(ε+1))g (Sg)

⊇ g-Codg ○g-Cod(δ)g (Sg)

←→ g-Cod(δ+1)g (Sg) ⊇ g-Cod(δ)g (Sg)

Hence, g-Cod(δ+(ε+1))g (Sg) ⊇ g-Cod(δ)g (Sg), implying Q (ε + 1) = 1. The inductive
case therefore holds.
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Since Q (δ) = 1 for all δ such that 1 ≺ δ ≺ η ≺ λ, it follows that

g-Cod(λ+1)g (Sg) ←→ g-Codg ○g-Cod(λ)g (Sg)

←→ g-Codg(⋂
η≺λ

g-Cod(η)g (Sg))

⊇ g-Codg ○g-Cod(η)g (Sg)

←→ g-Cod(η+1)g (Sg) ⊇ g-Cod(δ+1)g (Sg)

⊇ g-Cod(η)g (Sg) ⊇ g-Cod(δ)g (Sg)

for all δ such that 1 ≺ δ ≺ η ≺ λ, from which Q (λ) = 1 follows. The proof of the
proposition is complete. □

The corollary stated below is an immediate consequence of the above proposition.

Corollary 3.8. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(η)g (Sg) ⊆ der(δ)g (Sg) (∀ (δ, η) ∶ 1 ≼ δ ≺ η ≺ λ)

– ii. g-Cod(η)g (Sg) ⊇ cod(δ)g (Sg) (∀ (δ, η) ∶ 1 ≼ δ ≺ η ≺ λ)

For any (δ, η) such that 1 ≼ δ ≺ η ≺ λ, the (δ + η)th-order g-Tg-derived set

operator is equivalent to the composition of the δth-order and the ηth-order of the

g-Tg-derived set operator; likewise, the (δ + η)th-order g-Tg-coderived set operator

is equivalent to the composition of the δth-order and the ηth-order of the g-Tg-
coderived set operator. The proposition follows.

Proposition 3. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and
a g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a
Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(δ+η)g (Sg) = g-Der(δ)g ○g-Der(η)g (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η))

– ii. g-Cod(δ+η)g (Sg) = g-Cod(δ)g ○g-Cod(η)g (Sg) (∀ (δ, η) ∶ (1,1) ≼
(δ, η))

where (δ, η) ≺ (λ,λ).

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ, η) def←→ g-Der(δ+η)g (Sg) = g-Der(δ)g ○g-Der(η)g (Sg)
(∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))
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Then, to prove Item i., it only suffices to prove that,

(∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))
[(P (1,1) = 1) ∧ (P (δ, η) = 1 Ð→ P (δ + 1, η + 1) = 1)]

– Case i. Let (1,1) = (δ, η). Then,
g-Der(2)g (Sg)←→ g-Der(1+1)g (Sg) = g-Der(1)g ○g-Der(1)g (Sg)←→ g-Der(2)g (Sg)
implying P (1,1) = 1. The base case therefore holds.

– Case ii. Let (1,1) ≺ (δ, η) ≺ (λ,λ) and assume that the inductive hypoth-

esis P (δ, η) = 1 holds true. Then, g-Der(δ+η)g (Sg) = g-Der(δ)g ○g-Der(η)g (Sg) and
consequently, g-Der(2)g ○g-Der(δ+η)g (Sg) = g-Der(2)g ○g-Der(δ)g ○g-Der(η)g (Sg). But,

g-Der(2)g ○g-Der(δ+η)g (Sg)←→ g-Der((δ+1)+(η+1))g (Sg) and,

g-Der(2)g ○g-Der(δ)g ○g-Der(η)g (Sg)
←→

g-Der(2)g ○g-Der(δ−1)g ○g-Der(1)g ○g-Der(η)g (Sg)

←→

g-Der(δ+1)g ○g-Der(η+1)g (Sg)

Hence, it follows that g-Der((δ+1)+(η+1))g (Sg) = g-Der(δ+1)g ○g-Der(η+1)g (Sg), imply-
ing P (δ + 1, η + 1) = 1. The inductive case therefore holds.

Suppose P (δ, η) = 1 holds for all (δ, η) such that (1,1) ≺ (δ, η) ≺ (λ,λ). Then,

⋂
δ+η≺λ+λ

g-Der(δ+η)g (Sg) = ⋂
δ+η≺λ+λ

g-Der(δ)g ○g-Der(η)g (Sg)

←→

g-Der(λ+λ)g (Sg) = g-Der(λ)g ○g-Der(λ)g (Sg)
from which P (λ,λ) = 1 follows.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ, η) def←→ g-Cod(δ+η)g (Sg) = g-Cod(δ)g ○g-Cod(η)g (Sg)
(∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))

Then, to prove Item ii., it only suffices to prove that,

(∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))
[(Q (1,1) = 1) ∧ (Q (δ, η) = 1 Ð→ Q (δ + 1, η + 1) = 1)]

– Case i. Let (1,1) = (δ, η). Then,
g-Cod(2)g (Sg)←→ g-Cod(1+1)g (Sg) = g-Cod(1)g ○g-Cod(1)g (Sg)←→ g-Cod(2)g (Sg)
implying Q (1,1) = 1. The base case therefore holds.
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– Case ii. Let (1,1) ≺ (δ, η) ≺ (λ,λ) and assume that the inductive hypothesis

Q (δ, η) = 1 holds true. Then, g-Cod(δ+η)g (Sg) = g-Cod(δ)g ○g-Cod(η)g (Sg) and con-

sequently, g-Cod(2)g ○g-Cod(δ+η)g (Sg) = g-Cod(2)g ○g-Cod(δ)g ○g-Cod(η)g (Sg). But,

g-Cod(2)g ○g-Cod(δ+η)g (Sg)←→ g-Cod((δ+1)+(η+1))g (Sg) and,

g-Cod(2)g ○g-Cod(δ)g ○g-Cod(η)g (Sg)

←→

g-Cod(2)g ○g-Cod(δ−1)g ○g-Cod(1)g ○g-Cod(η)g (Sg)

←→

g-Cod(δ+1)g ○g-Cod(η+1)g (Sg)

Hence, it follows that g-Cod((δ+1)+(η+1))g (Sg) = g-Cod(δ+1)g ○g-Cod(η+1)g (Sg), im-
plying Q (δ + 1, η + 1) = 1. The inductive case therefore holds.

Suppose Q (δ, η) = 1 holds for all (δ, η) such that (1,1) ≺ (δ, η) ≺ (λ,λ). Then,

⋂
δ+η≺λ+λ

g-Cod(δ+η)g (Sg) = ⋂
δ+η≺λ+λ

g-Cod(δ)g ○g-Cod(η)g (Sg)
←→

g-Cod(λ+λ)g (Sg) = g-Cod(λ)g ○g-Cod(λ)g (Sg)

from which Q (λ,λ) = 1 follows. The proof of the proposition is complete. □

The corollary stated below is an immediate consequence of the above proposition.

Corollary 3.9. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(δ+η)g (Sg) ⊆ der(δ)g ○der(η)g (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η))

– ii. g-Cod(δ+η)g (Sg) ⊇ cod(δ)g ○ cod(η)g (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η))
where (δ, η) ≺ (λ,λ).

For any (δ, η) such that (1,1) ≼ (δ, η) ≺ (λ,λ), the δηth-order g-Tg-derived set

operator is equivalent to the ηth-order of the δth-order of the g-Tg-derived set

operator; likewise, the δηth-order g-Tg-coderived set operator is equivalent to the

ηth-order of the δth-order of the g-Tg-coderived set operator. Accordingly, the
following proposition presents itself.

Proposition 4. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and
a g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a
Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(δη)g (Sg) = (g-Der(δ)g )
(η) (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))

– ii. g-Cod(δη)g (Sg) = (g-Cod(δ)g )
(η) (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))
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Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (η) def←→ g-Der(δη)g (Sg) = (g-Der(δ)g )
(η) (Sg) (∀η ∶ 1 ≼ η ≺ λ)

Then, to prove Item i., it only suffices to prove that,

(∀η ∶ 1 ≼ η ≺ λ)[(P (1) = 1) ∧ (P (η) = 1 Ð→ P (η + 1) = 1)]
– Case i. Let 1 = η. Then,

g-Der(δ)g (Sg)←→ g-Der(δ×1)g (Sg) = (g-Der(δ)g )
(1) (Sg)←→ g-Der(δ)g (Sg)

implying P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ η ≺ λ and assume that the inductive hypothesis P (η) = 1

holds true. Then, g-Der(δη)g (Sg) = (g-Der(δ)g )
(η) (Sg) and consequently, it re-

sults that g-Der(δ)g ○g-Der(δη)g (Sg) = g-Der(δ)g ○(g-Der(δ)g )
(η) (Sg). But, the rela-

tion g-Der(η)g ○g-Der(δη)g (Sg) ←→ g-Der(δ(η+1))g (Sg) holds true and on the other

hand, the relation g-Der(δ)g ○(g-Der(δ)g )
(η) (Sg) ←→ (g-Der(δ)g )

(η+1) (Sg) also holds

true. Hence, it follows that g-Der(δ(η+1))g (Sg) = (g-Der(δ)g )
(η+1) (Sg), implying

P (η + 1) = 1. The inductive case therefore holds.
Suppose P (δ, η) = 1 holds for all (δ, η) such that (1,1) ≺ (δ, η) ≺ (λ,λ). Then,

⋂
δ≺λ
(⋂
η≺λ

g-Der(δη)g (Sg)) = ⋂
δ≺λ
(⋂
η≺λ
(g-Der(δ)g )

(η) (Sg))

←→

⋂
δ≺λ

g-Der(δλ)g (Sg) = ⋂
δ≺λ
(g-Der(δ)g )

(λ) (Sg)

←→

g-Der(λ×λ)g (Sg) = (g-Der(λ)g )
(λ) (Sg)

from which P (λ,λ) = 1 follows.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (η) def←→ g-Cod(δη)g (Sg) = (g-Cod(δ)g )
(η) (Sg) (∀η ∶ 1 ≼ η ≺ λ)

Then, to prove Item ii., it only suffices to prove that,

(∀η ∶ 1 ≼ η ≺ λ)[(Q (1) = 1) ∧ (Q (η) = 1 Ð→ Q (η + 1) = 1)]
– Case i. Let 1 = η. Then,

g-Cod(δ)g (Sg)←→ g-Cod(δ×1)g (Sg) = (g-Cod(δ)g )
(1) (Sg)←→ g-Cod(δ)g (Sg)
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implying Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ η ≺ λ and assume that the inductive hypothesis Q (η) = 1

holds true. Then, g-Cod(δη)g (Sg) = (g-Cod(δ)g )
(η) (Sg) and consequently, it re-

sults that g-Cod(δ)g ○g-Cod(δη)g (Sg) = g-Cod(δ)g ○(g-Cod(δ)g )
(η) (Sg)). But, the

relation g-Cod(η)g ○g-Cod(δη)g (Sg) ←→ g-Cod(δ(η+1))g (Sg) holds true and on the

other hand, the relation g-Cod(δ)g ○(g-Cod(δ)g )
(η) (Sg)) ←→ (g-Cod(δ)g )

(η+1) (Sg)
also holds true. Hence, it follows that g-Cod(δ(η+1))g (Sg) = (g-Cod(δ)g )

(η+1) (Sg),
implying Q (η + 1) = 1. The inductive case therefore holds.

Suppose Q (δ, η) = 1 holds for all (δ, η) such that (1,1) ≺ (δ, η) ≺ (λ,λ). Then,

⋂
δ≺λ
(⋂
η≺λ

g-Cod(δη)g (Sg)) = ⋂
δ≺λ
(⋂
η≺λ
(g-Cod(δ)g )

(η) (Sg))

←→
⋂
δ≺λ

g-Cod(δλ)g (Sg) = ⋂
δ≺λ
(g-Cod(δ)g )

(λ) (Sg)
←→

g-Cod(λ×λ)g (Sg) = (g-Cod(λ)g )
(λ) (Sg)

from which Q (λ,λ) = 1 follows. The proof of the proposition is complete. □

An immediate consequence of the above proposition is the following corollary.

Corollary 3.10. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(δη)g (Sg) ⊆ (der(δ)g )
(η) (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))

– ii. g-Cod(δη)g (Sg) ⊇ (cod(δ)g )
(η) (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))

For any δ such that 1 ≼ δ ≺ λ, the union of a Tg-set and its g-Tg-derived set

includes the image of the Tg-set under the δth-order g-Tg-derived set operator
composition with itself; the intersection of a Tg-set and its g-Tg-coderived set is

included in the image of the Tg-set under the δ
th-order g-Tg-coderived set operator

composition with itself. These are embodied in the following theorem.

Theorem 3.11. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a
g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-
space Tg = (Ω,Tg). Then:

– i. g-Der(δ)g ○g-Der(δ)g (Sg) ⊆Sg ∪ g-Derg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g ○g-Cod(δ)g (Sg) ⊇Sg ∩ g-Codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-space
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Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ)g ○g-Der(δ)g (Sg) ⊆Sg ∪ g-Derg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]
– Case i. Let 1 = δ. Then, g-Derg ○g-Derg (Sg) ⊆Sg ∪ g-Derg (Sg) holds true,

implying P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ)g ○g-Der(δ)g (Sg) ⊆ Sg ∪ g-Derg (Sg) and consequently,

it follows that g-Der(2)g ○g-Der(δ)g ○g-Der(δ)g (Sg) ⊆ g-Der(2)g (Sg ∪ g-Derg (Sg)).
But, g-Der(2)g ○g-Der(δ)g ○g-Der(δ)g (Sg)←→ g-Der(δ+1)g ○g-Der(δ+1)g (Sg) and, on the

other hand, the relation g-Der(2)g (Sg ∪ g-Derg (Sg)) ⊆ g-Derg(Sg ∪ g-Derg (Sg)) ⊆
Sg ∪ g-Derg (Sg) also holds true. Hence, g-Der(δ+1)g ○g-Der(δ+1)g (Sg) ⊆ Sg ∪
g-Derg (Sg), implying P (δ + 1) = 1. The inductive case therefore holds.

Suppose P (δ) = 1 holds for all δ such that 1 ≺ δ ≺ λ. Then,
g-Der(λ+1)g ○g-Der(λ+1)g (Sg) ←→ g-Der(2)g ○g-Der(λ)g ○g-Der(λ)g (Sg)

←→ g-Der(2)g ○g-Der(λ+λ)g (Sg)

←→ g-Der(2)g ( ⋂
δ+δ≺λ+λ

g-Der(δ+δ)g (Sg))

⊆ g-Der(2)g ○g-Der(δ+δ)g (Sg)

←→ g-Der(δ+1)g ○g-Der(δ+1)g (Sg)

⊆ g-Der(δ)g ○g-Der(δ)g (Sg) ⊆Sg ∪ g-Derg (Sg)
from which P (λ) = 1 follows.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ) def←→ g-Cod(δ)g ○g-Cod(δ)g (Sg) ⊇Sg ∩ g-Codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (1) = 1) ∧ (Q (δ) = 1 Ð→ Q (δ + 1) = 1)]
– Case i. Let 1 = δ. Then, g-Codg ○g-Codg (Sg) ⊇ Sg ∩ g-Codg (Sg) holds

true, implying Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ)g ○g-Cod(δ)g (Sg) ⊇ Sg ∩ g-Codg (Sg) and consequently,

it follows that g-Cod(2)g ○g-Cod(δ)g ○g-Cod(δ)g (Sg) ⊇ g-Cod(2)g (Sg ∩ g-Codg (Sg)).
But, g-Cod(2)g ○g-Cod(δ)g ○g-Cod(δ)g (Sg) ←→ g-Cod(δ+1)g ○g-Cod(δ+1)g (Sg) and, on
the other hand, g-Cod(2)g (Sg ∩ g-Codg (Sg)) ⊇ g-Codg(Sg ∩ g-Codg (Sg)) ⊇ Sg ∩
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g-Codg (Sg). Hence, g-Cod(δ+1)g ○g-Cod(δ+1)g (Sg) ⊇ Sg ∩ g-Codg (Sg), implying
Q (δ + 1) = 1. The inductive case therefore holds.

Suppose Q (δ) = 1 holds for all δ such that 1 ≺ δ ≺ λ. Then,

g-Cod(λ+1)g ○g-Cod(λ+1)g (Sg) ←→ g-Cod(2)g ○g-Cod(λ)g ○g-Cod(λ)g (Sg)

←→ g-Cod(2)g ○g-Cod(λ+λ)g (Sg)

←→ g-Cod(2)g ( ⋂
δ+δ≺λ+λ

g-Cod(δ+δ)g (Sg))

⊆ g-Cod(2)g ○g-Cod(δ+δ)g (Sg)

←→ g-Cod(δ+1)g ○g-Cod(δ+1)g (Sg)

⊇ g-Cod(δ)g ○g-Cod(δ)g (Sg)
⊇ Sg ∩ g-Codg (Sg)

from which Q (λ) = 1 follows. The proof of the theorem is complete. □

The following corollary is an immediate consequence of the above theorem.

Corollary 3.12. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(δ)g ○g-Der(δ)g (Sg) ⊆Sg ∪ derg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g ○g-Cod(δ)g (Sg) ⊇Sg ∩ codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

For any δ such 1 ≼ δ ≺ λ, the image of a Tg-set under the δth-order g-Tg-derived
operator is equivalent to the image of the relative complement of any g-Tg-derived

unit set in the Tg-set under the δth-order g-Tg-derived operator; the image of the

Tg-set under the δth-order g-Tg-coderived operator is equivalent to the image of

the union of the Tg-set and any g-Tg-coderived unit set under the δth-order g-Tg-
coderived operator. The theorem follows.

Theorem 3.13. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a

g-Tg-coderived operators, respectively, and let ({ξ} ,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary

in a Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(δ)g (Sg) = g-Der(δ)g (Sg ∩ g-Opg ({ξ})) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Sg) = g-Cod(δ)g (Sg ∪ {ξ}) (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-

coderived operators, respectively, and let ({ξ} ,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary

in a Tg-space Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ)g (Sg) = g-Der(δ)g (Sg ∩ g-Opg ({ξ})) (∀δ ∶ 1 ≼ δ ≺ λ)
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Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Derg (Sg) = g-Derg(Sg ∩ g-Opg ({ξ})) holds true,
implying P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ)g (Sg) = g-Der(δ)g (Sg ∩ g-Opg ({ξ})) and consequently,

it follows that g-Derg ○g-Der(δ)g (Sg) = g-Derg ○g-Der(δ)g (Sg ∩ g-Opg ({ξ})). But,

g-Derg ○g-Der(δ)g (Sg) ←→ g-Der(δ+1)g (Sg) and, on the other hand, the relation

g-Derg ○g-Der(δ)g (Sg ∩ g-Opg ({ξ})) ←→ g-Der(δ+1)g (Sg ∩ g-Opg ({ξ})) also holds

true. Hence, g-Der(δ+1)g (Sg) = g-Der(δ+1)g (Sg∩g-Opg ({ξ})), implying P (δ + 1) = 1.
The inductive case therefore holds.

Suppose P (δ) = 1 holds for all δ such that 1 ≺ δ ≺ λ. Then,

⋂
δ≺λ

g-Der(δ)g (Sg) = ⋂
δ≺λ

g-Der(δ)g (Sg ∩ g-Opg ({ξ}))

←→

g-Der(λ)g (Sg) = g-Der(λ)g (Sg ∩ g-Opg ({ξ}))
from which P (λ) = 1 follows.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ) def←→ g-Cod(δ)g (Sg) = g-Cod(δ)g (Sg ∪ {ξ}) (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (1) = 1) ∧ (Q (δ) = 1 Ð→ Q (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Codg(Sg) = g-Codg(Sg∪{ξ}) holds true, implying
Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ)g (Sg) = g-Cod(δ)g (Sg ∪ {ξ}) and consequently, it follows

that g-Codg ○g-Cod(δ)g (Sg) = g-Codg ○g-Cod(δ)g (Sg ∪ {ξ}). But on the one hand,

g-Codg ○g-Cod(δ)g (Sg) ←→ g-Cod(δ+1)g (Sg) and, on the other hand, the relation

g-Codg ○g-Cod(δ)g (Sg ∪ {ξ}) ←→ g-Cod(δ+1)g (Sg ∪ {ξ}) also holds true. Hence,

g-Cod(δ+1)g (Sg) = g-Cod(δ+1)g (Sg ∪{ξ}), implying Q (δ + 1) = 1. The inductive case
therefore holds.

Suppose Q (δ) = 1 holds for all δ such that 1 ≺ δ ≺ λ. Then,

⋂
δ≺λ

g-Cod(δ)g (Sg) = ⋂
δ≺λ

g-Cod(δ)g (Sg ∪ {ξ})

←→

g-Cod(λ)g (Sg) = g-Cod(λ)g (Sg ∪ {ξ})
from which Q (λ) = 1 follows. The proof of the theorem is complete. □
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The corollary stated below is an immediate consequence of the above theorem.

Corollary 3.14. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators

derg, codg ∶ P (Ω) Ð→ P (Ω), and let ({ξ} ,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary in a

Tg-space Tg = (Ω,Tg), then:
– i. g-Der(δ)g (Sg) ⊆ der(δ)g (Sg ∩ g-Opg ({ξ})) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Sg) ⊇ cod(δ)g (Sg ∪ {ξ}) (∀δ ∶ 1 ≼ δ ≺ λ)

Our research objective concerning the definitions and the essential properties
of the concepts of δth-order derivative g-Tg-derived and g-Tg-coderived operators
defined by transfinite recursion on the class of successor ordinals in Tg-spaces is now

complete. Of the notions of the δth-iterates of the g-Tg-derived and g-Tg-coderived
operators in Tg-spaces, we conclude the present section with two corollaries and
two axiomatic definitions derived from these two corollaries.

The first corollary stated below gives the necessary and sufficient condition for
a δth-order g-Tg-derived operator to be a g-Tg-derived operator.

Corollary 3.15. A necessary and sufficient condition for the δth-iterate g-Der(δ)g ∶
Sg ∈ P (Ω) z→ g-Der(δ)g (Sg) of g-Derg ∶ P (Ω) Ð→ P (Ω) to be a g-Tg-derived

operator in a strong Tg-space Tg = (Ω,Tg) is that, for every ({ξ} ,Rg,Sg) ∈
⨉α∈I∗3 P (Ω), it satisfies:

– i. g-Der(δ)g (∅) = ∅ (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Der(δ)g (Rg) = g-Der(δ)g (Rg ∩ g-Opg ({ξ})) (∀δ ∶ 1 ≼ δ ≺ λ)

– iii. g-Der(δ)g ○g-Der(δ)g (Rg) ⊆Rg ∪ g-Derg (Rg) (∀δ ∶ 1 ≼ δ ≺ λ)

– iv. g-Der(δ)g (Rg ∪Sg) = ⋃
Ug=Rg,Sg

g-Der(δ)g (Ug) (∀δ ∶ 1 ≼ δ ≺ λ)

The second corollary stated below gives the necessary and sufficient condition
for a δth-order g-Tg-coderived operator to be a g-Tg-coderived operator.

Corollary 3.16. A necessary and sufficient condition for the δth-iterate g-Cod(δ)g ∶
Sg ∈P (Ω)z→ g-Cod(δ)g (Sg) of g-Codg ∶ P (Ω)Ð→P (Ω) to be a g-Tg-coderived

operator in a Tg-space Tg = (Ω,Tg) is that, for every ({ξ} ,Rg,Sg) ∈ ⨉α∈I∗3 P (Ω),
it satisfies:

– i. g-Cod(δ)g (Ω) = Ω (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Rg) = cod(δ)g (Rg ∪ {ξ}) (∀δ ∶ 1 ≼ δ ≺ λ)

– iii. g-Cod(δ)g ○g-Cod(δ)g (Rg) ⊇Rg ∩ g-Codg (Rg) (∀δ ∶ 1 ≼ δ ≺ λ)

– iv. g-Cod(δ)g (Rg ∩Sg) = ⋂
Ug=Rg,Sg

g-Cod(δ)g (Ug) (∀δ ∶ 1 ≼ δ ≺ λ)

Hence, in a strong Tg-space, for the δth-iterate of a set-valued map g-Derg ∶
P (Ω)Ð→P (Ω) on P (Ω) ranging in P (Ω) to be characterized as a g-Tg-derived
operator it must necessarily and sufficiently satisfy a list of derived set g-Tg-derived

operator conditions (Items i.–iv. of Cor. 3.15), and similarly, for the δth-iterate
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of a set-valued map g-Derg ∶ P (Ω) Ð→ P (Ω) on P (Ω) ranging in P (Ω) to
be characterized as a g-Tg-coderived operator it must necessarily and sufficiently
satisfy a list of derived set g-Tg-coderived operator conditions (Items v.–viii. of
Cor. 3.16).

Evidently, Items i., ii., iii. and iv. of Cor. 3.15 state that the δth-iterate
of the g-Tg-derived operator g-Derg ∶ P (Ω) Ð→ P (Ω) is ∅-grounded (alterna-
tively, ∅-preserving), ξ-invariant (alternatively, ξ-unaffected), g-Clg-intensive and
∪-additive (alternatively, ∪-distributive), respectively. On the other hand, Items
i., ii., iii. and iv. of Cor. 3.16 state that the δth-iterate of the g-Tg-coderived
operator g-Codg ∶ P (Ω) Ð→ P (Ω) is Ω-grounded (alternatively, Ω-preserving),
ζ-invariant (alternatively, ζ-unaffected), g-Intg-extensive and ∩-additive (alterna-
tively, ∩-distributive), respectively.

Viewing the δth-order derived set g-Tg-derived operator conditions (Items i.–

iv. of Cor. 3.15 above) as δth-order g-Tg-derived operator axioms, the axiomatic

definition of the concept of a δth-order g-Tg-derived operator, then, can be defined

as a δth-order set-valued map g-Der(δ)g ∶ P (Ω) Ð→ P (Ω) on P (Ω) ranging in

P (Ω) satisfying a list of δth-order g-Tg-derived operator axioms. The axiomatic

definition of the concept of a δth-order g-Tg-derived operator in strong Tg-spaces
follows.

Definition 3.17 (Axiomatic Definition: g-Tg-Derived Operator). The δth-iterate

g-Der(δ)g ∶ Sg ∈ P (Ω) z→ g-Der(δ)g (Sg) of g-Derg ∶ P (Ω) Ð→ P (Ω) is called

a ”g-Tg-derived operator of δth order” on P (Ω) ranging in P (Ω) for some or-

dinal δ such that 1 ≼ δ ≺ λ if and only if, for any ({ξ} ,Rg,Sg) ∈ ⨉α∈I∗3 P (Ω)
such that {ξ} ⊂ g-Derg (Rg), it satisfies each ”g-Tg-derived operator axiom” in

AX[g-DE(δ) [Tg] ;B] def= {AxDE,ν(g-Der(δ)g ) ∶ ν ∈ I∗4 }, where the mapping AxDE,ν ∶
g-DE(δ) [Tg]Ð→ B def= {0,1}, ν ∈ I∗4 , is defined as thus:

– AxDE,1(g-Der(δ)g )
def←→ g-Der(δ)g (∅) = ∅

– AxDE,2(g-Der(δ)g )
def←→ g-Der(δ)g (Rg) = g-Der(δ)g (Rg ∩ g-Opg ({ξ}))

– AxDE,3(g-Der(δ)g )
def←→ g-Der(δ)g ○g-Der(δ)g (Rg) ⊆Rg ∪ g-Derg (Rg)

– AxDE,4(g-Der(δ)g )
def←→ g-Der(δ)g (Rg ∪Sg) = ⋃

Ug=Rg,Sg

g-Der(δ)g (Ug)

Similarly, viewing the δth-order derived set g-Tg-coderived operator conditions

(Items i.–iv. of Cor. 3.16 above) as δth-order g-Tg-coderived operator axioms,

the axiomatic definition of the concept of a δth-order g-Tg-coderived operator, then,

can be defined as a δth-order set-valued map g-Cod(δ)g ∶ P (Ω)Ð→P (Ω) on P (Ω)
ranging in P (Ω) satisfying a list of g-Tg-coderived operator axioms. The axiomatic

definition of the concept of a δth-order g-Tg-coderived operator in Tg-spaces follows.

Definition 3.18 (Axiomatic Definition: g-Tg-Coderived Operator). The δth-iterate

g-Cod(δ)g ∶ Sg ∈ P (Ω) z→ g-Cod(δ)g (Sg) of g-Codg ∶ P (Ω) Ð→ P (Ω) is called

a ”g-Tg-coderived operator of δth order” on P (Ω) ranging in P (Ω) for some or-

dinal δ such that 1 ≼ δ ≺ λ if and only if, for any ({ξ} ,Rg,Sg) ∈ ⨉α∈I∗3 P (Ω)
such that {ξ} ⊂ g-Codg (Rg), it satisfies each ”g-Tg-derived operator axiom” in
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AX[g-CD(δ) [Tg] ;B] def= {AxCD,ν(g-Cod(δ)g ) ∶ ν ∈ I∗4 }, where the mapping AxCD,ν ∶
g-CD(δ) [Tg]Ð→ B def= {0,1}, ν ∈ I∗4 , is defined as thus:

– AxCD,1(g-Cod(δ)g )
def←→ g-Cod(δ)g (Ω) = Ω

– AxCD,2(g-Cod(δ)g )
def←→ g-Cod(δ)g (Rg) = g-Cod(δ)g (Rg ∪ {ξ})

– AxCD,3(g-Cod(δ)g )
def←→ g-Cod(δ)g ○g-Cod(δ)g (Rg) ⊇Rg ∩ g-Codg (Rg)

– AxCD,4(g-Cod(δ)g )
def←→ g-Cod(δ)g (Rg ∩Sg) = ⋂

Ug=Rg,Sg

g-Cod(δ)g (Ug)

On the essential properties of the δth-order derivative g-Tg-derived and g-Tg-
coderived operators defined by transfinite recursion on the class of successor ordinals
in Tg-spaces, the discussion of the present section terminates here.

4. Discussion

4.1. Categorical and Ordinal Classifications. In the present section, based on
the notions of coarseness (or, smallness, weakness), or alternatively, finness (or,

largeness, strongness), the various relationships amongst the T
(δ)
a , g-ν-T

(δ)
a -derived

and T
(δ)
a , g-ν-T

(δ)
a -coderived operators

⎧⎪⎪⎨⎪⎪⎩

der(δ)a , g-Der(δ)a,ν

cod(δ)a , g-Cod(δ)a,ν

∶ P (Ω) Ð→P (Ω)

Sa z→
⎧⎪⎪⎨⎪⎪⎩

der(δ)a (Sa) , g-Der(δ)a,ν (Sa)
cod(δ)a (Sa) , g-Cod(δ)a,ν (Sa)

(4.1)

are established in Ta-spaces (a ∈ {o,g}) with respect to their category ν ∈ I03 and
their ordinal δ ∈ [o] = {δ ∶ 1 ≼ δ ≺ λ}, taking into account the required properties of
the corresponding Ta, g-Ta-derived and Ta, g-Ta-coderived operators established
in Ta-spaces (a ∈ {o,g}) in a recent paper [1].

For illustrative purposes, the discussion will be furnished by (T(δ)a ,g-T
(δ)
a )a=o,g-

derived operators and (T(δ)a ,g-T
(δ)
a )a=o,g-coderived operators diagrams. For clarity,

the notations T = (Ω,T ), der, g-Der, cod, g-Cod, . . ., der(δ), g-Der(δ), cod(δ),
g-Cod(δ), . . . will be considered instead of To = (Ω,To), dero, g-Dero, codo, g-Codo,

. . ., der(δ)o , g-Der(δ)o , cod(δ)o , g-Cod(δ)o , . . ., respectively, or both will be considered
interchangeably.

In a Tg-space Tg = (Ω,Tg) ⊇ (Ω,To) = To, the so-called (Ta,g-Ta)a=o,g-coderived
sets diagram [See [1]: Diag. (4.1), §§ 4.1, p. 213.]

cod (Sg) ⊆ cod (Sg) ⊆ cod (Sg) ⊇ cod (Sg)

⊆ ⊆ ⊆ ⊆

g-Cod0 (Sg) ⊆ g-Cod1 (Sg) ⊆ g-Cod3 (Sg) ⊇ g-Cod2 (Sg)

⊆ ⊆ ⊆ ⊆

g-Codg,0 (Sg) ⊆ g-Codg,1 (Sg) ⊆ g-Codg,3 (Sg) ⊇ g-Codg,2 (Sg)

⊇ ⊇ ⊇ ⊇

codg (Sg) ⊆ codg (Sg) ⊆ codg (Sg) ⊇ codg (Sg)
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as well as the so-called (Ta,g-Ta)a=o,g-derived sets diagram [See [1]: Diag. (4.2),

§§ 4.1, p. 214.]

der (Sg) ⊇ der (Sg) ⊇ der (Sg) ⊆ der (Sg)

⊇ ⊇ ⊇ ⊇
g-Der0 (Sg) ⊇ g-Der1 (Sg) ⊇ g-Der3 (Sg) ⊆ g-Der2 (Sg)

⊇ ⊇ ⊇ ⊇

g-Derg,0 (Sg) ⊇ g-Derg,1 (Sg) ⊇ g-Derg,3 (Sg) ⊆ g-Derg,2 (Sg)

⊆ ⊆ ⊆ ⊆

derg (Sg) ⊇ derg (Sg) ⊇ derg (Sg) ⊆ derg (Sg)

Let it be granted some pair (ν,µ) ∈ I03 × I03 of categories and some pair of or-

dinals (δ, η) ∈ [o] × [o]. Suppose the relations

⎧⎪⎪⎨⎪⎪⎩

g-Cod(η)a,ν ≾ g-Cod(δ)a,µ

g-Der(η)a,ν ≿ g-Der(δ)a,µ

stand for

⎧⎪⎪⎨⎪⎪⎩

g-Cod(η)a,ν (Sa) ⊆ g-Cod(δ)a,µ (Sg)
g-Der(η)a,ν (Sa) ⊇ g-Der(δ)a,µ (Sa)

or equivalently,

⎧⎪⎪⎨⎪⎪⎩

g-Cod(δ)a,µ ≿ g-Cod(η)a,ν

g-Der(δ)µ ≾ g-Der(η)ν

stand

for

⎧⎪⎪⎨⎪⎪⎩

g-Cod(δ)a,µ (Sa) ⊇ g-Cod(η)a,ν (Sa)
g-Der(δ)a,µ (Sa) ⊆ g-Der(η)a,ν (Sa) ,

respectively, in a Ta-space Ta = (Ω,Ta).

Then, g-Cod(η)ν , g-Der(δ)µ ∶ P (Ω) Ð→ P (Ω) are coarser (or, smaller, weaker)

than g-Cod(δ)µ , g-Der(η)ν ∶ P (Ω) Ð→ P (Ω) or, g-Cod(δ)µ , g-Der(η)ν ∶ P (Ω) Ð→
P (Ω) are finer (or, larger, stronger) than g-Cod(η)ν , g-Der(δ)µ ∶ P (Ω) Ð→P (Ω);
g-Cod(δ)g,µ, g-Der(η)g,ν ∶ P (Ω)Ð→P (Ω) are finer (or, larger, stronger) than g-Cod(η)g,ν

,g-Der(δ)g,µ ∶ P (Ω) Ð→P (Ω) or, g-Cod(η)g,ν ,g-Der(δ)g,µ ∶ P (Ω) Ð→P (Ω) are coarser

(or, smaller, weaker) than g-Cod(δ)g,µ, g-Der(η)g,ν ∶ P (Ω)Ð→P (Ω).
In view of the above descriptions, for any pair (δ, η) ∈ [o] × [o], the following

(T(δ)a ,g-T
(δ)
a )a=o,g-coderived operators diagram, which is to be read horizontally,

from left to right and vertically, from top to bottom, presents itself:

cod(η) ≾ cod(η) ≾ cod(η) ≿ cod(η)

≾ ≾ ≾ ≾

g-Cod
(η)
0 ≾ g-Cod

(η)
1 ≾ g-Cod

(η)
3 ≿ g-Cod

(η)
2≿ ≿ ≿ ≿

g-Cod
(δ)
0 ≾ g-Cod

(δ)
1 ≾ g-Cod

(δ)
3 ≿ g-Cod

(δ)
2≾ ≾ ≾ ≾

g-Cod
(δ)
g,0 ≾ g-Cod

(δ)
g,1 ≾ g-Cod

(δ)
g,3 ≿ g-Cod

(δ)
g,2≾ ≾ ≾ ≾

g-Cod
(η)
g,0 ≾ g-Cod

(η)
g,1 ≾ g-Cod

(η)
g,3 ≿ g-Cod

(η)
g,2≿ ≿ ≿ ≿

cod(η)g ≾ cod(η)g ≾ cod(η)g ≿ cod(η)g

(4.2)
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On the other hand, for any pair (δ, η) ∈ [o] × [o], the following (T(δ)a ,g-T
(δ)
a )a=o,g-

derived operators diagram, which is to be read horizontally, from left to right and
vertically, from top to bottom, also presents itself:

der(η) ≿ der(η) ≿ der(η) ≾ der(η)

≿ ≿ ≿ ≿
g-Der

(η)
0 ≿ g-Der

(η)
1 ≿ g-Der

(η)
3 ≾ g-Der

(η)
2≾ ≾ ≾ ≾

g-Der
(δ)
0 ≿ g-Der

(δ)
1 ≿ g-Der

(δ)
3 ≾ g-Der

(δ)
2≿ ≿ ≿ ≿

g-Der
(δ)
g,0 ≿ g-Der

(δ)
g,1 ≿ g-Der

(δ)
g,3 ≾ g-Der

(δ)
g,2≿ ≿ ≿ ≿

g-Der
(η)
g,0 ≿ g-Der

(η)
g,1 ≿ g-Der

(η)
g,3 ≾ g-Der

(η)
g,2≾ ≾ ≾ ≾

der(η)g ≿ der(η)g ≿ der(η)g ≾ der(η)g .

(4.3)

The relationships amongst the T
(δ)
a , g-ν-T

(δ)
a -derived operators der(δ)a , g-Der(δ)a,ν ∶

P (Ω) Ð→ P (Ω) and the T
(δ)
a , g-ν-T

(δ)
a -coderived operators cod(δ)a , g-Cod(δ)a,ν ∶

P (Ω) Ð→P (Ω), respectively, are, therefore, established in Ta-spaces (a ∈ {o,g})
with respect to their category ν ∈ I03 and their ordinal δ ∈ [o].

4.2. A Nice Application. It is the intent of the present section to present a nice

application, highlighting some essential properties of the T
(δ)
g , g-ν-T

(δ)
g -derived op-

erators der(δ)g , g-Der(δ)g,ν ∶ P (Ω) Ð→P (Ω) and T
(δ)
g , g-ν-T

(δ)
g -coderived operators

cod(δ)g , g-Cod(δ)g,ν ∶ P (Ω) Ð→ P (Ω), respectively, in a Tg-space with respect to

their category ν ∈ I03 and their ordinal δ ∈ [o].
In considering the same Tg-space upon which a nice application was presented

in a recent paper [1, §§ 4.2], namely the Tg-space Tg = (Ω,Tg) based on the 7-point

set Ω = {ξν ∶ ν ∈ I∗7 }, and the latter topologized by the choice:

Tg (Ω) = {∅, {ξ1} , {ξ1, ξ3, ξ5} , {ξ1, ξ3, ξ4, ξ5, ξ7}}
= {Og,1, Og,2, Og,3, Og,4}

¬Tg (Ω) = {Ω, {ξ2, ξ3, ξ4, ξ5, ξ6, ξ7} , {ξ2, ξ4, ξ6, ξ7} , {ξ2, ξ6}}
= {Kg,1, Kg,2, Kg,3, Kg,4}

with Rg = {ξ1, ξ2, ξ4}, Sg = Rg ∪ {ξ7}, Ug = {ξ3, ξ5, ξ6, ξ7}, and Vg = Ug ∖ {ξ3},
it was shown through calculations [See [1]: Sys. of Eqs (4.11), §§ 4.2, p. 216.]
that the g-Tg-derived operation of g-Derg,ν ∶ P (Ω) Ð→P (Ω) on the Tg-sets Rg,
Sg ⊂ Tg, and the g-Tg-coderived operation of g-Codg,ν ∶ P (Ω) Ð→P (Ω) on the
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Tg-sets Ug, Vg ⊂ Tg, for all ν ∈ I03 , result in:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

g-Derg,ν (Wg) =Kg,4 ∀ (ν,Wg) ∈ {0,2} × {Rg,Sg}
g-Derg,ν (Wg) = Og,1 ∀ (ν,Wg) ∈ {1,3} × {Rg,Sg}
g-Codg,ν (Yg) = Og,4 ∀ (ν,Yg) ∈ {0,2} × {Ug,Vg}
g-Codg,ν (Yg) =Kg,1 ∀ (ν,Yg) ∈ {1,3} × {Ug,Vg}

implying

⎧⎪⎪⎨⎪⎪⎩

g-Derg,0 (Wg) ⊇ g-Derg,1 (Wg) ⊇ g-Derg,3 (Wg) ⊆ g-Derg,2 (Wg)
g-Codg,0 (Yg) ⊆ g-Codg,1 (Yg) ⊆ g-Codg,3 (Yg) ⊇ g-Codg,2 (Yg)

for each Wg ∈ {Rg,Sg} and Yg ∈ {Ug,Vg} [See [1]: Sys. of Eqs (4.13), §§ 4.2, p.
216.]. It was also shown through calculations [See [1]: Sys. of Eqs (4.12), §§ 4.2,
p. 216.] that the Tg-derived operation of derg ∶ P (Ω) Ð→ P (Ω) on the Tg-sets
Rg, Sg ⊂ Tg, and the Tg-coderived operation of codg ∶ P (Ω) Ð→ P (Ω) on the
Tg-sets Ug, Vg ⊂ Tg result in:

⎧⎪⎪⎨⎪⎪⎩

derg (Wg) =Kg,2 ∀Wg ∈ {Rg,Sg}
codg (Yg) = Og,2 ∀Yg ∈ {Ug,Vg}

implying

⎧⎪⎪⎨⎪⎪⎩

g-Derg,ν (Wg) ⊆ derg (Wg) ∀ (ν,Wg) ∈ I03 × {Rg,Sg}
g-Codg,ν (Yg) ⊇ codg (Wg) ∀ (ν,Yg) ∈ I03 × {Ug,Vg}

in the Tg-space Tg [See [1]: Sys. of Eqs (4.14), §§ 4.2, p. 216.].

Consider again the Tg-sets Rg = {ξ1, ξ2, ξ4}, Sg =Rg∪{ξ7}, Ug = {ξ3, ξ5, ξ6, ξ7},
and Vg = Ug ∖ {ξ3}. Then, for any δ ∈ [o], the g-ν-T

(δ)
g -derived operation of

g-Der(δ)g,ν ∶ P (Ω)Ð→P (Ω) on the Tg-sets Rg, Sg ⊂ Tg, and the g-ν-T
(δ)
g -coderived

operation of g-Cod(δ)g,ν ∶ P (Ω)Ð→P (Ω) on the Tg-sets Ug, Vg ⊂ Tg, for all ν ∈ I03 ,
produce the following results:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g-Der(δ)g,ν (Wg) =Kg,4 ∀ (ν,Wg) ∈ {0,2} × {Rg,Sg}

g-Der(δ)g,ν (Wg) = Og,1 ∀ (ν,Wg) ∈ {1,3} × {Rg,Sg}

g-Cod(δ)g,ν (Yg) = Og,4 ∀ (ν,Yg) ∈ {0,2} × {Ug,Vg}

g-Cod(δ)g,ν (Yg) =Kg,1 ∀ (ν,Yg) ∈ {1,3} × {Ug,Vg}

(4.4)

Likewise, for any δ ∈ [o], the T(δ)g -derived operation of der(δ)g ∶ P (Ω)Ð→P (Ω) on
the Tg-sets Rg, Sg ⊂ Tg, and the T

(δ)
g -coderived operation of cod(δ)g ∶ P (Ω) Ð→

P (Ω) on the Tg-sets Ug, Vg ⊂ Tg, for all ν ∈ I03 , also produce the following results:

⎧⎪⎪⎨⎪⎪⎩

der(δ)g (Wg) =Kg,2 ∀Wg ∈ {Rg,Sg}

cod(δ)g (Yg) = Og,2 ∀Yg ∈ {Ug,Vg}
(4.5)

By virtue of Sys. of Eqs (4.4), it follows that

g-Der(λ)g,ν (Wg) = ⋂
δ≺λ

g-Der(δ)g,ν (Wg) = ∅ ∀ (ν,Wg) ∈ {1,3} × {Rg,Sg}(4.6)
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Again, by virtue of Sys. of Eqs (4.4), it also follows that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g-Der(λ)g,ν (Wg) = ⋂
δ≺λ

g-Der(δ)g,ν (Wg) ≠ ∅ ∀ (ν,Wg) ∈ {0,2} × {Rg,Sg}

g-Cod(λ)g,ν (Yg) = ⋂
δ≺λ

g-Cod(δ)g,ν (Yg) ≠ ∅ ∀ (ν,Yg) ∈ I03 × {Ug,Vg}

der(λ)g (Wg) = ⋂
δ≺λ

der(δ)g (Wg) ≠ ∅ ∀ (ν,Wg) ∈ I03 × {Rg,Sg}

cod(λ)g (Yg) = ⋂
δ≺λ

cod(δ)g (Yg) ≠ ∅ ∀ (ν,Yg) ∈ I03 × {Ug,Vg}

(4.7)

Hence, for any δ ∈ [o], it results that the following results hold true for each Wg ∈
{Rg,Sg} and Yg ∈ {Ug,Vg}:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

g-Der
(δ)
g,0 (Wg) ⊇ g-Der

(δ)
g,1 (Wg) ⊇ g-Der

(δ)
g,3 (Wg) ⊆ g-Der

(δ)
g,2 (Wg)

g-Cod
(δ)
g,0 (Yg) ⊆ g-Cod(δ)g,1 (Yg) ⊆ g-Cod(δ)g,3 (Yg) ⊇ g-Cod(δ)g,2 (Yg)

(4.8)

For any δ ∈ [o], the (≾,≿)-relations g-Der
(δ)
g,0 ≿ g-Der

(δ)
g,1 ≿ g-Der

(δ)
g,3 ≾ g-Der

(δ)
g,2 and

g-Cod
(δ)
g,0 ≾ g-Cod

(δ)
g,1 ≾ g-Cod

(δ)
g,3 ≿ g-Cod

(δ)
g,2 are thus verified. Clearly, for any δ ∈ [o],

the following results also hold true:

⎧⎪⎪⎨⎪⎪⎩

g-Der(δ)g,ν (Wg) ⊆ der(δ)g (Wg) ∀ (ν,Wg) ∈ I03 × {Rg,Sg}

g-Cod(δ)g,ν (Yg) ⊇ cod(δ)g (Wg) ∀ (ν,Yg) ∈ I03 × {Ug,Vg}
(4.9)

Thus, the (≾,≿)-relations g-Der(δ)g,ν ≾ der(δ)g and g-Cod(δ)g,ν ≿ cod(δ)g , for all ν ∈ I03 , are
also verified.

The presentation of this nice application, highlighting some essential properties

of the T
(δ)
g , g-ν-T

(δ)
g -derived operators der(δ)g , g-Der(δ)g,ν ∶ P (Ω)Ð→P (Ω) and T

(δ)
g ,

g-ν-T
(δ)
g -coderived operators cod(δ)g , g-Cod(δ)g,ν ∶ P (Ω) Ð→ P (Ω), respectively, in

a Tg-space with respect to their category ν ∈ I03 and their ordinal δ ∈ [o] are,
therefore, accomplished and ends here.

If the presentation be explored a step further, other interesting properties can

be deduced from the study of other essential properties of T
(δ)
g , g-ν-T

(δ)
g -derived

operators and T
(δ)
g , g-ν-T

(δ)
g -coderived operators in Tg-spaces.

5. Conclusion

In a recent paper [1], we introduced the definitions and studied the essential prop-
erties of the g-Tg-derived and g-Tg-coderived operators g-Derg, g-Codg ∶ P (Ω)Ð→
P (Ω), respectively, in Tg-spaces. Mainly, we showed that (g-Derg,g-Codg) ∶
P (Ω) × P (Ω) Ð→ P (Ω) × P (Ω) is a pair of both dual and monotone g-Tg-
operators that is (∅,Ω), (∪,∩)-preserving, and (⊆,⊇)-preserving relative to g-Tg-
(open, closed) sets [See [1]: Cors 3.15 & 3.16, §§ 2.2, p. 198.]. We also showed
that (g-Derg,g-Codg) ∶ P (Ω) ×P (Ω)Ð→P (Ω) ×P (Ω) is a pair of weaker and
stronger g-Tg-operators [See [1]: Thm. 3.1, §§ 2.2, p. 187.]. In the present paper,
we have introduced by transfinite recursion on the class of successor ordinals the

definitions and investigated the essential of the g-T
(δ)
g -derived and g-T

(δ)
g -coderived

operators g-Der(δ)g , g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω), respectively, in Tg-spaces [See §
3: Thms 3.1–3.13; Cors 3.2–3.16; Props 1–4; Defs 3.17 & 3.18].
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The following three statements sum up the outstanding facts resulting from the

investigation of the essential of the g-T
(δ)
g -derived and g-T

(δ)
g -coderived operators

g-Der(δ)g , g-Cod(δ)g ∶ P (Ω)Ð→P (Ω), respectively, in Tg-spaces:

– i. For any Sg ∈ P (Ω), ⟨g-Der(δ)g (Sg)⟩δ∈[o] is a monotone decreasing

sequence of g-T
(δ)
g -derived sets while ⟨g-Cod(δ)g (Sg)⟩δ∈[o] is a monotone

increasing sequence of g-T
(δ)
g -derived sets in a Tg-space Tg [See § 3: Thm.

3.1 & Cor. 3.2].

– ii. The g-T
(δ)
g -derived operator g-Der(δ)g ∶ P (Ω) Ð→ P (Ω) is weaker

than the T
(δ)
g -derived operator der(δ)g ∶ P (Ω) Ð→P (Ω) while the g-T

(δ)
g -

coderived operator g-Cod(δ)g ∶ P (Ω) Ð→P (Ω) is stronger than the T
(δ)
g -

coderived operator cod(δ)g ∶ P (Ω) Ð→ P (Ω) in a Tg-space Tg [See § 3:
Prop. 1; Cors 3.3 & 3.4].

– iii. For any ({ξ} ,g-Intg,g-Clg) ∈ P (Ω) × g-IC [Ta], the g-T
(δ)
g -derived

operator g-Der(δ)g ∶ P (Ω) Ð→ P (Ω) is ∅-grounded (alternatively, ∅-
preserving), ξ-invariant (alternatively, ξ-unaffected), g-Clg-intensive and
∪-additive (alternatively, ∪-distributive) [See § 3: Cor. 3.15: Items i.–

iv.] while the g-T
(δ)
g -coderived operator g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω)

is Ω-grounded (alternatively, Ω-preserving), ξ-invariant (alternatively, ξ-
unaffected), g-Intg-extensive and ∩-additive (alternatively, ∩-distributive)
[See § 3: Cor. 3.16: Items i.–iv.] in a Tg-space Tg.

Hence, it follows that the study of the g-T
(δ)
g -derived and g-T

(δ)
g -coderived oper-

ators
g-Der(δ)g , g-Cod(δ)g ∶ P (Ω) Ð→P (Ω)

Sg z→ g-Der(δ)g (Sg) , g-Cod(δ)g (Sg)
in a Tg-

space Tg = (Ω,Tg) has resulted in several advantages. Indeed, it has resulted in

axiomatic definitions of these g-T
(δ)
g -coderived operators in the Tg-space Tg [See §

3: Defs 3.17 & 3.18]. The g-T
(δ)
g -derived and g-T

(δ)
g -coderived structures D

(δ)
g

def=
(Ω,g-Der(δ)g ) and C

(δ)
g

def= (Ω,g-Cod(δ)g ), then, are both themselves Tg-spaces which

may well be called T
(δ)
g,der, T

(δ)
g,cod-spaces, respectively. Accordingly, if Cantor [23, 24]

had also considered the T
(δ)
o∣R-derived operator

der
(δ)
o∣R ∶ P (R) Ð→P (R)

So z→ der
(δ)
o∣R (So)

in his investigations of the convergence of Fourier series in R, then the study of con-

vergence in any of the T
(δ)
g,der, T

(δ)
g,cod-spaces D

(δ)
g , C

(δ)
g , respectively, might be made

another subject of inquiry. The discovery of properties in this direction would defi-
nitely bring some benefits to the field of Mathematical Analysis, and the discussion
of this paper ends here.
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