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Research Article

Abstract − We consider the Sturm-Liouville problem on the half line (0 ≤ x < ∞), where
the boundary conditions contain polynomials of the spectral parameter. We define the scat-
tering function and present the spectrum of the boundary value problem. The continuity of
the scattering function is discussed. In a special case, the Levinson-type formula is intro-
duced, demonstrating that the increment of the scattering function’s logarithm is related to
the number of eigenvalues.

Keywords Levinson-type formula, scattering function, spectral parameter dependent boundary condition

Mathematics Subject Classification (2020) 34L25, 81U40

1. Introduction

Consider the boundary value problem

ℓv := −v′′ + φ(x)v = λ2v, 0 ≤ x < ∞ (1.1)

(β3v(0) − α3v
′(0))iλ3 + (β2v(0) − α2v

′(0))λ2 − (β1v(0) − α1v
′(0))iλ− β0v(0) + α0v

′(0) = 0 (1.2)

known as a Sturm Liouville problem, where λ is a spectral parameter, the potential function φ (x) is
real valued such that ∞∫

0

(1 + x) |φ (x)| dx < ∞ (1.3)

and for αi, βi ∈ R, i = 0, 3, α3 ̸= 0, and β3 ̸= 0,

(−1)kδik ≤ 0, k ∈ {1, 2}; δik = 0, k = 3 where δik = αi+kβi − αiβi+k (1.4)

An important part of scattering theory is the study of boundary value problems involving the spectral
parameter. Sturm-Liouville problems with spectral parameter-dependent boundary conditions arise
in studies of heat conduction problems and vibrating string problems. Cohen introduced a method
to solve an initial-boundary value problem arising in the diffusion and heat flow theory [1]. Various
examples of spectral problems that occur in mechanical engineering and contain an eigenparameter
in the boundary conditions were presented in [2]. Moreover, problems with boundary conditions
concerning spectral parameters were investigated in finite intervals [3–10] and on the half line in [11–14].

1aynurcol@sinop.edu.tr (Corresponding Author)
1Department of Mathematics and Science Education, Faculty of Education, Sinop University, Sinop, Türkiye

https://dergipark.org.tr/en/pub/jnt
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Levinson’s theorem provides a relation between the number of bound states of a quantum mechanical
system and the phase shift of that system [15–17]. It is a fundamental tool in quantum mechanics and
scattering theory, as it is responsible for solving the inverse scattering problem [18]. In work [19], the
Levinson formula was obtained for Sturm Liouville operator, which is not only a necessary condition
but also sufficient for the given collection

{
S (λ) ; λj ; mj (j = 1, n)

}
to be scattering data of the

reconstructed equation. The Levinson-type formulas for boundary conditions containing a spectral
parameter were studied in [20–22].

The paper aims to analyze the spectral characteristics of the Sturm-Liouville problem with a nonlinear
spectral parameter in the boundary condition. In progress, we provide the scattering function and the
spectrum of the boundary value problem (1.1) and (1.2), and present the relation between the number
of eigenvalues and the argument’s variation of the scattering function. This relation is referred to as
the Levinson-type formula.

The remaining paper is structured as follows: Section 2 presents the scattering function and the
spectrum for (1.1) and (1.2). Section 3 investigates the scattering function’s continuity. Finally,
section 4 derives the Levinson-type formula.

2. The Scattering Function S(λ) and the Discrete Spectrum

Let (1.3) hold. Then, as known in [19], there exists a unique solution e(λ, x) of (1.1) which holds the
asymptotic behavior lim

x→+∞
e−iλxe (λ, x) = 1, for ℑ ≥ 0, and can be expressed as

e (λ, x) = eiλx +
∞∫
x

K (x, t) eiλtdt (2.1)

called Jost solution. The function e (λ, x) is analytic with respect to λ in the upper-half plane (ℑ > 0)
and continuous on the real line. Moreover, the kernel function K(x, t) is related as follows:

K(x, x) = 1
2

∞∫
x

φ (ζ) dζ

Let ψ(λ, x) represent the solution of (1.1) with the conditions:

ψ(λ, 0) = α0 + iα1λ− α2λ
2 − iα3λ

3 and ψ′(λ, 0) = β0 + iβ1λ− β2λ
2 − iβ3λ

3

It is obvious that the solution ψ(λ, x) holds (1.2).

Let W [y; z] := y′z − yz′ denote the Wronskian. For any solutions e (λ, x) and e (−λ, x) of (1.1), the
Wronskian W [e (λ, x) ; e (−λ, x)] is independent of x and is equal to 2iλ. Therefore, for all λ ∈ R\{0},
e (λ, x) and e (−λ, x) constitute a fundamental set of solutions of (1.1), and any solution ψ(λ, x) of
(1.1) can be expressed as

ψ (λ, x) = e (λ, x) γ1(λ) + e (−λ, x) γ2(λ) (2.2)

By evaluating the following Wronskians of e (λ, x) and ψ(λ, x),

W [e (λ, x) , ψ(λ, x)] = γ2(λ)2iλ = ψ(λ, 0)e′ (λ, 0) − ψ′(λ, 0)e (λ, 0)

and
W [e (−λ, x) , ψ(λ, x)] = −γ1(λ)2iλ = ψ(λ, 0)e′ (−λ, 0) − ψ′(λ, 0)e (−λ, 0)

we find γ1(λ) and γ2(λ) and substitute in (2.2). Let Θ(λ) and Θ1(λ) be functions such that

Θ(λ) = ψ(λ, 0)e′ (λ, 0) − ψ′(λ, 0)e (λ, 0) (2.3)
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and
Θ1(λ) = ψ(λ, 0)e′ (−λ, 0) − ψ′(λ, 0)e (−λ, 0) (2.4)

Therefore, we obtain the solution of (1.1) with (1.2) such that

ψ (λ, x) = (2iλ)−1 [−Θ1(λ)e (λ, x) + Θ(λ)e (−λ, x)] (2.5)

Define the function
S(λ) = Θ1(λ)[Θ(λ)]−1 (2.6)

called the scattering function of (1.1) and (1.2).

We state some properties of S(λ). Show that Θ(λ) ̸= 0, for all λ ∈ R\{0}. Assuming the contrary,
then there exists a λ0 ∈ R, λ0 ̸= 0, such that

(α0 + iα1λ0 − α2λ
2
0 − iα3λ

3
0)e′ (λ0, 0) = (β0 + iβ1λ0 − β2λ

2
0 − iβ3λ

3
0)e (λ0, 0)

Besides,
2iλ0 = W [e(λ0, 0), e(λ0, 0)]

= e′(λ0, 0)e(λ0, 0) − e(λ0, 0)e′(λ0, 0)

= |e (λ0, 0)|2 2iℑ
(
β0+iβ1λ0−β2λ2

0−iβ3λ3
0

α0+iα1λ0−α2λ2
0−iα3λ3

0

)
From the result,

|e (λ0, 0)|2
[
α1β0 − α0β1 + (α2β1 − α1β2) |λ0|2 + (α3β2 − α2β3) |λ0|4

]
∣∣α0 + iα1λ0 − α2λ2

0 − iα3λ3
0
∣∣2 = −1

This is a contradiction since the left hand is positive, which proves the claim.

Therefore, firstly, S(λ) is defined on (−∞, 0) and (0,∞), and secondly, it is continuous in these
intervals, which can be observed from the definition of Θ(λ). In section 3, the continuity of S(λ) at
λ = 0 is investigated. Next, Θ(λ) is analytic function of λ since e (λ, 0) and e′ (λ, 0) are analytic in
the upper half plane.

From the definition of S(λ), we derive that the function −1 − S(λ) belongs to the space L2 (−∞,∞).
Using (2.1) and substituting related expressions into the Θ(λ),

Θ(λ) = (α0 + iα1λ− α2λ
2 − iα3λ

3)
{
iλ−K(0, 0) +

∞∫
0
Kx (0, t) eiλtdt

}

−(β0 + iβ1λ− β2λ
2 − iβ3λ

3)
{

1 +
∞∫
0
K (0, t) eiλtdt

}

= (iλ)4
[
α3 + O

(
1
λ

)]
(2.7)

as |λ| → ∞. Similarly,

Θ1(λ) = (α0 + iα1λ− α2λ
2 − iα3λ

3)
{

−iλ−K(0, 0) +
∞∫
0
Kx (0, t) e−iλtdt

}

−(β0 + iβ1λ− β2λ
2 − iβ3λ

3)
{

1 +
∞∫
0
K (0, t) e−iλtdt

}

= (iλ)4
[
−α3 + O

(
1
λ

)]
(2.8)
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Then, the following result is obtained:

−1 − S(λ) = O
( 1
λ

)
, |λ| → ∞ (2.9)

Therefore, −1 − S(λ) ∈ L2 (−∞,∞).

Lemma 2.1. For all λ ∈ R\{0},

S(λ) = S(−λ), |S(λ)| < 1

Proof. Since q(x) is real, it follows that e (λ, 0) = e (−λ, 0). For λ ∈ R\{0}, ψ(λ, 0) = ψ(−λ, 0) and
ψ′(λ, 0) = ψ′(−λ, 0), it follows from (2.3) and (2.4) that Θ(λ) = Θ(−λ) and Θ1(λ) = Θ1(−λ), which
shows S(λ) = S(−λ), for all λ ∈ R\{0}.

To show |S(λ)| < 1, the following equality is obtained:

|S(λ)|2 = S(λ) · S(λ)

= |ψ(λ,0)|2·|e′(λ,0)|2+|ψ′(λ,0)|2·|e(λ,0)|2−2ℜ(ψ(λ,0)·ψ′(λ,0)·e(λ,0)·e′(λ,0))
|ψ(λ,0)|2·|e′(λ,0)|2+|ψ′(λ,0)|2·|e(λ,0)|2−2ℜ(ψ(λ,0)·ψ′(λ,0)·e′(λ,0)·e(λ,0))

for all λ ∈ R\{0}. Using (1.4),[
ψ(λ, 0) · ψ′(λ, 0) − ψ′(λ, 0) · ψ(λ, 0)

]
·
[
e′ (λ, 0) e (λ, 0) − e′ (λ, 0)e (λ, 0)

]
= 2iℑ

(
ψ(λ, 0) · ψ′(λ, 0)

)
·W [e (λ, 0) , e (λ, 0)]

= −4λ2 [α1β0 − α0β1 + (α2β1 − α1β2)λ2 + (α3β2 − α2β3)λ4]
< 0

which yields

−ψ(λ, 0) · ψ′(λ, 0) · e (λ, 0) · e′ (λ, 0) − ψ(λ, 0) · ψ′(λ, 0) · e′ (λ, 0) · e (λ, 0)

< −ψ(λ, 0) · ψ′(λ, 0) · e′ (λ, 0) · e (λ, 0) − ψ(λ, 0) · ψ′(λ, 0) · e′ (λ, 0) · e (λ, 0)

i.e.,

−2ℜ
(
ψ(λ, 0) · ψ′(λ, 0) · e (λ, 0) · e′ (λ, 0)

)
< −2ℜ

(
ψ(λ, 0) · ψ′(λ, 0) · e′ (λ, 0) · e (λ, 0)

)
and then

|ψ(λ, 0)|2 ·
∣∣e′ (λ, 0)

∣∣2 +
∣∣ψ′(λ, 0)

∣∣2 · |e (λ, 0)|2 − 2ℜ
(
ψ(λ, 0) · ψ′(λ, 0) · e (λ, 0) · e′ (λ, 0)

)
< |ψ(λ, 0)|2 ·

∣∣e′ (λ, 0)
∣∣2 +

∣∣ψ′(λ, 0)
∣∣2 · |e (λ, 0)|2 − 2ℜ

(
ψ(λ, 0) · ψ′(λ, 0) · e′ (λ, 0) · e (λ, 0)

)
which shows |S(λ)|2 < 1, that is, |S(λ)| < 1, for all λ ∈ R\{0}. Thus, the lemma is proved.

We proceed to research the spectrum of the boundary value problem (1.1) and (1.2). Therefore, we
investigate the scattering function in more detail. It is a meromorphic function in the upper half plane
ℑλ > 0, with poles at the zeros of the function Θ(λ).

Lemma 2.2. The function Θ(λ) has only finitely many zeros in the upper half plane ℑ > 0. The
zeros of Θ(λ) are simple and pure imaginary.

Proof. If we assume that ρ(x) ≡ 1 in [11], the proof of the lemma can be obtained similarly.

Let iλj such that λj > 0, for all j = 1, n, be the zeros of the function Θ(λ), called the singular values
of (1.1) and (1.2). Thus, the numbers mj , for all j = 1, n, are defined by
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m−2
j ≡

∞∫
0

|e (iλj , x) |2dx+
|e (iλj , 0) |2

[
1
2

2∑
k=0

(α1+kβk − αkβ1+k)λ2k−1
j +

1∑
k=0

(αkβ2+k − α2+kβk)λ2k
j

]
|α0 − α1λj + α2λ2

j − α3λ3
j |2

and called the normalized numbers for (1.1) and (1.2). As a result, we can give the following definition.

Definition 2.3. The collection of quantities
{
S (λ) ; iλj ; mj (j = 1, n)

}
is called the scattering data

of the boundary value problem (1.1) and (1.2).

Based on the scattering data, form an integral equation for the kernel K(x, y).

Theorem 2.4. For every fixed x ≥ 0, the kernel K(x, y) of the solution (2.1) satisfies the integral
equation, called the main equation

K(x, y) + F (x+ y) +
∞∫
x

K(x, t)F (t+ y)dt = 0, y > x (2.10)

where

F (x) =
n∑
j=1

m2
je

−λjx + 1
2π

∞∫
−∞

(−1 − S(λ))eiλxdλ

Proof. The proof is obtained similarly for the case ρ(x) ≡ 1 in [11].

3. The Scattering Function’s Continuity

This section presents the scattering function’s continuity.

Theorem 3.1. For all λ ∈ R, the function S(λ) is continuous.

Proof. From section 2, Θ(λ) ̸= 0, for all λ in the intervals (−∞, 0) and (0,∞), and S(λ) is defined
on (−∞, 0) and (0,∞) and continuous in these intervals. From the form (2.7) of Θ(λ), if Θ(0) ̸= 0,
then S(λ) is continuous at zero and S(0) = 1. It remains to investigate the case:

Θ(0) = α0

−K(0, 0) +
∞∫

0

Kx(0, t)dt

− β0

1 +
∞∫

0

K(0, t)dt

 = 0

Moreover, if we substitute x = 0 into (2.10), then

K(0, y) + F (y) +
∞∫

0

K(0, t)F (t+ y)dt = 0 (3.1)

Integrating (3.1) according to y from z to ∞, letting t+ y = ξ, and applying the integration by parts,1 +
∞∫

0

K(0, y)dy


∞∫
z

F (y)dy +
∞∫
z

K(0, y)dy −
∞∫

0

F (t+ z)


∞∫
t

K(0, ξ)dξ

 dt = 0 (3.2)

We now apply the same procedure to the derivation of the main equation concerning x for obtaining−K(0, 0) +
∞∫

0

Kx(0, y)dy


∞∫

z

F (y)dy − F (z) +
∞∫

z

Kx(0, y)dy −
∞∫

0

F (t+ z)


∞∫

t

Kx(0, ξ)dξ

 dt = 0 (3.3)

Multiplying (3.3) by (α0 +iα1λ−α2λ
2 −iα3λ

3) and (3.2) by (β0 +iβ1λ−β2λ
2 −iβ3λ

3) and subtracting
the latter from the former,
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0 =
[
(α0 + iα1λ− α2λ

2 − iα3λ
3)
{

−K(0, 0) +
∞∫
0
Kx(0, y)dy

}

− (β0 + iβ1λ− β2λ
2 − iβ3λ

3)
{

1 +
∞∫
0
K(0, y)dy

}]
∞∫
z
F (y)dy

+(α0 + iα1λ− α2λ
2 − iα3λ

3)
∞∫
z
Kx(0, y)dy

−(β0 + iβ1λ− β2λ
2 − iβ3λ

3)
∞∫
z
K(0, y)dy − (α0 + iα1λ− α2λ

2 − iα3λ
3)F (z)

−
∞∫
0

{∞∫
t

[
(α0 + iα1λ− α2λ

2 − iα3λ
3)Kx(0, ξ) − (β0 + iβ1λ− β2λ

2 − iβ3λ
3)K(0, ξ)

]
dξ

}
F (t+ z)dt

Letting λ → 0,

α0F (z) =
[
α0

{
−K(0, 0) +

∞∫
0
Kx(0, y)dy

}
− β0

{
1 +

∞∫
0
K(0, y)dy

}]
∞∫
z
F (y)dy

+
∞∫
z

[α0Kx(0, y)dy − β0K(0, y)] dy

−
∞∫
0

{∞∫
t

[α0Kx(0, ξ) − β0K(0, ξ)] dξ
}
F (t+ z)dt

Define the functions G(z) and H(z) as follows:

G(z) :=
∞∫
z

[α0Kx(0, y)dy − β0K(0, y)] dy

and
H(z) := α0F (z)

Hence, the integral equation is as follows:

G(z) −
∞∫

0

F (t+ z)G(t)dt = H(z)

G(z) is a bounded solution of the equation

G(z) −
∞∫

0

F (t+ z)G(t)dt = 0, 0 ≤ z < ∞

and every bounded solution of this equation is summable on the half line [0,∞). It means that
G(z) ∈ L1(0,∞) (see p. 211 [19]). Thus, for

K̂1(λ) =α0 + iα1λ− α2λ
2 − iα3λ

3 − β1 − iβ2λ+ β3λ
2

−(α1 + iα2λ− α3λ
2)K(0, 0) + (α1 + iα2λ− α3λ

2)
∞∫
0
Kx(0, t)eiλtdt

−(β1 + iβ2λ− β3λ
2)

∞∫
0
K(0, t)eiλtdt+

∞∫
0
G(t)eiλtdt
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Θ(λ) =α0

(
iλ−K(0, 0) +

∞∫
0
Kx(0, t)eiλtdt

)
− β0

(
1 +

∞∫
0
K(0, t)eiλtdt

)

+(iα1λ− α2λ
2 − iα3λ

3)
(
iλ−K(0, 0) +

∞∫
0
Kx(0, t)eiλtdt

)

−(iβ1λ− β2λ
2 − iβ3λ

3)
(

1 +
∞∫
0
K(0, t)eiλtdt

)

=α0

{
iλ−K(0, 0) +

∞∫
0
Kx(0, t)dt+ iλ

∞∫
0

(∞∫
t
Kx(0, y)dy

)
eiλtdt

}

−β0

{
1 +

∞∫
0
K(0, t)dt+ iλ

∞∫
0

(∞∫
t
K(0, y)dy

)
eiλtdt

}

+iλ
[
iα1λ− α2λ

2 − iα3λ
3 − β1 − iβ2λ+ β3λ

2 − (α1 + iα2λ− α3λ
2)K(0, 0)

]
+iλ

[
(α1 + iα2λ− α3λ

2)
∞∫
0
Kx(0, t)eiλtdt− (β1 + iβ2λ− β3λ

2)
∞∫
0
K(0, t)eiλtdt

]

=α0

{
−K(0, 0) +

∞∫
0
Kx(0, t)dt

}
− β0

{
1 +

∞∫
0
K(0, t)dt

}

+iλ
∞∫
0

{∞∫
t

[α0Kx(0, y) − β0K(0, y)] dy
}
eiλtdt

+iλ
[
iα1λ− α2λ

2 − iα3λ
3 − β1 − iβ2λ+ β3λ

2 − (α1 + iα2λ− α3λ
2)K(0, 0)

]
+iλ

[
(α1 + iα2λ− α3λ

2)
∞∫
0
Kx(0, t)eiλtdt− (β1 + iβ2λ− β3λ

2)
∞∫
0
K(0, t)eiλtdt

]

= iλK̂1(λ)

(3.4)

In a similar manner, from (2.8),
Θ1(λ) = −iλK̂2(λ) (3.5)

where
K̂2(λ) =α0 + iα1λ− α2λ

2 − iα3λ
3 + β1 + iβ2λ− β3λ

2

+(α1 + iα2λ− α3λ
2)K(0, 0) − (α1 + iα2λ− α3λ

2)
∞∫
0
Kx(0, t)e−iλtdt

+(β1 + iβ2λ− β3λ
2)

∞∫
0
K(0, t)e−iλtdt+

∞∫
0
G(t)e−iλtdt

According to (2.6), (3.4), and (3.5),

S(λ) = −K̂2(λ)
K̂1(λ)

Taking into account the identity (2.5),

2ψ(λ, x) = K̂1(λ) {e(−λ, x) − S(λ)e(λ, x)}

from which it follows that K̂1(0) ̸= 0, otherwise it would be ψ(0, x) = 0 and it contradicts ψ(0, 0) ̸= 0.
This shows that S(λ) is continuous at λ = 0 and completes the proof.

Consequently, from these results and section 2, S(λ) is defined over (−∞,∞) and continuous in this
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interval. Moreover, in the case α1 = β1 = 0,

S(0) =
{

1, Θ(λ) ̸= 0
−1, Θ(λ) = 0

(3.6)

4. The Levinson-Type Formula

This section describes the Levinson-type formula for the considered boundary value problem.

Theorem 4.1. The following formula holds:

n− t(Θ) = µ(+∞) − µ(+0)
π

(4.1)

where n is the number of the zeros of the function Θ(λ) in the upper half plane,

µ(λ) = arg Θ(λ), and t(Θ) =

 2, Θ(0) ̸= 0
3
2 , Θ(0) = 0

(4.2)

Proof. To achieve formula (4.1), the function Θ(λ) is analyzed using the argument principle. We
now assume that

ΓR,ϵ = C+
R ∪ C−

R ∪ [−R,−ϵ] ∪ [ϵ, R]

for sufficiently large R > 0 and sufficiently small ϵ, where C+
R is a circle oriented counterclockwise and

centered at the origin with radius R, and C−
ϵ is a circle oriented clockwise and centered at the origin

with radius ϵ.

Define the function arg Θ(λ) = µ(λ). Then, the function Θ(λ) is analytic in the upper half plane
and continuous along the real axis. Hence, the increment of µ(λ) equals the number of zeros of Θ(λ)
multiplied by 2π as λ runs over the real axis from −∞ to ∞, bypassing the point λ = 0 along semicircle
of sufficiently small radius ϵ in the upper half-plane.

As R → ∞,

{µ(−ϵ) − µ(−∞)} + {µ(+ϵ) − µ(−ϵ)} + {µ(+∞) − µ(+ϵ)} + 4π = 2πn

because

Θ(λ) = (iλ)4
[
α3 +O( 1

λ
)
]
, |λ| → ∞

for ℑ ≥ 0. If Θ(0) ̸= 0, then
lim
ϵ→0

{µ(+ϵ) − µ(−ϵ)} = 0

However, if Θ(0) = 0, then Θ(λ) = iλK̂1(λ), K̂1(0) ̸= 0 by (3.4). Hence,

lim
ϵ→0

{µ(+ϵ) − µ(−ϵ)} = −π

When ϵ → 0,

2 {µ(∞) − µ(0)} +

 0, Θ(0) ̸= 0
−π, Θ(0) = 0

+ 4π = 2πn

since lim
ϵ→0

{µ(−ϵ) − µ(−∞)} = lim
ϵ→0

{µ(∞) − µ(ϵ)}. Thus,

n− t(Θ) = µ(+∞) − µ(0)
π

where t(Θ) is defined by the formula (4.2), which proves the theorem.
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Proposition 4.2. For α1 = β1 = 0, the increase in the logarithm of the scattering function is
associated with the number of eigenvalues of the problem (1.1) and (1.2) by the following equality

n− 2 = lnS(+0) − lnS(∞)
2πi − 1 − S(0)

4 (4.3)

Proof. According to (2.9) and (3.6), |S(0)| = |S(∞)| = 1, and hence lnS(+0) = −2iµ(0) and
lnS(∞) = −2iµ(∞). Considering these results in (4.1), (4.3) holds.

Definition 4.3. (4.3) is called the Levinson-type formula for (1.1) and (1.2).

5. Conclusion

Levinson’s theorem is a valuable tool for understanding quantum scattering phenomena. In this
work, we have provided the scattering function and the spectrum for (1.1) and (1.2). The scattering
function’s continuity has been studied. The formula connecting the number of eigenvalues of (1.1) and
(1.2) to the argument’s variation of the function Θ(λ) over the interval (−∞,∞) has been introduced.
In a special case, we have derived the Levinson-type formula.

The study described in the text focuses on conducting spectral analysis of a second-order differential
operator with nonlinear dependence on spectral parameters in boundary conditions. In future research,
this methodology can be extended to various boundary value problems, and the boundary value
problem (1.1) and (1.2) can be generalized for boundary conditions involving higher order polynomials
of the spectral parameter.
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Abstract − This comprehensive investigation delves deeply into the intricate dynam-
ics governed by the nonlinear Landau-Ginzburg-Higgs equation. It uncovers a diversity of
semi-analytical solutions by leveraging three auxiliary equation methods within the traveling
wave framework. This article effectively utilizes the improved Kudryashov, Kudryashov’s
R, and Sardar’s subequation methods. The methods discussed are advantageous because
they are easy to implement and suitable for use with the Mathematica package program.
Each method yields a distinct set of solutions, scrutinized across all cases. We elucidate the
complex wave structures through 3D, 2D, and contour graphical representations, providing
profound insights into their underlying characteristics. Furthermore, we scrutinize the in-
fluence of parameter variations on these wave structures, thereby offering a comprehensive
understanding of their dynamic behavior.
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1. Introduction

It has long been known that nonlinear structures are used to model many natural phenomena and
basic science fields such as physics, chemistry, and biology. It is very important to obtain the solu-
tions of these models in various engineering fields. Making sense of scientific phenomena and solving
the obtained structures with today’s knowledge and technology has been the goal of researchers for
decades. For this purpose, they have worked on developing different perspectives by applying vari-
ous analytical and numerical solution methods such as the (G′/G) expansion method [1,2], Bernoulli
(G′/G) expansion method [3], sub-equation method [4,5], sine-Gordon expansion method (SGEM) [6],
rational sine-Gordon expansion method (rSGEM) [7], exponential function method [8], modified expo-
nential function method [9,10], exponential rational function method [11,12], unified method [13,14],
Kudryashov methods [15–19], Khater methods [20], natural decomposition method [21], variational
approximation methods, Hirota direct method [22]. Besides, most of the put forward semi-analytical
methods are based on the same starting point, it is seen that even small changes in the method
steps affect the structure of the solution functions. Considering that a small change causes big conse-
quences, called the butterfly effect in today’s age, small changes in the solution structures will allow
the scientific phenomenon discussed to be interpreted differently.
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This study discusses the Landau-Ginzburg-Higgs equation (LGHE), created to understand and de-
scribe phase transitions, superconductivity condensed matter physics, and the behavior of certain
types of fields in high-energy physics. Solutions of this equation can represent the distribution of the
superconducting order parameter within the material and provide information on properties, such as
the penetration depth of magnetic fields and the critical temperature of the superconducting transition.
For this reason, LGHE has attracted the attention of many researchers, and some soliton structures
have been obtained by applying various methods. Our aim in doing this study is to add new ones to the
solution structures of LGHE and to show the suitability of the methods discussed by comparing them
to this equation. In Section 2, we provide the mathematical algorithms of the improved Kudryashov
method (IKM), Kudryashov’s R method (KRM), and Sardar’s subequation method (SSM) to figure
out the solitary wave solitons. In section 3, we apply the proposed methods to the nonlinear LGHE.
In the last section, we provide the concluding remarks on the obtained solutions.

2. Preliminaries

This section provides the basic steps of IKM, KRM, and SSM.

2.1. Improved Kudryashov Method (IKM)

First, we handle the general expression of a nonlinear partial differential equation in the form [17]:

κ (u, ux, uy, ut, uxx, uxy, ...) = 0 (2.1)

where κ is polynomial function in u and its partial derivatives are included. Then, the given nonlinear
partial differential equation (NPDE) (2.1) can be converted into ordinary differential equation (ODE)
by traveling wave transformation as follows:

u(x, y, t) = u(ψ), ψ = µ(x+ y − ct) (2.2)

where c is an arbitrary constant. After applying the above transformation and the chain rule, we
obtain the following equality:

K(u, u′, u′′, ...) = 0 (2.3)

Specific items of the method can be applied after that reduction. In this step, according to the
proposed method, we assume (2.3) has a solution in the form:

u(ψ) =
N−1∑
s=−1

as+1χ
s+1(ψ) (2.4)

where
χ(ψ) = ±(1 + exp(2ψ))−1/2

and χ(ψ) satisfies the following ODE:

χ2
ψ = (χ2(χ4 − 2χ2 + 1))1/2

After taking this auxiliary differential equation and considering the solution (2.4), we can write the
first, second, and third-order derivatives of (2.4) as follows:

uψ =
N−1∑
s=0

as+1(s+ 1)(χs+3(ψ) − χs+1(ψ)) (2.5)

uψψ =
N−1∑
s=0

as+1
[
(s+ 1)(s+ 3)χs+5(ψ) − 2(s+ 1)(s+ 2)χs+3(ψ) + (s+ 1)2χs+1(ψ)

]
(2.6)
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and

uψψψ =
N−1∑
s=0

as+1
[
(s+ 1)(s+ 3)(s+ 5)χs+7(ψ) − 3(s+ 1)(s+ 3)2χs+5(ψ)

+
(
3(s+ 1)2(s+ 3) + 4(s+ 1)

)
χs+3(ψ) − (s+ 1)3χs+1(ψ)

] (2.7)

If necessary, other higher-order derivatives can also be written. Substituting (2.4) and (2.5)-(2.7) into
(2.3) then, equating degrees of highest order linear term (u(p)(χ))r and highest degree nonlinear term
ul(χ)u(s)(χ) as required by the principle of homogeneous balance, we can define the pole order N
clearly. After this implementation, we obtain an algebraic system. By using the computer package
program, we can solve the algebraic system according to degrees of the χ, then the coefficients of
the polynomial (2.4) and parameters of (2.2) can be obtained. Finally, substituting the coefficients,
parameters, and the traveling wave transformation into the obtained polynomial, the solutions of (2.1)
are obtained.

2.2. Kudryashov’s R Method (KRM)

The major items of the method proposed above are indicated as follows [19]: In the first item, we
handle the general impression of nonlinear partial differential equations in the form:

κ (u, ux, uy, ut, uxx, uxy, ...) = 0 (2.8)

where κ is a polynomial function in u and its assorted order partial derivatives and nonlinear terms are
included. Secondly, we assume that the subsequent traveling wave transformation is done to reduce
(2.8) to an ordinary differential equation:

u(x, y, t) = u(ψ), ψ = µ(x+ y − ct) (2.9)

where µ and c are arbitrary constants. After applying the above transformation and the chain rule,
we get the following equality:

K(u, u′, u′′, ...) = 0 (2.10)

In this step, according to the proposed method, we assume (2.10) has a solution in the form:

u(ψ) =
N−1∑
s=−1

as+1χ
s+1(ψ) (2.11)

where
χ(ψ) = 4α

4α2eψ + γe−ψ

such that γ = 4αβ and u(ψ) adopts the given ordinary differential equation:

χ2
ψ = χ2(1 − γχ2)

After taking this auxiliary differential equation and considering the solution (2.11), we can write the
first, second, and third-order derivatives of (2.11) as follows:

uψ =
N−1∑
s=0

as+1χ
s(ψ)χψ(ψ)

uψψ =
N−1∑
s=0

as+1
[
(s+ 1)2χs+1(ψ) − (s+ 1)2γχs+3(ψ) + (s+ 1)γχs+4(ψ)

]



Journal of New Theory 48 (2024) 11-23 / Unveiling the Dynamics of Nonlinear Landau-Ginzburg-Higgs (LGH) Equation · · · 14

and

uψψψ =
N−1∑
s=0

as+1
[
(s+ 1)3χs(ψ) − γ(s+ 1)2(s+ 3)χs+2(ψ) − γ(s+ 1)(s+ 3)χs+2(ψ)

]
χψ(ψ)

By equating the degrees of highest order linear term (u(p)(χ))r and highest degree nonlinear term
ul(χ)u(s)(χ) as required by the principle of homogeneous balance, we can define the pole order N
clearly. After this implementation, we obtain an algebraic system. By using the computer package
program, we can solve the algebraic system according to degrees of the χ, then the coefficients of
the polynomial (2.11) and parameters of (2.9) can be obtained. Finally, substituting the coefficients,
parameters, and the traveling wave transformation into the obtained polynomial, the solutions of (2.8)
are obtained.

2.3. Subequation Method in Sardar’s Sense (SSM)

The major items of the method proposed above are indicated as follows [24]: In the first item, we
handle the general impression of nonlinear partial differential equations in the form:

κ (u, ux, uy, ut, uxx, uxy, ...) = 0 (2.12)

where κ is a polynomial function in u and its assorted order partial derivatives and nonlinear terms are
included. Secondly, we assume that the subsequent traveling wave transformation is done to reduce
(2.12) to an ordinary differential equation:

u(x, y, t) = u(ψ), ψ = µ(x+ y − ct) (2.13)

where µ and c are arbitrary constants. After applying the above transformation and the chain rule,
we get the following equality:

K(u, u′, u′′, ...) = 0 (2.14)

In this step, according to the proposed method, we assume (2.14) has a solution in the form:

u(ψ) =
N−1∑
s=−1

as+1χ
s+1(ψ) (2.15)

where χ(ψ) is the solution of the following differential equation

χ2
ψ = η + γχ2(ψ) + χ4(ψ) (2.16)

and the solutions of (2.16) has four cases of solutions:

Case 1: If γ > 0 and η = 0, then

χ1(ψ) = ±
√

−αβγsechαβ (√γψ)

and
χ2(ψ) = ±

√
αβγcschαβ (√γψ)

where sechαβ(ψ) = 2
αeψ+βe−ψ and cschαβ(ψ) = 2

αeψ−βe−ψ .

Case 2: If γ < 0 and η = 0, then

χ3(ψ) = ±
√

−αβγ secαβ
(√

−γψ
)

and
χ4(ψ) = ±

√
−αβγ cscαβ

(√
−γψ

)
where secαβ(ψ) = 2

αeiψ+βe−iψ and cscαβ(ψ) = 2
αeiψ−βe−iψ .
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Case 3: If γ < 0 and η = γ2

4β , then

χ5(ψ) = ±
√

−γ

2 tanhαβ
(√

−γ

2ψ
)

χ6(ψ) = ±
√

−γ

2 cothαβ
(√

−γ

2ψ
)

χ7(ψ) = ±
√

−γ

2
(
tanhαβ

(√
−2γψ

)
± i
√
αβsechαβ

(√
−2γψ

))
χ8(ψ) = ±

√
−γ

2
(
cothαβ

(√
−2γψ

)
±
√
αβcschαβ

(√
−2γψ

))
and

χ9(ψ) = ±
√

−γ

8

(
tanhαβ

(√
−γ

8ψ
)

+ cothαβ
(√

−γ

8ψ
))

where tanhαβ(ψ) = αeψ−βe−ψ

αeψ+βeψ and cothαβ(ψ) = αeψ+βe−ψ

αeψ−βeψ .

Case 4: If γ > 0 and η = γ2

4 , then

χ10(ψ) = ±
√
γ

2 tanαβ
(√

γ

2ψ
)

χ11(ψ) = ±
√
γ

2 cotαβ
(√

γ

2ψ
)

χ12(ψ) = ±
√
γ

2
(
tanαβ

(√
2γψ

)
±
√
αβ secαβ

(√
2γψ

))
χ13(ψ) = ±

√
γ

2
(
cotαβ

(√
2γψ

)
±
√
αβ cscαβ

(√
2γψ

))
and

χ14(ψ) = ±
√
γ

8

(
tanαβ

(√
γ

8ψ
)

+ cotαβ
(√

γ

8ψ
))

where tanhαβ(ψ) = αeψ−βe−ψ

αeψ+βeψ and cothαβ(ψ) = αeψ+βe−ψ

αeψ−βeψ . After taking this auxiliary differential
equation and considering the solution (2.15), we can write the first, second, and third-order derivatives
of (2.15) as follows:

uψ =
N−1∑
s=0

(s+ 1)as+1χ
s(ψ)χψ(ψ)

uψψ =
N−1∑
s=0

as+1
[
s(s+ 1)ηχs−1(ψ) + (s+ 1)(sγ + 1)χs+1(ψ) + (s+ 1)(s+ 2)χs+3(ψ)

]
and

uψψψ =
N−1∑
s=0

as+1
[
(s2 − 1)sηχs−2(ψ) + (s+ 1)2(sγ + 1)χs(ψ) + (s+ 1)(s+ 2)(s+ 3)χs+2(ψ)

]
χψ(ψ)

By equating the degrees of highest order linear term (u(p)(χ))r and highest degree nonlinear term
ul(χ)u(s)(χ) as required by the principle of homogeneous balance, we can define the pole order N
clearly. After this implementation, we obtain an algebraic system. By using the computer package
program, we can solve the algebraic system according to degrees of the χ, then the coefficients of the
polynomial (2.15) and parameters of (2.13) can be obtained. Finally, substituting the coefficients,
parameters, and the traveling wave transformation into the obtained polynomial, the solutions of
(2.12) are obtained.
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3. Solutions of LGHE

The Landau-Ginzburg-Higgs equation (LGHE) is a physics equation that arises in the fields of con-
densed matter physics and high energy physics, especially in the study of phase transitions, super-
conductivity, cosmology, optics and the behavior of certain field theories and it can be represented as
follows [23]:

∂2U

∂t2
− ∂2U

∂x2 − g2U + h2U3 = 0. (3.1)

Here, ∂2U
∂t2 represents the second partial derivative of a field U with respect to time t, which describes

the time evolution of the field. Moreover, ∂2U
∂x2 represents the second partial derivative of the field U

with respect to space x, which describes how the field varies in space. Besides, g is a constant that
determines the strength of the linear term, and h is another constant that determines the strength of
the quadratic nonlinear term. Using the following transformation

U(x, t) = u(ψ), ψ = µx− ct

we can reduce (3.1) into the following ODE:

(c2 − µ2) d
2u

dψ2 − g2u+ h2u2 = 0 (3.2)

After this reduction, we can use analytical approaches as follows:

3.1. IKM Sense

According to the IKM, we can think (3.2) has polynomial solution as:

u(ψ) =
N−1∑
s=−1

as+1χ
s+1(ψ)

where
χ(ψ) = ±(1 + exp(2ψ))−1/2

and u(ψ) adopts the given ordinary differential equation:

χ2
ψ = (χ2(χ4 − 2χ2 + 1))1/2

Then, according to the previous adoption and using the homogeneous balance principle, we obtain
pole order N = 2 and thus

u(ψ) = a0 + a1χ(ψ) + a2χ
2(ψ) (3.3)

After determining the quadratic polynomial,

u′′(ψ) = a1χ(ψ) + 4a2χ
2(ψ) − 4a1χ

3(ψ) − 12a2χ
4(ψ) + 3a1χ

5(ψ) + 8a2χ
6(ψ) (3.4)

Substituting (3.3) and (3.4) into (3.1), we obtain four cases solutions of LGHE.

Case 1:
a0 = − g

h3/2 , a1 = 0, a2 = 2g
h3/2 , c = −2µ2 − g2

2

U1 = − g

h3/2 tanh

µx−

√
2µ2 − g2

2 t

 (3.5)

Case 2:
a0 = − g

h3/2 , a1 = 0, a2 = 2g
h3/2 , c = 2µ2 − g2

2
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U2 = − g

h3/2 tanh

µx+

√
2µ2 − g2

2 t


Case 3:

a0 = g

h3/2 , a1 = 0, a2 = − 2g
h3/2 , c = −2µ2 − g2

2

U3 = g

h3/2 tanh

µx−

√
2µ2 − g2

2 t


Case 4:

a0 = g

h3/2 , a1 = 0, a2 = − 2g
h3/2 , c = −2µ2 − g2

2

U4 = g

h3/2 tanh

µx+

√
2µ2 − g2

2 t


3D surface, 2D plots, and contour plot of the kink type solution (3.5) are shown in Figure 1:

Figure 1. 3D surface, 2D plots, and contour plot of the kink type solution (3.5) for g = 3
√

2, h = 2,
and µ = 5

3.2. KRM Sense

Supposing the solution of (3.1) in the form:

u(ψ) =
N−1∑
s=−1

as+1χ
s+1(ψ)

where
χ(ψ) = 4α

4α2eψ + γe−ψ

such that γ = 4αβ and u(ψ) adopts the given ordinary differential equation:

χ2
ψ = χ2(1 − γχ2)

Then, according to the previous adoption and using the homogeneous balance principle, we obtain
pole order N = 1 and thus

u(ψ) = a0 + a1χ(ψ). (3.6)

After determining the first-degree polynomial,

u′′(ψ) = a1χ(ψ)(1 − 2γχ2(ψ)) (3.7)

Substituting (3.6) and (3.7) into (3.1), we obtain four cases solutions of LGHE.
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Case 1:
a0 = 0, a1 = −g

√
2γ

h3/2 , c =
√
µ2 + g2

U1 = −2g
√

2αβ
h3/2 sechαβ

(
µx−

√
µ2 + g2t

)
Case 2:

a0 = 0, a1 = g
√

2γ
h3/2 , c = −

√
µ2 + g2

U2 = 2g
√

2αβ
h3/2 sechαβ

(
µx+

√
µ2 + g2t

)
Case 3:

a0 = 0, a1 = −g
√

2γ
h3/2 , c =

√
µ2 + g2

U3 = 2g
√

2αβ
h3/2 sechαβ

(
µx−

√
µ2 + g2t

)
Case 4:

a0 = 0, a1 = −g
√

2γ
h3/2 , c = −

√
µ2 + g2

U4 = −2g
√

2αβ
h3/2 sechαβ

(
µx+

√
µ2 + g2t

)
(3.8)

3D surface, 2D plots, and contour plot of the bell shaped bright soliton solution (3.8) are shown in
Figure 2:

Figure 2. 3D surface, 2D plots, and contour plot of the bell shaped bright soliton solution (3.8) for
g = 3

√
2, h = 2, µ = 3

√
2, α=1, and β=1

3.3. SSM Sense

Supposing the solution of (3.1) in the form:

u(ψ) =
N−1∑
s=−1

as+1χ
s+1(ψ)

where χ(ψ) is the solution of (2.16). Then, according to the previous adoption and using the homo-
geneous balance principle, we obtain pole order N = 1 and thus

u(ψ) = a0 + a1χ(ψ) (3.9)

After determining the first-degree polynomial,

u′′(ψ) = a1γχ(ψ) + 2a1χ
3(ψ) (3.10)
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Substituting (3.9) and (3.10) into (3.1), we obtain four cases solutions of LGHE where

a0 = 0, a1 = ±
√

2(µ2 − c2)
h3/2 , and γ = g2

c2 − µ2

Case 1: If |c| > |µ| and η = 0, then

U1,1 = ±g
√

2αβ
h3/4 sechαβ

(
g√

c2 − µ2 (µx− ct)
)

and

U1,2 = ±ig
√

2αβ
h3/4 cschαβ

(
g√

c2 − µ2 (µx− ct)
)

(3.11)

3D surface, 2D plots, and contour plot of the kink type solution (3.11) are shown in Figure 3:

Figure 3. 3D surface, 2D plots, and contour plot of the kink type solution (3.11) for g = 3
√

2, h = 2,
µ = 2, α=1, β=1, and c = 1 and 2D plot for t = 0

Case 2: If |c| < |µ| and η = 0, then

U2,1 = ±g
√

2αβ
h3/4 secαβ

(
g√

µ2 − c2 (µx− ct)
)

and
U2,2 = ±g

√
2αβ

h3/4 cscαβ

(
g√

µ2 − c2 (µx− ct)
)

Case 3: If |c| < |µ| and η = g4

4β(c2−µ2)2 , then

U3,1 = ± g

h3/4 tanhαβ

(
g√

2(µ2 − c2)
(µx− ct)

)

U3,2 = ± g

h3/4 cothαβ

(
g√

2(µ2 − c2)
(µx− ct)

)
(3.12)

U3,3 = ± g

h3/4

[
tanhαβ

(
g

√
2

µ2 − c2 (µx− ct)
)

± i
√
αβsechαβ

(
g

√
2

µ2 − c2 (µx− ct)
)]

U3,4 = ± g

h3/4

[
cothαβ

(
g

√
2

µ2 − c2 (µx− ct)
)

±
√
αβcschαβ

(
g

√
2

µ2 − c2 (µx− ct)
)]

and
U3,5 = ± g

2h3/4

[
tanhαβ

g

2
√

2(µ2 − c2)
(µx− ct) + cothαβ

g

2
√

2(µ2 − c2)
(µx− ct)

]
3D surface, 2D plots, and contour plot of the multiple singular soliton type solution (3.12) are shown
in Figure 4:
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Figure 4. 3D surface, 2D plots, and contour plot of the multiple singular soliton type solution (3.12)
for g = 3

√
2, h = 16, µ = 2, α=1, β=0.5, and c = 1 and 2D plot when t = −10, t = −1, t = 0, t = 0.5,

t = 1, and t = 10, respectively

Case 4: If |c| > |µ| and η = g4

4(c2−µ2)2 , then

U4,1 = ±i g

h3/4 tanαβ

(
g√

2 (c2 − µ2)
(µx− ct)

)

U4,2 = ±i g

h3/4 cotαβ

(
g√

2 (c2 − µ2)
(µx− ct)

)
(3.13)

U4,3 = ±i g

h3/4

[
tanαβ

(
g

√
2

µ2 − c2 (µx− ct)
)

±
√
αβ secαβ

(
g

√
2

µ2 − c2 (µx− ct)
)]

U4,4 = ±i g

h3/4

[
cotαβ

(
g

√
2

µ2 − c2 (µx− ct)
)

±
√
αβ cscαβ

(
g

√
2

µ2 − c2 (µx− ct)
)]

and
U4,5 = ±i g

2
√

2h3/2

[
tanαβ

g

2
√

2(µ2 − c2)
(µx− ct) + cotαβ

g

2
√

2(µ2 − c2)
(µx− ct)

]
3D surface, 2D plots, and contour plot of the singular periodic soliton type solution (3.13) are shown
in Figure 5:

Figure 5. 3D surface, 2D plots, and contour plot of the singular periodic soliton type solution (3.13)
for g = 3

√
2, h = 16, µ = 2, α=1, β=1, and c = 1 and 2D plot when t = −10, t = 0, t = 0.5, and

t = 10, respectively

4. Conclusion

In conclusion, our investigation of the solitary wave solutions of (3.1) has provided intriguing insights
through three distinct approaches. We have identified four distinct solution scenarios using the IKM
and the KRM. The IKM approach revealed the emergence of hyperbolic-type solutions, as shown in
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Figure 1, featuring non-breaking, smooth traveling wave structures. Moreover, the KRM approach led
to the discovery of special hyperbolic-type solutions, exemplified by Figure 2. Furthermore, employ-
ing the SSM enabled us to derive several solitary wave solutions, including generalized hyperbolic and
trigonometric function solutions. It is worth noting that while these waves progress smoothly, they
exhibit a distinct turning point transition within this context. These findings provide valuable contri-
butions to understanding the intricate dynamics governed by (3.1). Given the observed effectiveness
of the methods on the double-order model, these methods can also be extended to different nonlinear
models. All the methods we have discussed offer the advantage of a systematic algorithmic structure,
enabling diverse solution forms through polynomial-type auxiliary equations and supporting the use
of computer software packages. However, their sole limitation is that they are only applicable to equa-
tions of even order and those with nonlinearity involving the square of the first derivative. Additionally,
employing various numerical methods from the literature to obtain different solution structures of the
LGH model will be beneficial for comparing the solutions. Furthermore, these methods can be applied
to the fractional LGH equation, a more generalized form of the LGH equation discussed in [21]. This
allows for easy comparison of the similarities and differences in solution structures.
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1. Introduction

Let M and N be Riemannian manifolds. Then, a map ϑ̇ : (M, g) → (N, h) is called harmonic if it is a
critical point of energy functional given by

E(ϑ̇) = 1
2

∫
M

∣∣∣dϑ̇
∣∣∣2 vg

Moreover, harmonic maps are defined as solutions of the corresponding Euler-Lagrange equation which
is a non-linear elliptic partial differential equation characterized by the vanishing of the tension field
τ̇(ϑ̇) = trace∇dϑ̇.

The bienergy functional of a map ϑ̇ is introduced by Eells and Sampson [1] as follows:

V2(ϑ̇) = 1
2

∫
M

∣∣∣τ̇(ϑ̇)
∣∣∣2 vg

Here, if ϑ̇ is a critical point of the bienergy functional, then it is called a biharmonic map. The Euler-
Lagrange equation of V2(ϑ̇) which is characterized by the vanishing of the bitension field is obtained
by Jiang [2] as

τ̇2(ϑ̇) = −△τ̇(ϑ̇) − traceRN(dϑ̇, τ̇(ϑ̇))dϑ̇

Here, RN(X , Y) = [∇X , ∇Y ] − ∇[X ,Y] is the curvature operator of N and ∆ = −trace(∇ϑ̇∇ϑ̇ − ∇ϑ̇
∇) is

the rough Laplacian on the sections of ϑ̇−1TN. If τ̇2(ϑ̇) = 0, then ϑ̇ is called as a biharmonic map.
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f -harmonic maps are defined as critical points of f -energy functional

Vf (ϑ̇) = 1
2

∫
M

f
∣∣∣dϑ̇

∣∣∣2 vg

for the maps ϑ̇ : (M, g) → (N, h) where f ∈ C∞(M,R) [3]. The Euler-Lagrange equation is given by
τ̇f (ϑ̇) = f τ̇(ϑ̇) + dϑ̇(gradf) where τ̇(ϑ̇) ≡ trace∇dϑ̇ is the tension field of ϑ̇.

The critical points of the f -bienergy functional

V2,f (ϑ̇) = 1
2

∫
M

f
∣∣∣τ̇(ϑ̇)

∣∣∣2 vg

for maps ϑ̇ : (M, g) → (N, h) is called as f -biharmonic maps. The Euler-Lagrange equation provides
the f -biharmonic map equation as

τ̇2, f (ϑ̇) ≡ f τ̇2(ϑ̇) − (∆f)τ̇(ϑ̇) − 2∇ϑ̇
gradf τ̇(ϑ̇)

which is called f -bitension field of map ϑ̇ [4].

Bi-f -harmonic maps are defined as critical points of the bi-f -energy functional

Vf,2 (ϑ̇) = 1
2

∫
M

∣∣∣τ̇f (ϑ̇)
∣∣∣2 vg

for maps ϑ̇ : (M, g) → (N, h). The Euler-Lagrange equation provides the bi-f -harmonic map equation
[5]:

τ̇f,2
(
ϑ̇

)
≡ f J ϑ̇(τ̇f (ϑ̇)) − ∇ϑ̇

gradf τ̇f (ϑ̇) (1.1)

where J ϑ̇ is the Jacobi operator of the map defined by

J ϑ̇(X ) = −Tr (∇ϑ̇∇ϑ̇X − ∇ϑ̇
∇MX − RN(dϑ̇, X )dϑ̇)

It is obvious that if f is a constant function, then f -biharmonic and bi-f -harmonic maps become
biharmonic maps. Bi-f -harmonic and f -biharmonic maps which are not biharmonic are called proper
bi-f -harmonic and proper f -biharmonic maps, respectively. For more details about bi-f -harmonic
maps, see [4–6].

The notion of generalized Sasakian space forms was introduced by Alegre et al. [7]. Sarkar et.al. [8]
studied Legendre curves in 3-dimensional trans-Sasakian manifolds. Then, Fetcu [9] handled bihar-
monic Legendre curves in Sasakian space forms. Moreover, Güvenç and Özgür [10, 11] investigated
some classes of biharmonic Legendre curves in generalized Sasakian space forms and f -biharmonic
Legendre curves in Sasakian space forms. In addition, for recent studies, see [12–14].

In this paper, we study bi-f -harmonic Legendre curves in (α, β)-trans-Sasakian generalized Sasakian
space forms and provide some characterizations for bi-f -harmonicity of such curves under some special
assumptions.

2. Generalized Sasakian Space Forms

In this section, we provide some basic definitions about almost contact metric manifolds and general-
ized Sasakian space forms in [7, 15].

M(2n+1) is defined as an almost contact manifold with the almost contact structure (ϑ̇, ς, η̇) if a tensor
field ϑ̇ of type (1, 1), a vector field ς, and a 1−form η̇ satisfy the followings

ϑ̇2 = −I + η̇ ⊗ ς (2.1)

and
η̇(ς) = 1
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Here, I denotes the identity transformation. As an consequence of the conditions (2.1), ϑ̇ς = 0 and
η̇ ◦ ϑ̇ = 0.

Let M(2n+1) be an almost contact manifold with an almost contact structure (ϑ̇, ς, η̇). If it admits a
Riemannian metric g such that

g(ϑ̇X , ϑ̇Y) = g(X , Y) − η̇(X )η̇(Y), X , Y ∈ Γ(TM) (2.2)

then it becomes an almost contact metric manifold with an almost contact metric structure (ϑ̇, ς, η̇, g).
From (2.2),

g(X , ϑ̇Y) = −g(ϑ̇X , Y)

and
g(X , ς) = η̇(X )

for any X , Y ∈ TM. The fundamental 2-form of M is defined by

Φ(X , Y) = g(X , ϑ̇Y)

An almost contact metric structure becomes a contact metric structure if

g(X , ϑ̇Y) = dη̇(X , Y)

for all vector fields X , Y ∈ Γ(TM), where

dη̇(X , Y) = 1
2{X η̇(Y) − Y η̇(X ) − η̇([X , Y])}

A contact metric manifold with a Killing Reeb vector field ς is called a K -contact manifold. An almost
contact metric manifold is called normal if

Nϑ̇(X , Y) + 2dη̇(X , Y)ς = 0

where N is the Nijenhuis torsion tensor of ϑ̇ given by

Nϑ̇(X , Y) = ϑ̇2[X , Y] +
[
ϑ̇X , ϑ̇Y

]
− ϑ̇

[
ϑ̇X , Y

]
− ϑ̇

[
X , ϑ̇Y

]
for all X , Y ∈ Γ(TM). A contact normal metric manifold is said to be a Sasakian manifold. Besides,
an almost contact metric manifold is called a Sasakian manifold if and only if

(∇X ϑ̇)Y = g(X , Y)ς − η̇(Y)X

for any X , Y ∈ Γ(TM).

An almost contact metric manifold is called a Kenmotsu manifold if and only if dη̇ = 0 and dΦ = 2η̇∧Φ,
or equivalently

(∇X ϑ̇)Y = −η̇(Y)ϑ̇X − g(X , ϑ̇Y)ς

Hence,
∇X ς = X − η̇(X )ς

Finally, an almost contact metric manifold is called a cosymplectic manifold if and only if dη̇ = 0 and
dΦ = 0, or equivalently ∇ϑ̇ = 0 and thus ∇ς = 0.

As a generalization of Kenmotsu and Sasakian manifolds, (α, β)-trans-Sasakian manifolds were intro-
duced by Oubiña [16]. If there exist two functions α and β on an almost contact metric manifold M
satisfying (

∇X ϑ̇
)

Y = α (g(X , Y)ς − η̇(Y)X ) + β
(
g

(
ϑ̇X , Y

)
ς − η̇(Y)ϑ̇X

)
for any X , Y ∈ Γ(TM), then M is called a trans-Sasakian manifold.
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Here,

i. if β = 0, then M is called a α-Sasakian manifold,

ii. if β = 0 and α = 1, then M is called a Sasakian manifold,

iii. if α = 0, then M is called a β-Kenmotsu manifold,

iv. if β = 1 and α = 0, then M is called a Kenmotsu manifolds, and

v. if α = β = 0, then M is a cosymplectic manifold.

For a trans-Sasakian manifold,

∇X ς = −αϑ̇X + β (X − η̇(X )ς)

and
dη̇ = αΦ

De and Tripathi [17] showed that on an (α, β)-trans-Sasakian manifold the following relation is hold:

ς(α) + 2αβ = 0

It was shown in [18] that an (α, β)-trans-Sasakian manifold with dimension ≥ 5 is either α-Sasakian,
β-Kenmotsu or cosymplectic.

A ϑ̇-section of an almost contact metric manifold (M, ϑ̇, ς, η̇, g) at a point p ∈ M is a section Π ⊆ TpM
spanned by a unit vector field Xp orthogonal to ςp and ϑ̇Xp. The ϑ̇-sectional curvature K(X ∧ ϑ̇X ) is
defined by

K(X ∧ ϑ̇X ) = R(X , ϑ̇X , ϑ̇X , X )

If ϑ̇-sectional curvature of M is constant, then it is called a space form.

Moreover, an almost contact metric manifold is called a generalized Sasakian space form [7] if there
exist functions ρ1, ρ2, and ρ3 on M such that

R(X , Y)Z = ρ1 {g(Y, Z)X − g(X , Z)Y} + ρ2
{

g(X , ϑ̇Z)ϑ̇Y − g(Y, ϑ̇Z)ϑ̇X + 2g(X , ϑ̇Y)ϑ̇Z
}

+ρ3 {η̇(X )η̇(Z)Y − η̇(Y)η̇(Z)X + g(X , Z)η̇(Y)ς − g(Y, Z)η̇(X )ς}
(2.3)

for any vector fields on M, where R denotes the curvature tensor of M.

For a generalized Sasakian-space-form;

i. if ρ1 = c+3
4 and ρ2 = ρ3 = c−1

4 , then it becomes a Sasakian-space-form,

ii. if ρ1 = c−3
4 and ρ2 = ρ3 = c+1

4 , then it becomes a Kenmotsu-space-form, and

iii. if ρ1 = ρ2 = ρ3 = c
4 , then it becomes a cosymplectic-space-form

where c is the constant ϑ̇-sectional curvature. The contact distribution of an almost contact metric
manifold (M, ϑ̇, ς, η̇, g) is defined by

{X ∈ Γ(TM) : η̇(X ) = 0}

and an integral curve of the contact distribution is called a Legendre curve [15].

3. Bi-f-Harmonic Curves

Recall the bi-f -harmonic map equation for curves in Riemannian and start with the important propo-
sition for Euler-Lagrange equation of bi-f -harmonic maps [5].
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Proposition 3.1. Let ϑ̇ : (M, g) → (N, h) be a smooth map between Riemannian manifolds. Then,
ϑ̇ is a bi-f -harmonic map if and only if its bi-f -tension field

τ̇f,2(ϑ̇) = ∆2
f τ̇f

(
ϑ̇

)
− f tracegRN

(
τ̇f

(
ϑ̇

)
, dϑ̇

)
dϑ̇ (3.1)

vanishes, where
∆2

f τ̇f

(
ϑ̇

)
= −traceg

(
∇ϑ̇f

(
∇ϑ̇τ̇f

(
ϑ̇

))
− f ∇ϑ̇

∇M τ̇f

(
ϑ̇

))
(3.2)

and τ̇f

(
ϑ̇

)
is the f -tension field given by (1.1).

By considering a curve, from (3.1) and (3.2), from [6], the following proposition is hold:

Proposition 3.2. Let σ : I → (N, h) be a curve parameterized by arclenght on a Riemannian
manifold (N, h) and σ′ = T . Then, σ is a bi-f -harmonic curve if and only if

(ff ′′) ′T +
(
2

(
f ′)2 + 3f ′′f

)
∇N

T T + 4f ′f ∇2
T T + f 2∇3

T T + f 2RN
(
∇N

T T, T
)

T = 0

where f : I → R+, I is an interval, ∇2
T T = ∇N

T ∇N
T T , and ∇3

T T = ∇N
T ∇N

T ∇N
T T .

Assume that σ : I → (N, h) is a arclenght parameterized curve in an n−dimensional Riemannian
manifold (N, h). If there exist ortonormal vector fields V1, V2, · · · , Vr along σ such that

∇T V1 = k1V2

∇T V2 = −k1V1 + k2V3
...

∇T Vr = −kr−1Vr−1

(3.3)

then σ is called a Frenet curve of osculating order r, for 1 ≤ r ≤ n. Here, V1 = σ′ = T is the unit
tangent vector field of σ, V2 is the unit normal vector field of σ with the same direction as ∇T V1,
and the vectors V3, V4, · · · , Vr are the unit vectors obtained from the Frenet equations for σ, where
k1 = ∥∇T V1∥ and k2, k3, · · · , kr−1 are real-valued positive functions.

From (3.3),
∇2

T T = ∇N
T ∇N

T T = −k2
1V1 + k′

1V2 + k1k2V3

∇3
T T = ∇N

T ∇N
T ∇N

T T = −3k1k′
1V1 +

(
k′′

1 − k3
1 − k1k2

2

)
V2 +

(
2k′

1k2 + k1k′
2
)

V3 + k1k2k3V4

and
RN

(
∇N

T T, T
)

T = k1RN (V2, T ) T

Then,

τ̇f,2 (σ)=
(
(ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′) T +

((
−k3

1 − k1k2
2 + k′′

1
)

f 2 + 4k′
1f f ′ + 3k1f ′′f + 2k1(f ′)2)

V2

+
(
4k1k2ff ′ + f2 (2k2k′

1 + k1k′
2)

)
V3 +

(
k1k2k3f 2)

V4 + k1f 2RN(V2, T )T

Theorem 3.3. Let σ : I → (N, h) be a arclenght parameterized curve on a Riemannian manifold
(N, h). Then, σ is a bi-f -harmonic curve if and only if

0=
(
(ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′) T +

((
−k3

1 − k1k2
2 + k′′

1
)

f 2 + 4k′
1f f ′ + 3k1f ′′f + 2k1(f ′)2)

V2

+
(
4k1k2ff ′ + f2 (2k2k′

1 + k1k′
2)

)
V3 +

(
k1k2k3f 2)

V4 + k1f 2RN (V2, T )T
(3.4)
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4. Bi-f-harmonic Curves in (α, β)-Trans-Sasakian Generalized Sasakian Space
Forms

In this section, we first obtain bi-f -harmonic equation of a curve σ : I → (M, ϑ̇, ς, η̇, g) on an (α, β)-
trans-Sasakian generalized Sasakian space form. Note that, throughout this paper, we use (α, β)-
TSGSSF instead of (α, β)-trans-Sasakian generalized Sasakian space form and cons instead of constant
in equations for the sake of simplicity. By using (2.3),

RM(V2, T )T = ρ1 {g(T, T )V2 − g(V2, T )T} + ρ2
{

g(V2, ϑ̇T )ϑ̇T − g(T, ϑ̇T )ϑ̇V2 − 2g(T, ϑ̇V2)ϑ̇T
}

+ρ3 {η̇(V2)η̇(T )T − η̇(T )η̇(T )V2 + g(V2, T )η̇(T )ς − g(T, T )η̇(V2)ς}

which implies

RM(V2, T )T = ρ3η̇(T )η̇(V2)T +
(
ρ1 − ρ3 (η̇(T ))2

)
V2 − 3ρ2g(T, ϑ̇V2)ϑ̇T − ρ3η̇(V2)ς

From (3.4), we get bi-f -tension field of σ.

Theorem 4.1. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF. Then, σ is a bi-f -harmonic curve if and only if

0 =
(
(ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′ + k1f 2ρ3η̇(T )η̇(V2)

)
T

+
((

−k3
1 − k1k2

2 + k′′
1
)

f 2 + 4k′
1f f ′ + 3k1f ′′f + 2k1(f ′)2 + k1f 2

(
ρ1 − ρ3 (η̇(T ))2

))
V2

+
(
4k1k2ff ′ + f2 (2k2k′

1 + k1k′
2)

)
V3 +

(
k1k2k3f 2)

V4 + 3ρ2k1f 2g(ϑ̇T, V2)ϑ̇T − ρ3k1f 2η̇(V2)ς

For the remaining parts of this study, we consider that σ : I → (M, ϑ̇, ς, η̇, g) is a Legendre curve in
an (α, β)-TSGSSF. If σ is a Legendre curve, then

η̇(V2) = − β

k1
(4.1)

Since σ is a Legendre curve, from (4.1), it is obvious that V2 ⊥ ς if and only if β = 0 [19].

Corollary 4.2. Let σ : I → (M, ϑ̇, ς, η̇, g) be a Legendre curve parameterized by its arclenght on an
(α, β)-TSGSSF. Then, σ is a bi-f -harmonic curve if and only if

0 =
(
(ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′) T(

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2(f ′)2k1 + k1f 2ρ1
)

V2

+f (2k2k′
1f + k1k′

2f + 4k1k2f ′) V3 +
(
k1k2k3f 2)

V4 + 3ρ2k1f 2g(ϑ̇T, V2)ϑ̇T + βρ3f 2ς

(4.2)

Let m = min{r, 4}. From (4.2), σ is a bi-f -harmonic Legendre curve if and only if

i. ρ2 = 0 or ϑ̇T ⊥ V2 or ϑ̇T ∈ span {V2, V3, · · · , Vm}

ii. ρ3 = 0 or ς ∈ span {V2, V3 · · · , Vm}

iii. g(τ̇f,2 (σ) , Vi) = 0, for all i ∈ {1, 2, · · · , m}

Theorem 4.3. Let σ : I → (M, ϑ̇, ς, η̇, g) be a Legendre curve parameterized by its arclenght on an
(α, β)-TSGSSF. Then, σ is a bi-f -harmonic curve if and only if

i. ρ2 = 0 or ϑ̇T ⊥ V2 or ϑ̇T ∈ span {V2, V3, · · · , Vm}

ii. ρ3 = 0 or ς ∈ span {V2, V3, · · · , Vm}

iii. The following equations are satisfied:
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

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0{
(k′′

1 − k3
1 − k1k2

2 + k1ρ1)f 2 + 4k′
1f ′f + 3k1f ′′f + 2(f ′)2k1

+3f 2k1ρ2g(ϑ̇T, V2)2 + f 2ρ3βη̇(V2)
= 0

4k1k2ff ′ + f2 (2k2k′
1 + k1k′

2) + 3ρ2k1f 2g(ϑ̇T, V2)g(ϑ̇T, V3) + βρ3f 2η̇(V3) = 0

k1k2k3 + 3ρ2k1g(ϑ̇T, V2)g(ϑ̇T, V4) + βρ3η̇(V4) = 0

(4.3)

CASE I. Let ρ2 = ρ3 = 0. Then, the manifold M is a Riemannian space form of constant sectional
curvature ρ2. In this case, σ : I → (M, ϑ̇, ς, η̇, g) is a proper bi-f -harmonic Legendre curve if and only
if 

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(k′′
1 − k3

1 − k1k2
2 + k1ρ1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 = 0

4k1k2f ′ + 2k2k′
1f + k1k′

2f = 0

k1k2k3 = 0

(4.4)

Theorem 4.4. There is no any proper bi-f -harmonic Legendre curve of osculating order r ≥ 4 in an
(α, β)-TSGSSF with ρ2 = ρ3 = 0.

From (4.4), if σ is a geodesic curve, then it is a bi-f -harmonic curve if and only if ff ′′ = cons.

Theorem 4.5. A geodesic curve in an (α, β)-TSGSSF is bi-f -harmonic if and only if ff ′′ = cons.

This theorem proves that there are bi-f harmonic curves that are not harmonic. Afterward, we
investigate bi-f -harmonicity of σ : I → (M, ϑ̇, ς, η̇, g) considering some special subcases:

CASE I. 1. If k1 = cons ̸= 0 and k2 = 0, then, from (4.4), (ff ′′) ′ − 4k2
1ff ′ = 0,

(ρ1 − k2
1)f2 + 2(f ′)2 + 3f ′′f = 0

(4.5)

From the second equation of (4.5), ff ′′ = (k2
1−ρ1)f2−2(f ′)2

3 which implies

10k2
1ff ′ + ρ′

1f2 + 2ρ1ff ′ + 4f ′f ′′ = 0 (4.6)

via the first equation of (4.5).

Theorem 4.6. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = ρ3 = 0, k1 = cons ̸= 0, and k2 = 0. Then, σ is a bi-f -harmonic Legendre curve if
and only if f, k1, and ρ1 satisfy following differential equation

10k2
1ff ′ + ρ′

1f2 + 2ρ1ff ′ + 4f ′f ′′ = 0

Further, if (4.6) is solved by assuming ρ1 constant, the the following result is obtained.

Theorem 4.7. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an α-Sasakian
generalized Sasakian space form dimension ≥ 5 with ρ2 = ρ3 = 0, k1 = cons ̸= 0, and k2 = 0. Then,
σ is a proper bi-f -harmonic Legendre curve if and only if f is a function defined by

f(s) = c1 cos

√
5k2

1 + ρ1
2 s

 + c2 sin

√
5k2

1 + ρ1
2 s


where s ∈ I and ρ1 is a constant.
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CASE I. 2. If k1 = cons ̸= 0 and k2 = cons ̸= 0, then (4.4) reduces to

(ff ′′) ′ − 4k2
1ff ′ = 0

f 2(−k2
1 − k2

2 + ρ1) + 3f ′′f + 2(f ′)2 = 0

f ′ = 0

k3 = 0

which implies 
f = cons

k2
1 + k2

2 = ρ1

k3 = 0

Theorem 4.8. There is no any proper bi-f -harmonic Legendre curve on an (α, β)-TSGSSF with
ρ2 = ρ3 = 0, k1 = cons ̸= 0, and k2 = cons ̸= 0.

CASE I. 3. If k1 ̸= cons and k2 = cons ̸= 0, then (4.4) reduces to

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 + k1ρ1f 2 = 0

2k1f ′ + k′
1f = 0

k3 = 0

Theorem 4.9. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = ρ3 = 0, k1 ̸= cons, and k2 = cons ̸= 0. Then, σ is a bi-f -harmonic Legendre curve
if and only if

f = ±ck
− 1

2
1

for some real constant c, k3 = 0, and the curvature k1 solves the following second order non-linear
differential equations system 9(k′

1)3 + 4k′
1k4

1 − 10k′′
1k′

1k1 + 2k′′′
1 k2

1 = 0

−3(k′
1)2 + 4k4

1 + 4k2
1k2

2 + 2k′′
1k1 − 4k2

1ρ1 = 0

CASE I. 4. If k1 ̸= cons and k2 ̸= cons, then by using the third equation in (4.4),

f = ±ck
− 1

2
1 k

− 1
4

2

for some real constant c. Besides, from the last equation in (4.4), k3 = 0.

Theorem 4.10. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = ρ3 = 0, k1 ̸= cons, and k2 ̸= cons. Then, σ is a bi-f -harmonic Legendre curve if
and only if f = ±ck

− 1
2

1 k
− 1

4
2 , c is a constant, k3 = 0, and k1 and k2 satisfy the following second order

non-linear differential equation system (ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1 + k1ρ1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 = 0

Before calculating Case II, we recall the following results [20]:

Proposition 4.11. Let (M, ϑ̇, ς, η̇, g) be an α-Sasakian generalized Sasakian space form. Therefore,
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α is independent of the direction of ς and the following equation is valid

ρ1 − ρ3 = α2

Moreover, if M is connected, then α is a constant.

Theorem 4.12. Let (M, ϑ̇, ς, η̇, g) be a connected α-Sasakian generalized Sasakian space form with
dimension m ≥ 5. Then, ρ1, ρ2, and ρ3 are constant functions related as follows:

i. If α = 0, then ρ1 = ρ2 = ρ3 and M is a cosymplectic manifold of constant ϑ̇-sectional curvature

ii. If α ̸= 0, then ρ1 − α2 = ρ2 = ρ3

CASE II. Let ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς. Then, from (4.1), it is obvious that the manifold M is
an α-Sasakian generalized Sasakian space form. By using Proposition 4.11, σ : I → (M, ϑ̇, ς, η̇, g) is a
proper bi-f -harmonic Legendre curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 + k1f 2 (
ρ3 + α2)

= 0

4k1k2f ′ + (2k2f k′
1 + k1k′

2)f = 0

k1k2k3 = 0.

(4.7)

Theorem 4.13. There is no any bi-f -harmonic Legendre curve of osculating order r > 3 satisfying
ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς in an α-Sasakian generalized Sasakian space form.

Theorem 4.14. There is no any bi-f -harmonic Legendre curve satisfying ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς

in a connected α-Sasakian generalized Sasakian space form with dimension ≥ 5.

CASE II.1. Let ρ2 = 0, ρ3 ̸= 0, V2 ⊥ ς, and α ̸= 0.

In this case, we consider bi-f -harmonic Legendre curves satisfying ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς in a
connected 3-dimensional α-Sasakian generalized Sasakian space forms. In a 3-dimensional α-Sasakian
manifold, a Legendre curve is a Frenet curve of osculating order 3 and its torsion is always α [21].
Then, (4.7) reduces to

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 + k1f 2 (
ρ3 + α2)

= 0

2k1f ′ + f k′
1 = 0

(4.8)

Theorem 4.15. Let (M, ϑ̇, ς, η̇, g) be a 3-dimensional connected α-Sasakian generalized Sasakian
space form satisfying ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς. Then, σ : I → (M, ϑ̇, ς, η̇, g) is a bi-f -harmonic
Legendre curve if and only if f = ±ck

− 1
2

1 , where c is a constant and k1 solves the following second
order non-linear differential equation system 9(k′

1)3 + 4k′
1k4

1 − 10k′′
1k′

1k1 + 2k′′′
1 k2

1 = 0

−3(k′
1)2 + 4k4

1 + 4k2
1k2

2 + 2k′′
1k1 − 4k2

1(ρ3 + α2) = 0

If k1 = cons ̸= 0, then f is constant from the third equation in (4.8).

Corollary 4.16. There is no any proper bi-f -harmonic Legendre helix in a 3-dimensional connected
α-Sasakian generalized Sasakian space form satisfying ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς.

CASE II.2. Let ρ2 = 0, ρ3 ̸= 0, V2 ⊥ ς, and α = 0.

Theorem 4.17. Let (M, ϑ̇, ς, η̇, g) be a cosymplectic generalized Sasakian space form satisfying ρ2 = 0,
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ρ3 ̸= 0, and V2 ⊥ ς. Then, σ : I → (M, ϑ̇, ς, η̇, g) is a bi-f -harmonic Legendre curve if and only if
ρ1 = ρ3 and the following differential equation system is satisfied

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 + k1f 2 (
ρ3 + α2)

= 0

4k1k2f ′ + (2k2f k′
1 + k1k′

2)f = 0

k1k2k3 = 0

CASE III. Let ρ2 = 0, ρ3 ̸= 0, η̇(V2) ̸= 0, and ς ∈ span {V2, V3, · · · , Vm}. Then, from (4.2),
σ : I → (M, ϑ̇, ς, η̇, g) is a proper bi-f -harmonic Legendre curve if and only if

(ff ′′) ′ − 3k1f 2k′
1 − 4k2

1f f ′ = 0{
(−k3

1 − k1k2
2 + k′′

1)f 2 + 4f k′
1f ′ + 3f ′′f k1 + 2(f ′)2k1

+k1f 2ρ1 + f 2βρ3η̇(V2) = 0

2k2f k′
1 + k1f k′

2 + 4k1k2f ′ + βρ3f η̇(V3) = 0

k1k2k3 + βρ3η̇(V4) = 0

Let m = min{r, 4} = 4, which implies r ≥ 4. Then,

ς = cos θ1V2 + sin θ1 cos θ2V3 + sin θ1 sin θ2V4

which implies

η̇(V2) = cos θ1, η̇(V3) = sin θ1 cos θ2, and η̇(V4) = sin θ1 sin θ2

Here, θ1 : I → R denotes the angle function between ς and V2 and θ2 : I → R is the angle function
between V3 and the orthogonal projection of ς onto span{V3, V4}.

Theorem 4.18. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 ̸= 0, η̇(V2) ̸= 0 and ς ∈ span {V2, V3, · · · , Vm}. Then, σ is a bi-f -harmonic
Legendre curve if and only if

(ff ′′) ′ − 3k1f 2k′
1 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 + k1f 2ρ1 + f 2βρ3 cos θ1 = 0

2k2f k′
1 + k1f k′

2 + 4k1k2f ′ + β sin θ1 cos θ2ρ3f = 0

k1k2k3 + β sin θ1 sin θ2ρ3 = 0

(4.9)

provided r ≥ 4.

As a particular case, if β = 0, that is, (M, ϑ̇, ς, η̇, g) is an α-Sasakian generalized Sasakian space form,
then the following results is obtained:

Corollary 4.19. There is no any bi-f -harmonic Legendre curve of osculating order r ≥ 4 in
an α-Sasakian generalized Sasakian space form, satisfying ρ2 = 0, ρ3 ̸= 0, η̇(V2) ̸= 0, and
ς ∈ span {V2, V3, · · · , Vm}.

If ρ1, ρ3, and the first three curvatures of σ are constants, then the following result is valid:

Theorem 4.20. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 = cons ̸= 0, η̇(V2) ̸= 0 and ς ∈ span {V2, V3, · · · , Vm}. Then, σ is a
bi-f -harmonic Legendre curve if and only if f is one of the followings:
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f(s) = c1 cos

√
−5k2

1 + k2
2 − ρ1 + ρ3(cosθ1)2

2 s

 + c2 sin

√
−5k2

1 + k2
2 − ρ1 + ρ3(cosθ1)2

2 s

 (4.10)

f(s) = c3s + c4 (4.11)

and

f(s) = c5e−
√

5k2
1−k2

2+ρ1+ρ3(cosθ1)2

2 s + c6e

√
5k2

1−k2
2+ρ1+ρ3(cosθ1)2

2 s (4.12)

provided that
5k2

1 − k2
2 + ρ1 + ρ3(cosθ1)2 > 0

5k2
1 − k2

2 + ρ1 + ρ3(cosθ1)2 = 0

and
5k2

1 − k2
2 + ρ1 + ρ3(cosθ1)2 < 0

respectively, and
f(s) = e

k3
4

∫
cot θ2 ds (4.13)

where c1, c2, · · · , c6, θ1 and θ2 are constants.

Proof. By using (4.9),

(ff ′′) ′ − 4k2
1f f ′ = 0

3f ′′f + 2(f ′)2 + f 2
(
−k2

1 − k2
2 + ρ1 − ρ3 (cosθ1)2

)
= 0

4k1k2f ′ + β sin θ1 cos θ2ρ3f = 0

k1k2k3 + β sin θ1 sin θ2ρ3 = 0

(4.14)

From the second equation of (4.14),

f ′′f = −2(f ′)2 +
(
k2

1 + k2
2 − ρ1 + ρ3(cosθ1)2)

f2

3 (4.15)

If (4.15) is used in the first equation of (4.14),

2f ′′ +
(
5k2

1 − k2
2 + ρ1 − ρ3(cosθ1)2

)
f = 0 (4.16)

By solving the differential equation (4.16), the first assertion of the theorem is obtained. Besides,

βρ3 sin θ1
(
cos θ2k3f − 4 sin θ2f ′) = 0

via the last two equations of (4.14) which implies (4.13).

Let r = 3. This implies that ς ∈ span {V2, V3} and by choosing θ2 = 0, ς = cos θ1V2 + sin θ1V3 where
θ1 : I → R denotes the angle function between ς and V2.

Theorem 4.21. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 ̸= 0, η̇(V2) ̸= 0, and ς ∈ span {V2, V3}. Then, σ is a bi-f -harmonic Legendre
curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(3f ′′f + 2(f ′)2)k1 + +4k′
1f f ′ + f 2(−k3

1 − k1k2
2 + k′′

1 + k1ρ1 + βρ3 cos θ1) = 0

4k1k2f ′ + f(2k2f k′
1 + k1k′

2 + β sin θ1ρ3) = 0

provided r = 3.
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If ρ1, ρ3, and the first two curvatures of σ are constants, then the following result is obtained:

Corollary 4.22. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 = cons ̸= 0, η̇(V2) ̸= 0, and ς ∈ span {V2, V3}. Then, σ is a bi-f -harmonic
Legendre curve if and only if f is defined by one of the form given in (4.10), (4.11), or (4.12) and

f(s) = e
ρ3
4

∫
sin θ1 cos θ1 ds

where s ∈ I.

Let r = 2. Then, ς ∈ span {V2} which implies ς = ±V2 by taking θ1 ∈ {0, π} and θ2 = 0.

Theorem 4.23. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 ̸= 0, η̇(V2) ̸= 0, and ς = ±V2. Then, σ is a bi-f -harmonic Legendre curve if
and only if  (ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′ = 0

(3f ′′f + 2(f ′)2)k1 + 4k′
1f f ′ + f 2(−k3

1 + k′′
1 + k1ρ1 + βρ3 cos θ1) = 0

provided r = 2.

If ρ1, ρ3, and the first curvature of σ are constants, then the following result is obtained:

Corollary 4.24. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 = cons ̸= 0, η̇(V2) ̸= 0, and ς = ±V2. Then, σ is a bi-f -harmonic curve if
and only if f is defined by one of the form given in (4.10), (4.11), or (4.12).

CASE IV. Let ρ2 ̸= 0, ρ3 = 0, and V2 ⊥ ϑ̇T . Then, from (4.3), σ : I → (M, ϑ̇, ς, η̇, g) is a proper
bi-f -harmonic Legendre curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1 + k1ρ1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2(f ′)2k1 = 0

4k1k2f ′ + ( 2k2k′
1 + k1k′

2)f = 0

k1k2k3 = 0

Corollary 4.25. There is no any bi-f -harmonic Legendre curve of osculating order r ≥ 4 in an
(α, β)-TSGSSF, satisfying ρ2 ̸= 0, ρ3 = 0, and V2 ⊥ ϑ̇T .

Note that because the conditions obtained in Cases I and IV are the same, it is not necessary to
investigate the subcases for Case IV.

CASE V: Let ρ2 ̸= 0, ρ3 = 0, ϑ̇T ∈ span {V2, V3, · · · , Vm}, g(ϑ̇T, V2) ̸= 0, and m = min{r, 4} = 4,
which implies r ≥ 4. Then,

ϑ̇T = cos a1V2 + sin a1 cos a2V3 + sin a1 sin a2V4 (4.17)

which implies
g(ϑ̇T, V2) = cos a1

g(ϑ̇T, V3) = sin a1 cos a2

and
g(ϑ̇T, V4) = sin a1 sin a2 (4.18)

Here, a1 : I → R denotes the angle function between ϑ̇T and V2 and a2 : I → R is the angle function
between V3 and the orthogonal projection of ϑ̇T onto span{V3, V4}. Thus, the following result is
obtained:
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Theorem 4.26. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 ̸= 0, ρ3 = 0, ϑ̇T ∈ span {V2, V3, V4}, and g(ϑ̇T, V2) ̸= 0. Then, σ is a bi-f -harmonic
Legendre curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0(
−k3

1 − k1k2
2 + k′′

1 + k1ρ1 + 3k1ρ2(cos a1)2)
f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 = 0

f (2k2f k′
1 + k1f k′

2 + 4k1k2f ′) + 3ρ2k1f 2 cos a1 cos a2 sin a1 = 0

k1k2k3 + 3ρ2k1 sin a1 sin a2 cos a1 = 0

If the first three curvatures are constants, the following result is obtained:

Theorem 4.27. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 ̸= 0, ρ3 = 0, ϑ̇T ∈ span {V2, V3, · · · , Vm}, and g(ϑ̇T, V2) ̸= 0. Then, σ is a bi-f -
harmonic Legendre curve if and only if k1, k2, and k3 satisfy the following differential equations (ff ′′) ′ − 4k2

1f f ′ = 0

(−k2
1 − k2

2 + ρ1 + 3ρ2(cos a1)2)f 2 + 3f ′′f + 2(f ′)2 = 0

where
f(s) = e

k3
4

∫
cot a2 ds

and a1 and a2 are constants.

Let r = 3. Therefore,
ϑ̇T = cos a1V2 + sin a1V3

Hence, g(ϑ̇T, V2) = cos a1, g(ϑ̇T, V3) = sin a1, a2 = 0, and k3 = 0.

Theorem 4.28. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 ̸= 0, ρ3 = 0, ϑ̇T ∈ span {V2, V3}, and g(ϑ̇T, V2) ̸= 0. Then, σ is a bi-f -harmonic
Legendre curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1 + k1ρ1 + 3k1ρ2(cos a1)2)f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 = 0

f (2k2f k′
1 + k1f k′

2 + 4k1k2f ′) + 3ρ2k1f 2 cos a1 sin a1 = 0

provided r = 3.

Let r = 2. Therefore, ϑ̇T = ±V2. Hence, g(ϑ̇T, V2) = ±1, g(ϑ̇T, V3) = 0, a1 = a2 = 0, and k2 = k3 = 0.

Theorem 4.29. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 ̸= 0, ρ3 = 0, and ϑ̇T = ±V2. Then, σ is a bi-f -harmonic Legendre curve if and only
if  (ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′ = 0

(−k3
1 + k′′

1 + k1ρ1 ± 3k1ρ2)f 2 + 4f k′
1f ′ + 3f ′′f k1 + 2(f ′)2k1 = 0

provided r = 2.

CASE VI. Let ρ2 ̸= 0, ρ3 ̸= 0, V2 ⊥ ϑ̇T , and V2 ⊥ ς. Then, from (4.3), σ : I → (M, ϑ̇, ς, η̇, g) is a
proper bi-f -harmonic Legendre curve if and only if
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

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(k′′
1 − k3

1 − k1k2
2 + k1ρ1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 = 0

4k1k2f ′ + 2k2k′
1f + k1k′

2f = 0

k1k2k3 = 0

Corollary 4.30. There is no any bi-f -harmonic Legendre curve of osculating order r ≥ 4 in an
α-Sasakian generalized Sasakian space form, satisfying ρ2 ̸= 0, ρ3 ̸= 0, V2 ⊥ ϑ̇T , and V2 ⊥ ς.

Note that because the conditions obtained in Cases I and VI are the same, it is not necessary to
investigate the subcases for Case VI.

CASE VII. Let ρ2 ̸= 0, ρ3 ̸= 0, V2 ⊥ ϑ̇T , ς ∈ span {V2, V3, · · · , Vm}, and η̇(V2) ̸= 0. Then, from
(4.3), σ : I → (M, ϑ̇, ς, η̇, g) is a proper bi-f -harmonic curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1 + k1ρ1 + βρ3(cos θ1)2)f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 = 0

4k1k2ff ′ + f2(2k2k′
1 + k1k′

2 + βρ3 sin θ1 cos θ2) = 0

k1k2k3 + βρ3k1 sin θ1 sin θ2 = 0

Corollary 4.31. There is no any bi-f -harmonic curve of osculating order r ≥ 4 in an α-Sasakian
generalized Sasakian space form, satisfying ρ2 ̸= 0, ρ3 ̸= 0, V2 ⊥ ϑ̇T , ς ∈ span {V2, V3, · · · , Vm}, and
η̇(V2) ̸= 0.

Note that because the conditions obtained in Cases III and VII are the same, we omit to investigate
the subcases for Case VII.

CASE VIII. Let ρ2 ̸= 0, ρ3 ̸= 0, ϑ̇T ∈ span {V2, V3, · · · , Vm}, g(ϑ̇T, V2) ̸= 0, and ς ⊥ V2. Then, from
(4.17) and (4.18), the following result is obtained:

Theorem 4.32. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an α-Sasakian
generalized Sasakian space form with ρ2 ̸= 0, ρ3 ̸= 0, ϑ̇T ∈ span {V2, V3, · · · , Vm}, g(ϑ̇T, V2) ̸= 0, and
ς ⊥ V2. Then, σ is a bi-f -harmonic Legendre curve if and only if k1, k2, and k3 satisfy the following
differential equations:

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1 + k1ρ1 + 3k1ρ2(cos a1)2)f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 = 0

f (2k2f k′
1 + k1f k′

2 + 4k1k2f ′) + 3ρ2k1f 2 cos a1 cos a2 sin a1 + βρ3η̇(V3) = 0

k1k2k3 + 3ρ2k1 sin a1 sin a2 cos a1 + βρ3η̇(V4) = 0

(4.19)

If r = 3, then the first three equations of the (4.19) are satisfied, taking a2 = 0.

If r = 2, then the first two equations of the (4.19) are satisfied, taking a1 ∈ {0, π}.

CASE IX. Let ρ2 ̸= 0, ρ3 ̸= 0, ϑ̇T ∈ span {V2, V3, · · · , Vm}, g(ϑ̇T, V2) ̸= 0, η̇(V2) ̸= 0, and ς ∈
span {V2, V3, · · · , Vm}. Then, the following result is obtained:

Theorem 4.33. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
trans-Sasakian generalized Sasakian space form with ρ2 ̸= 0, ρ3 ̸= 0, ϑ̇T ∈ span {V2, V3, · · · , Vm} ,

g(ϑ̇T, V2) ̸= 0, η̇(V2) ̸= 0, and ς ∈ span {V2, V3, · · · , Vm}. Then, σ is a bi-f -harmonic curve if and only
if k1, k2, and k3 satisfy the following differential equations:
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

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0 (−k3
1 − k1k2

2 + k′′
1 + k1ρ1 + 3k1ρ2(cos a1)2 + βρ3 cos θ1)f 2 + 4f k′

1f ′

+(3f ′′f + 2(f ′)2)k1 = 0
4k1k2ff ′ + f 2(2k2k′

1 + k1k′
2 + 3ρ2k1 cos a1 cos a2 sin a1 + βρ3 sin θ1 cos θ2) = 0

k1k2k3 + 3ρ2k1 sin a1 sin a2 cos a1 + βρ3 sin θ1 sin θ2 = 0

(4.20)

If r = 3, then the first three equations of the (4.20) are satisfied, taking a2 = 0 and θ2 = 0.

If r = 2, then the first two equations of the (4.20) are satisfied, taking θ1 ∈ {0, π} and a1 ∈ {0, π}.

5. Conclusion

This study has obtained the necessary and sufficient conditions for a curve to be bi-f -harmonic Legen-
dre in the (α, β)-trans-Sasakian generalized Sasakian space form. While conducting this investigation,
the functions from the manifold’s curvature tensor, curvature and torsion of the curve, and the relative
positions of the basis vectors have been considered. Future studies could focus on different curves,
such as Slant, in the (α, β)-trans-Sasakian generalized Sasakian space form. Additionally, research can
be conducted on special cases of the (α, β)-trans-Sasakian manifold, including α-Sasakian, Sasakian,
β-Kenmotsu, Kenmotsu, and cosymplectic manifold types.
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Abstract − Dark energy is one of the prominent mysteries of the universe that still awaits
a solution. One of the plausible ways to collect data about any formation or understand its
information capacity is to investigate the entropy of that formation. In this study, Renyi
Holographic Dark Energy (RHDE) matter distribution is analyzed within the framework of
General Relativity Theory, considering homogeneous and isotropic Friedmann-Robertson-
Walker (FRW) space-time. Hubble parameter and RHDE density were used to obtain exact
solutions of Einstein field equations. The analysis of the obtained solutions was performed
by drawing evolution graphs for redshift z.
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1. Introduction

Observations suggest that the universe is accelerating in two phases: the very early inflationary phase
and the current phase. An exotic component with a large negative pressure, called dark energy (DE),
which accounts for about 70% of the universe’s energy density, is thought to cause the accelerated
expansion [1]. In addition, the second largest component of our universe is dark matter (DM). The
origin and nature of dark matter and dark energy are not fully known. Different theoretical models
have been constructed to explain and interpret the accelerating universe.

The cosmological constant lambda cold dark matter (ΛCDM) is proposed as the simplest dark energy
model. Although ΛCDM is consistent with current observations, it suffers from the problem of coinci-
dence and fine-tuning. [2]. For this reason, we are trying to investigate the origin of dark energy based
on the holographic principle [3]. With the introduction of the holographic principle into cosmology,
holographic dark energy (HDE) was proposed [4]. Holographic dark energy is based on the use of
various horizons as the radius of the universe. It can explain the current acceleration and is supported
by many observations [5, 6], making holographic dark energy an interesting model. Recently, dark
energy models, such as Tsallis holographic dark energy, Renyi holographic dark energy (RHDE), and
Sharma Mitall holographic dark energy, have been proposed to investigate cosmological phenomena
using extended entropy formalisms, such as Tsallis [7], Renyi [8], and Sharma Mitall [9]. The energy
density of RHDE is as follows:

ρR = 3c2

8πL2

(
1 + πδL2

)−1
(1.1)
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where δ is the true non-extensibility (NE) parameter measuring the degree of non-extensibility, L is
the IR cut-off, and c is a numerical constant [10, 11]. If the Hubble horizon is taken as the IR cut-off(
L = 1

H

)
, then (1.1) becomes the following equation, and the energy density of the RHDE is obtained

as follows [10]:

ρR = 3c2H2

8π
(

πδ
H2 + 1

) (1.2)

There are many studies on RHDE. Some of these studies can be summarized as follows. Prasanthi
and Aditya [1] have studied the RHDE model for the Bianchi VI0 universe in the General Relativity
Theory. Bhattacharjee [12] has investigated the dynamics of Tsallis and Renyi holographic dark
energy in Friedmann-Robertson-Walker (FRW) space-time using a hybrid scale factor. Dubey et
al. [10] have analyzed RHDE model in a flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric
using different values of the parameter δ. Dixit et al. [13] have investigated the behavior of RHDE
in the flat FRW universe in the framework of f(R, T ) gravity using the Granda-Oliveros and Hubble
horizons. Sharma and Dubey [14] have obtained a solution using the RHDE deceleration parameter
in the flat FRW universe. They have also calculated state finder parameters to understand the
geometrical behavior of the model using observational data. Moreover, in 2020, Sharma and Dubey [15]
studied the RHDE model for the FRW universe in Brans-Dicke cosmology. Saha et al. [16] have
investigated the interacting and non-interacting RHDE models in the Dvali-Gabadadze-Porratidal
braneworld framework. In addition, Saha et al. [17] have researched the distribution of matter with
Barrow holographic dark energy and viscous fluid in the form of pressure-less dark matter using
different scale factors for the flat FRW universe. Liu et al. [18] have analyzed the quintessential dark
energy of the Kerr black hole by testing it through observational data using quasi-periodic oscillations.
Ranjit et al. [19] have studied models of the universe with interacting Tsallis holographic dark energy in
the Chern-Simons alternative gravitational theory. Yılmaz and Güdekli [20] have investigated FLRW
universe models with modified Chaplygin gas and cosmological constants, one of the dark energy
candidates. Koussour et al. [21] have proposed a new equation of state parameter for dark energy in
the f(Q) alternative theory of gravitation. Koussour et al. [22] have obtained solutions for various
Hubble parameters in scalar field dark energy models.

The outline of the article is as follows: In section 2, the General Relativity Theory formulation is
provided, and the field equations for the RHDE model are obtained using the FRW metric. In section
3, solutions to Einstein field equations are provided. Moreover, in this section, the solutions are
analyzed with the help of graphics. Finally, in the section 4, the planned future studies are mentioned.

2. Field Equations

The General Relativity theory attempts to explain the universe’s structure on a large scale. The field
equations in this theory are expressed as follows:

Rµν − 1
2Rgµν = Tµν (2.1)

Here, 8πG = c4 = 1 can be taken. The general form of the homogeneous and isotropic FRW metric
in spherical coordinates (r, θ, ϕ, t) is as follows:

ds2 = dt2 − A2
(

dr2

1 − κr2 + r2(dθ2 + sin2 θdϕ2)
)

(2.2)

Here, it can take the values κ = −1, κ = 0, or κ = 1. If κ = −1, then it refers to the open universe
model, if κ = 0, then it refers to the flat universe model, and if κ = 1, then it refers to the closed
universe model. The universe is assumed to be filled with matter and a fluid known as holographic
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dark energy. The energy-momentum tensor for matter is defined as follows:

T m
µν = ρmuµuν

where ρm shows the density of matter [1]. The energy-momentum tensor (T R
µν) of RHDE is as follows:

T R
µν = (ρR + pR)uµuν − pR gµν

where pR and ρR denote RHDE pressure and energy density, respectively [1]. The total energy-
momentum tensor is expressed as follows:

Tµν = T m
µν + T R

µν

= (ρm + ρR + pR)uµuν − pRgµν

(2.3)

We obtain the Einstein field equations from (2.1)-(2.3) as follows:

2Ä

A
+ Ȧ2

A2 + κ

A2 = −pR (2.4)

and
3Ȧ2

A2 + 3κ

A2 = ρm + ρR (2.5)

Here, the dot shows a derivative concerning cosmic time t.

3. Results and Discussions

As can be observed from (2.4) and (2.5), there are two equations with four unknowns as A, ρm, ρR,
and pR. We need two additional equations to solve this equations system.

i. To obtain a solution, we can first use the Hubble parameter. The Hubble parameter, a cosmological
parameter that expresses the universe’s expansion rate, defines the universe’s expansion rate by a
numerical value, also called the Hubble constant (H0). This parameter helps us understand the
universe’s expansion rate and obtain some critical information about the universe’s past. In this
study, the Hubble parameter suggested by Pacif et al. [23] is taken:

H = ȧ

a
= β√

t + α
(3.1)

Here, a denotes scale factor and α and β are real constants.

ii. As the second equation, by estimating the Hubble horizon as an IR cut-off, we can take the energy
density of the RHDE as in (1.2).

From (3.1), the metric potential (is also equal to the scale factor a) A is

A = c1e2
√

t+α β (3.2)

Here, c1 is an integral constant. From (1.2) and (3.1), we obtain energy density of RHDE as

ρR = 3β4c2

8 (δ (t + α) π + β2) (t + α) π
(3.3)

Furthermore, from (2.4), (2.5), (3.2), and (3.3), the energy density of matter and pressure are obtained
as follows:

ρm = 3e−4
√

t+α βκ

c1 2 − 3β2 (−8δ (t + α) π2 − 8β2π + c2β2)
8 (δ (t + α) π + β2) (t + α) π

and

pR = −e−4
√

t+α βκ

c1 2 −
3
(√

t + α β − 1
3

)
β

(t + α)
3
2

(3.4)
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Finally, we can determine the equation of state (EoS) parameter by using the formulation ω = pR
ρR

where ω denotes the EoS parameter:

ω = −8π
(
3β

√
t + α − 1

) (
δ (t + α) + β2)

3 β3c2√
t + α

− 8πκ
(
δ (t + α) π + β2) (t + α)
3c12c2β4e4β

√
t+α

When the solutions are investigated, it is observed that there is a singularity at t = −α. However,
since the constant α is positive and t can never have a negative value, t = −α has no problems for the
solutions. In order to draw and analyze the graphs of the physical variables we obtain in the solutions,
we need the values of the constants in the solutions. We can get the values of the constants in the
solutions by using some observational values. Table 1 contains the values of the constants we use to
draw the graphs. When obtaining the values in Table 1, t0 = 13.8 Gyr was taken.

Table 1. Values of constants
Data Set α β c1 δ c

SN Ia [24] 1.0 0.4813 0.0246 1.4 70

SN Ia + H(z) + BAO/CMB [25] 1.6 0.2770 0.1137 1.4 110

SN Ia + BAO +H(z) [26] 1.3 0.3762 0.0537 1.4 90

CC+SN Ia+BAO+R18 [27] 1.6 0.2963 0.0977 1.4 120

Using the values in Table 1, a graph of the variation in metric potential over time was drawn for
four different observation values. When Figure 1 is analyzed, it is observed that the metric potential
exhibits similar behavior for all four observation values up to a certain point and increases over time.
Still, after a certain point, the increase accelerates for SN Ia. The fact that the metric potential
increases over time within four different observation values shows that the universe model has an
expansion.
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Figure 1. Variation of metric potential versus cosmic time t

The following equation expresses the relationship between redshift and scale factor:

1 + z = a(t0)
a(t) (3.5)

where a(t0) is the present value of the scale factor. In this study, a(t0) = 1 is assumed. From (3.1)
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and (3.5), a relationship between the redshift variable z and time can be obtained as follows:

t = t0 −
√

t0 + α ln(1 + z)
β

+ ln(1 + z)2

4β2 (3.6)

With the help of (3.3) and (3.6) and using the values in Table 1, the variation graph of the energy
density of RHDE according to redshift is presented in Figure 2. The energy density is expected to
increase in dark energy models according to z. When Figure 2 is investigated, an increase is observed
for all four observation values. However, the increase is faster for the observation values SN Ia + H(z)
+ BAO/CMB and CC+SN Ia+BAO+R18.
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Figure 2. Variation of the energy density of RHDE versus redshift.

Similarly, with the help of (3.4) and (3.6) and using the values in Table 1, the variation graph of the
energy density of RHDE according to redshift is provided in Figure 3. In dark energy models, the
pressure is expected to decrease concerning z. When Figure 3 is investigated, a decrease is observed
for all four observation values. However, it can be observed from Figure 3 that the observation values
of SN Ia + H(z) + BAO/CMB and CC + SN Ia + BAO + R18 start to increase after a certain point.
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Figure 3. Variation of pressure versus redshift
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Figure 4 shows the variation of the equation of state parameter according to redshift. When Figure 4
is investigated, the equation of state parameter behaves similarly in four different observation values.
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Figure 4. Variation of equation of state versus redshift

4. Conclusion

This article has investigated the behavior of the RHDE matter distribution in the homogeneous and
isotropic FRW universe model, which best describes today’s universe in the framework of General
Relativity Theory. In future studies, it will be worthwhile to investigate universe models with RHDE
matter distribution within the framework of Lyra theory, f(R) theory, and f(Q) theory.
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[17] S. Saha, S. Chattopadhyay, E. Güdekli, A coupled-fluid approach to explore bounce and inflation-
ary cosmology with Barrow holographic as the driving dark fluid, European Physical Journal C
84 (3) (2024) Article Number 314 30 pages.

[18] Y. Liu, G. Mustafa, S. K. Maurya, G. D. A. Yildiz, E. Güdekli, Testing of Kerr black hole with
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is analyzed, and some vertex-switched graphs are determined for some graph classes. This
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1. Introduction

A simple graph G consists of a set V of vertices (nodes) and a set E of edges (links) between some
vertices so that no loops or multiple edges appear in G. For more information about graphs, see
[1]. Many graph operations use vertices and edges for several purposes, such as vertex deletion and
addition, edge deletion and addition, and edge contraction. Several such vertex and edge operations’
applications can be found in [2–10].

In [11], Seidel has introduced a new type of vertex operation called vertex switching. For some
fundamental properties and calculations, see [12–14]. For a graph G = G(V, E) and a subset S of
V = V (G), the switching of G by S is the graph GS(V, E′) obtained from G by removing all edges
between S and V − S and adding new edges between S and V − S which are not in G. If the set S

consists of a single vertex v, then, in particular, GS , denoted briefly by Gv, is the vertex switching
graph of G by v.

Some mathematical formulae called topological graph indices are used in obtaining some required
properties of a given graph or a graph class. Some of these indices are useful in molecular chemistry
and are alternatively called molecular descriptors. Two of these indices are the first and second Zagreb
indices defined by Gutman and Trinajstic [15] as follows:

M1(G) =
∑

u∈V (G)
du2 and M2(G) =

∑
uv∈E(G)

dudv

These two topological indices have been studied by many authors [16,17]. In this study, we calculate
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the first and the second Zagreb indices of vertex switched star, complete bipartite, and tadpole graphs
for the special case of S = {v} is a single vertex set.

2. First Zagreb Index of Vertex Switched Graphs of Some Graph Classes

This section calculates the first Zagreb index of vertex-switched star, tadpole, and complete bipartite
graphs. We start with complete bipartite graphs.

2.1. First Zagreb Index of Vertex Switched Graphs of Complete Bipartite Graphs

Firstly, we study the first Zagreb index of vertex switched complete bipartite graphs. Let two bipartite
sets of the vertices in Kr,s with r ≤ s be A = {u1, u2, · · · , ur} and B = {v1, v2, · · · , vs}. By the
definition of vertex switching operation, the case r = 2 shows a difference with the case r ≥ 3 as we
obtain a star graph in the former case, and in the latter case, a new graph class is obtained. We
denote by Kr,s(t) the graph obtained by joining t vertices to all of the s vertices in a bipartite graph
Kr,s. For some examples of these graphs, see Figures 1 and 2 and more details, see [18].

Figure 1. Vertex switching of K2,3 where v belongs to different partition sets

We consider the situation where the switched vertex belongs to A:

Theorem 2.1. Let v ∈ A. Then,
M1(Kv

2,s) = s2 + 3s + 2

Proof. We need to delete all the edges vv1, vv2, · · · , vvs incident to v and add a new edge between
v and each vertex w in G which are not adjacent to v in G. Thus, v becomes a pendant vertex in
Kv

2,s. There is only one vertex w in G as r = 2. Hence, w will be connected to all the other vertices
in G when we form Kv

2,s, and all these vertices are adjacent only to w, causing the graph to be a star
graph. The total number of those vertices is 2 + s − 1 = s + 1. Adding w, we obtain that this star
graph will be S2+s. For more details, see [18]. The vertex partition of Kv

2,s is provided in Table 1:

Table 1. The vertex partition of Kv
2,s, for v ∈ A

du # u

1 s + 1

s + 1 1

# stands for “the number of”.

Hence, the first Zagreb index of Kv
2,s is

M1(Kv
2,s) = M1(S2+s) = 12(s + 1) + 1(s + 1)2 = s2 + 3s + 2

We consider the situation where the switched vertex belongs to B:

Theorem 2.2. Let v ∈ B. Then,

M1(Kv
2,s) = 3s2 + 3s − 6



Journal of New Theory 48 (2024) 48-60 / A Study on Zagreb Indices of Vertex-Switching for Special Graph Classes 50

Proof. Let v ∈ B. We delete both edges vu1 and vu2 and add new s − 1 edges vv2, vv3, · · · , vvs.
Moreover, u1 and u2 are adjacent to all the vertices in B − {v} which is the graph K1

2,s−1 that is the
graph obtained by joining v to s − 2 vertices in B − {v} in K2,s−2, giving a complete bipartite graph
K2,s−1. Thus, the vertex partition of Kv

2,s is provided in Table 2:

Table 2. The vertex partition of Kv
2,s, for v ∈ B

du # u

s − 1 3

3 s − 1

# stands for “the number of”.

Hence,
M1(Kv

2,s) = M1(K1
2,s−1) = 3(s − 1)2 + 32(s − 1) = 3s2 + 3s − 6

We consider the first Zagreb index of a vertex switched graph Kr,s with 3 ≤ r ≤ s. For an illustration,
see Figure 2, where r = 3 and s = 4.

Figure 2. Two possible vertex switchings of the complete bipartite graph K3,4

Theorem 2.3. Let Kr,s be a complete bipartite graph with 3 ≤ r ≤ s. If v ∈ A, then

M1(Kv
r,s) = s2r + r2s + r2 − s2 − r − s

and if v ∈ B, then
M1(Kv

r,s) = s2r + r2s + s2 − r2 − r − s

Proof. For v ∈ A, M1(Kv
r,s) = M1(K1

s,r−1). Therefore, the vertex partition of Kv
r,s is provided in

Table 3:

Table 3. The vertex partition of Kv
r,s, for v ∈ A

du # u

s + 1 r − 1

r − 1 s + 1

# stands for “the number of”.

Hence,
M1(Kv

r,s) = (s − 1)2(r + 1) + (r + 1)2(s − 1) = s2r + r2s + r2 − s2 − r − s

For v ∈ B, M1(Kv
r,s) = M1(K1

r,s−1). Therefore, the vertex partition of Kv
r,s is provided in Table 4:
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Table 4. The vertex partition of Kv
r,s, for v ∈ B

du # u

s − 1 r + 1

r + 1 s − 1

# stands for “the number of”.

Hence,

M1(Kv
r,s) = M1(K1

r,s−1) = (s − 1)2(r + 1) + (r + 1)2(s − 1) = s2r + r2s + s2 − r2 − r − s

2.2. First Zagreb Index of Vertex Switched Graphs of Star Graphs

This section looks for the vertex-switched graphs of the star graphs. As there are two different types
of vertices in a star graph, we have the following sub-cases:

Theorem 2.4. Let Sn be a star graph, v1 be the central vertex, and all the remaining vertices be
v2, v3, · · · , vn. Then,

M1(Sv1
n ) = 0

and
M1(Svi

n ) = 2n2 − 4n

for i ∈ {2, 3, · · · , n}, where K1,1,n−2 is the complete tripartite graph.

Proof. First, determine Sv1
n . As v1 is connected to all the other vertices and there are no other edges

in Sn, the remaining graph, when we delete all the incident n − 1 edges to v1, will have no edges, that
is, the resulting graph will be Nn, see the graph in the middle in Figure 3, and hence M1(Sv1

n ) = 0.

Figure 3. Two possible vertex switchings of a star graph

Secondly, determine Svi
n where vi is a vertex different then v1. When we switch the vertex vi, all vertices

v2, v3, · · · , vi−1, vi+1, · · · , vn will be adjacent to only v1 and vi, each. This graph is an example of the
triangular book graph without a spine; see the graph on the right in Figure 3, for n = 5, and Figure
4, for n > 5. That is, Svi

n = K1,1,n−2 − {v1vi}.

Figure 4. Vertex switching at a pendant vertex of a star graph giving triangular book graph without
a spine
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Therefore, the vertex partition of Svi
n is provided in Table 5:

Table 5. Vertex partition of Svi
n , for v2, v3, · · · , vi−1, vi+1, · · · , vn

du # u

2 n − 2

n − 2 2

# stands for “the number of”.

Hence,
M1(Svi

n ) = M1(K1,1,n−2 − {v1vi}) = 22(n − 2) + (n − 2)22 = 2n2 − 4n

2.3. First Zagreb Index of Vertex Switched Graphs of Tadpole Graphs

This section calculates the first Zagreb index of vertex-switched tadpole graphs Tr,s. This case is
much more complicated than the previously considered graph classes, as many different types of
vertices exist. Let the vertex at which the path and cycle parts of the tadpole graph intersect be v1,
the remaining vertices on the cycle in clockwise order be v2, v3, · · · , vr, and the remaining vertices
starting from the neighbor vertex vr+1 be vr+1, vr+2, · · · , vr+s (see Figure 5).

Figure 5. Tadpole graph Tr,s

Using the symmetry in Tr,s, we study the first Zagreb index of the vertex switched graphs T v
r,s for v

is v1, v2, v3, vr+1, vr+2, vr+s−1, and vr+s as T vr
r,s = T v2

r,s, T
vr−1
r,s = T v3

r,s, etc. In Figure 6, we illustrated
all the possible vertex-switched tadpole graphs:

Figure 6. All the possible vertex switched tadpole graphs Tr,s
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Figure 6. (Continued) All the possible vertex switched tadpole graphs Tr,s

Theorem 2.5. Let Tr,s be a tadpole graph, v1 be the central vertex, and all the remaining vertices
be v2, v3, · · · , vn. Then,

M1(T v1
r,s) = r2 + s2 + 2rs + r + s − 22

M1(T v2
r,s) = r2 + s2 + 2rs + 3r + 3s − 18

M1(T v3
r,s) = r2 + s2 + 2rs + 3r + 3s − 14

M1(T vr+1
r,s ) = r2 + s2 + 2rs + 5r + 5s − 18

M1(T vr+2
r,s ) = r2 + s2 + 2rs + 5r + 5s − 20

M1(T vr+s−1
r,s ) = r2 + s2 + 2rs + 5r + 5s − 3

and
M1(T vr+s

r,s ) = r2 + s2 + 2rs + 5r + 5s − 18

Proof. The vertex partition for T v1
r,s is provided in Table 6:

Table 6. The vertex partition of T v1
r,s

du # u

1 3

2 1

3 r + s − 5

r + s − 4 1

# stands for “the number of”.

Hence, its first Zagreb index is as follows:

M1(T v1
r,s) = 12 · 3 + 22 · 1 + 32 · (r + s − 5) + (r + s − 4)2 · 1 = r2 + s2 + 2rs + r + s − 22

Moreover, the vertex partition for T v2
r,s is provided in Table 7:
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Table 7. The vertex partition of T v2
r,s

du # u

1 1

2 2

3 r + s − 4

r + s − 3 1

# stands for “the number of”.

Thus,

M1(T v2
r,s) = 12 · 1 + 22 · 2 + 32 · (r + s − 4) + (r + s − 3)2 · 1 = r2 + s2 + 2rs + 3r + 3s − 18

Further, the vertex partition for T v3
r,s is provided in Table 8:

Table 8. The vertex partition of T v3
r,s

du # u

1 2

2 1

3 r + s − 5

4 1

r + s − 3 1

# stands for “the number of”.

Thereby,

M1(T v3
r,s) = 12 · 2 + 22 · 1 + 32 · (r + s − 5) + 42 · 1 + (r + s − 3)2 · 1 = r2 + s2 + 2rs + 3r + 3s − 14

Besides, the vertex partition for T
vr+1
r,s is provided in Table 9:

Table 9. The vertex partition of T
vr+1
r,s

du # u

1 1

2 1

3 r + s − 3

r + s − 2 1

# stands for “the number of”.

Therefore,

M1(T vr+1
r,s ) = 12 · 1 + 22 · 1 + 32 · (r + s − 3) + (r + s − 2)2 · 1 = r2 + s2 + 2rs + 5r + 5s − 18

In addition, the vertex partition for T
vr+2
r,s is provided in Table 10:

Table 10. The vertex partition of T
vr+2
r,s

du # u

1 1

2 2

3 r + s − 5

4 1

r + s − 2 1

# stands for “the number of”.



Journal of New Theory 48 (2024) 48-60 / A Study on Zagreb Indices of Vertex-Switching for Special Graph Classes 55

Hence,

M1(T vr+2
r,s ) = 12 · 1 + 22 · 2 + 32 · (r + s − 5) + (r + s − 2)2 · 1 + 42 · 1 = r2 + s2 + 2rs + 5r + 5s − 20

Moreover, the vertex partition for T
vr+s−1
r,s is provided in Table 11:

Table 11. The vertex partition of T
vr+s−1
r,s

du # u

2 1

3 r + s − 3

4 1

r + s − 2 1

# stands for “the number of”.

Thus,
M1(T vr+s−1

r,s ) = r2 + s2 + 2rs + 5r + 5s − 3

The vertex partition for T
vr+s
r,s is provided in Table 12:

Table 12. The vertex partition of T
vr+s
r,s

du # u

1 1

2 1

3 r + s − 3

r + s − 2 1

# stands for “the number of”.

Therefore,

M1(T vr+s
r,s ) = 12 · 1 + 22 · 1 + 32 · (r + s − 3) + (r + s − 2)2 · 1 = r2 + s2 + 2rs + 5r + 5s − 18

3. Second Zagreb index of switched graphs of some graph classes

This section calculates the second Zagreb index of a switched star, tadpole, and complete bipartite
graphs. Due to the difference in definitions of the first and second Zagreb indices, we use another
method. This method uses edge partition, which depends on determining all the pairs of vertex degrees
where these vertex pairs form an edge in the graph.

Theorem 3.1. If v ∈ A, then

M2(Kv
2,s) = M2(S2+s) = (s + 1)2

and if v ∈ B, then
M2(Kv

2,s) = M2(K1
2,s−1) = 9(s − 1)2

Proof. If v ∈ A, the edge partition of Kv
2,s is provided in Table 13:

Table 13. The vertex partition of Kv
2,s for v ∈ A

(du,dv) # uv

(s + 1, 1) s + 1

# stands for “the number of”.
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Then, the second Zagreb index of Kv
2,s is as follows:

M2(Kv
2,s) = M2(S2+s) = (s + 1)2

If v ∈ B, then the edge partition of Kv
2,s is provided in Table 14:

Table 14. The vertex partition of Kv
2,s for v ∈ B

(du,dv) # uv

(3,s − 1) 3(s − 1)

# stands for “the number of”.

Then, the second Zagreb index of Kv
2,s is as follows:

M2(Kv
2,s) = M2(K1

2,s−1) = 9(s − 1)2

Theorem 3.2. Let Kr,s be a complete bipartite graph with 3 ≤ r ≤ s. If v ∈ A, then

M2(Kv
r,s) = M2(K1

s,r−1) = (s + 1)2(r − 1)2

and if v ∈ B, then
M2(Kv

r,s) = M2(K1
r,s−1) = (s − 1)2(r + 1)2

Proof. If v ∈ A, then the edge partition of Kv
r,s is provided in Table 15:

Table 15. The vertex partition of Kv
r,s for v ∈ A

(du,dv) # uv

(s + 1,r − 1) (s + 1)(r − 1)

# stands for “the number of”.

Therefore,
M2(Kv

r,s) = M2(K1
s,r−1) = (s + 1)2(r − 1)2

If v ∈ B, then the edge partition of Kv
r,s is provided in Table 16:

Table 16. The vertex partition of Kv
r,s for v ∈ B

(du,dv) # uv

(r + 1,s − 1) (r + 1)(s − 1)

# stands for “the number of”.

Hence,
M2(Kv

r,s) = M2(K1
s,r−1) = (s − 1)2(r + 1)2

Theorem 3.3. Let Sn be a star graph, v1 be the central vertex, and all the remaining vertices be
v2, v3, · · · , vn. Then,

M2(Sv1
n ) = 0

and
M2(Svi

n ) = M2(K1,1,n−2 − {v1vi}) = 4(n − 2)2

for i ∈ {2, 3, · · · , n}, where K1,1,n−2 is the tripartite graph.
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Proof. Because M2(Sv1
n ) = Nn, it is obvious that

M2(Sv1
n ) = 0

For i ∈ {2, 3, · · · , n}, the edge partition for Svi
n is provided in Table 17:

Table 17. The edge partition of Svi
n for i ∈ {2, 3, · · · , n}

(du,dv) # uv

(2,n − 2) 2(n − 2)

# stands for “the number of”.

Hence,
M2(Svi

n ) = M2(K1,1,n−2 − {v1vi}) = 4(n − 2)2

Theorem 3.4. Let Tr,s be a tadpole graph, v1 be the central vertex, and all the remaining vertices
be v2, v3, · · · , vn. Then,

M2(T v1
r,s) = 3r2 + 3s2 + 6rs − 16r − 16s + 4

M2(T v2
r,s) = 3r2 + 3s2 + 6rs − 10r − 10s − 3

M2(T v3
r,s) = 3r2 + 3s2 + 6rs − 9r − 9s + 1

M2(T vr+1
r,s ) = 3r2 + 3s2 + 6rs − 4r − 4s − 13

M2(T vr+2
r,s ) = 3r2 + 3s2 + 6rs − 4r − 4s − 8

M2(T vr+s−1
r,s ) = 3r2 + 3s2 + 6rs − 3r − 3s

and
M2(T vr+s

r,s ) = 3r2 + 3s2 + 6rs − 4r − 4s − 13

Proof. The edge partition for T v1
r,s is provided in Table 18:

Table 18. The edge partition of T v1
r,s

(du,dv) # uv

(1,3) 3
(2,3) 1

(2,r + s − 4) 1
(3,r + s − 4) r + s − 5

(3,3) r + s − 7
# stands for “the number of”.

By the definition of the second Zagreb index,

M2(T v1
r,s) = 3r2 + 3s2 + 6rs − 16r − 16s + 4

The edge partition for T v2
r,s is provided in Table 19:

Table 19. The edge partition of T v2
r,s

(du,dv) # uv

(1,3) 1
(2,3) 3

(2,r + s − 3) 1
(3,r + s − 3) r + s − 4

(3,3) r + s − 6
# stands for “the number of”.
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By the definition of second Zagreb index,

M2(T v2
r,s) = 3r2 + 3s2 + 6rs − 10r − 10s − 3

The edge partition for T v3
r,s is provided in Table 20:

Table 20. The edge partition of T v3
r,s

(du,dv) # uv

(1,3) 1

(1,4) 1

(2,3) 1

(3,r + s − 3) r + s − 5

(2,r + s − 3) 1

(4,r + s − 3) 1

(3,3) r + s − 7

# stands for “the number of”.

Hence,
M2(T v3

r,s) = 3r2 + 3s2 + 6rs − 9r − 9s + 1

The edge partition for T
vr+1
r,s is provided in Table 21:

Table 21. The edge partition of T
vr+1
r,s

(du,dv) # uv

(1,3) 1

(2,3) 1

(3,r + s − 2) r + s − 3

(2,r + s − 2) 1

(3,3) r + s − 4

# stands for “the number of”.

Therefore,
M2(T vr+1

r,s ) = 3r2 + 3s2 + 6rs − 4r − 4s − 13

The edge partition for T
vr+2
r,s is provided in Table 22:

Table 22. The edge partition of T
vr+2
r,s

(du,dv) # uv

(1,3) 1

(2,3) 1

(2,4) 1

(3,3) r + s − 7

(3,r + s − 2) r + s − 5

(4,r + s − 2) 1

(2,r + s − 2) 2

(3,4) 2

# stands for “the number of”.

Thus,
M2(T vr+2

r,s ) = 3r2 + 3s2 + 6rs − 4r − 4s − 8
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The edge partition for T
vr+s−1
r,s is provided in Table 23:

Table 23. The edge partition of T
vr+s−1
r,s

(du,dv) # uv

(2,3) 1

(3,3) r + s − 6

(3,r + s − 2) r + s − 4

(2,r + s − 2) 1

(3,4) 3

(4,r + s − 2) 1

# stands for “the number of”.

Thereby,
M2(T vr+s−1

r,s ) = 3r2 + 3s2 + 6rs − 3r − 3s

4. Conclusion

Several vertex and edge operations are frequently used in graph theory to obtain several properties of
given graph types. A recently introduced operation is vertex switching. Several preliminary results
have just been published on this operation. In this paper, we considered two important degree-based
topological indices, the first and second Zagreb indices, for the vertex-switched graphs. The other
topological indices can be calculated for the vertex-switched graphs of different type graph classes.
As there are over 3000 such indices, a large research area is related to this problem. Moreover, graph
operations, derived graphs, and other graph parameters can be studied for the vertex-switched graphs.
Such studies might have chemical applications, and we can obtain physicochemical properties of many
molecular structures, including nanocones, nanomaterials, dendrimers, and chains. This will increase
the importance of the studied areas and may cause the occurrence of new study areas. As there
are many diverse definitions of Zagreb-type graph indices, one can also study the exponential Zagreb
indices defined in [19]. Similarly, an analysis of Zagreb indices over zero divisor graphs can be given
in detail using the results in [17].
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Abstract − Computation of the matrix exponential functions is important in solving
various scientific and engineering problems due to their active role in solving differential
equations. Accurate and effective computation of these functions determines the success
of mathematical analysis and practical applications. Therefore, studying and understanding
matrix exponential functions is the key to developing mathematical and engineering sciences.
In the present paper, we aim to compute the values of the 1st and 2nd type Golden matrix
exponential functions for some special matrices. We present the similarities and differences
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1. Introduction

Matrix functions play an important role in both theoretical and applied sciences. For example, they
are essential in quantum mechanics, control theory, physics, mathematics, and engineering to solve
optimization problems, compute eigenvalues, solve differential equations, and perform transformations
that simplify complex systems. Among various matrix functions, matrix exponential and trigonomet-
ric functions are particularly noteworthy due to their wide applications and the rich mathematical
properties they exhibit. The matrix exponential function is very important in solving linear differ-
ential equations and appears prominently in the study of linear dynamical systems. The study and
application of these matrix functions are topics of intense research due to their theoretical importance
and practical benefits. Researchers constantly explore new methods to compute these functions more
efficiently and understand their behavior in different contexts. This ongoing research not only advances
our mathematical knowledge but also leads to innovations in various fields of science and engineering.
For some of the papers, which include the matrix exponential, trigonometric, and hyperbolic functions,
see [1–13].

The matrix exponential function is defined by the Taylor series expansions as

eA =
∞∑

n=0

An

n!
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where A is the rth order matrix [9]. The matrix trigonometric and hyperbolic functions are defined
by the rules

cos (A) = eiA + e−iA

2 and sin (A) = eiA − e−iA

2i

and
cosh (A) = eA + e−A

2 and sinh (A) = eA − e−A

2
where A is the rth order matrix [8, 14].

Sastre et al. [5] provided an algorithm for computing matrix cosine function with the help of the
Taylor series and cosine double angle formula. Some methods were presented by Defez and Jodar [15]
to compute matrix exponential, sine, and cosine functions based on Hermite matrix polynomials.
Besides, Defez et al. [16] introduced a method to compute hyperbolic matrix functions based on
Hermite matrix polynomials.

Moreover, number sequences are indispensable tools in mathematical and scientific research. Inves-
tigating these sequences provides an in-depth look at scientific research and enables discoveries. For
this reason, number sequences are considered the cornerstones of mathematical thinking and scientific
progress. The most popular number sequence is undoubtedly the Fibonacci number sequence. The
Fibonacci number sequence is defined by the recurrence relation, for n ≥ 1,

Fn+1 = Fn + Fn−1

with initial conditions F0 = 0 and F1 = 1 [17]. The Binet formula for the Fibonacci number sequence
is

Fn = αn − βn

α − β

where α = 1+
√

5
2 and β = 1−

√
5

2 which are called the Golden and Silver ratios, respectively [17].
This number sequence finds extensive applications not only in theoretical mathematics but also across
diverse scientific disciplines. In computer science, algorithms based on Fibonacci sequences are used
for data structures and sorting problems. In economics, Fibonacci retracement is a popular tool in
technical analysis to predict market movements. Additionally, the Fibonacci sequence appears in the
study of population growth models. The pervasive presence of Fibonacci numbers in theoretical and
applied sciences underscores their importance as a fundamental mathematical concept.

The Golden Fibonacci calculus is introduced by Pashaev and Nalci [18], which is an application of the
Fibonacci number sequence. The authors defined the Golden derivative operator, Golden binomial
expansion, Golden exponential functions, etc. We present some of the principle definitions of the
Golden Fibonacci calculus.

The Fibonacci factorial Fn! is defined by

Fn! =
n∏

i=1
Fi = FnFn−1Fn−2 · · · F2F1

where Fn is the nth Fibonacci number [18]. The Golden binomial is defined as

(x + y)n
F =

(
x + αn−1y

) (
x + αn−2βy

)
· · ·
(
x + αβn−2y

) (
x + βn−1y

)
where α and β are the Golden and Silver ratios, respectively [18]. The Golden binomial also holds the
equality

(x + y)n
F =

n∑
k=0

(
n

k

)
F

(−1)
k(k−1)

2 xn−kyk
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where
(

n

k

)
F

denotes the Fibonacci binomial coefficients which are defined by the rule

(
n

k

)
F

= Fn!
F(n−k)!Fk!

with
(

n

0

)
F

= 1 [19]. These coefficients are called as Fibonomial coefficients [19]. The 1st and 2nd

type Golden exponential functions are defined as [18]

ex
F =

∞∑
n=0

(x)n
F

Fn! and Ex
F =

∞∑
n=0

(−1)
n(n−1)

2
(x)n

F

Fn!

Briefly,

ex
F =

∞∑
n=0

xn

Fn! and Ex
F =

∞∑
n=0

(−1)
n(n−1)

2
xn

Fn!

Özvatan [19] obtained an estimation for the 1st type Golden exponential base number as

3.7041 < eF < 3.7044

Using a similar method, an estimation for the 2nd type Golden exponential base number can be
obtained as follows:

0.6958 < EF < 0.6961

The Golden Taylor expansions

cosF (x) =
∞∑

n=0
(−1)n x2n

F2n! and sinF (x) =
∞∑

n=0
(−1)n x2n+1

F2n+1!

and
coshF (x) =

∞∑
n=0

x2n

F2n! and sinhF (x) =
∞∑

n=0

x2n+1

F2n+1!

indicate some Golden trigonometric and Golden hyperbolic functions [18]. These functions also have
the following representations [18]:

sinF (x) = eix
F − e−ix

F

2i
= Ex

F − E−x
F

2

cosF (x) = eix
F + e−ix

F

2 = Ex
F + E−x

F

2

sinhF (x) = ex
F − e−x

F

2 = Eix
F − E−ix

F

2i

and
coshF (x) = ex

F + e−x
F

2 = Eix
F + E−ix

F

2

By starting from the divisibility problem for the Fibonacci numbers the Fibonacci divisors, and the
corresponding hierarchy of Golden derivatives in powers of the Golden ratio are introduced by Pashaev
[20]. The author also developed the corresponding quantum calculus. The concepts of the Golden
Fibonacci calculus are extended to matrices in [21]. Here, we present some definitions of the Golden
Fibonacci matrix calculus.

For the rth order commutable matrices A and B, the Golden binomial is defined as

(A + B)n
F =

(
A + αn−1B

) (
A + αn−2βB

)
. . .
(
A + αβn−2B

) (
A + βn−1B

)
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where α and β represent the Golden and Silver ratios, respectively [21]. The Golden binomial of the
rth order commutable matrices A and B also holds the equality [21]:

(A + B)n
F =

n∑
k=0

(
n

k

)
F

(−1)
k(k−1)

2 An−kBk

The 1st and 2nd type Golden matrix exponential functions have the following Golden Taylor series
expansions:

eA
F =

∞∑
n=0

(A)n
F

Fn! and EA
F =

∞∑
n=0

(−1)
n(n−1)

2
(A)n

F

Fn!

where A is the rth order matrix [21]. Briefly, we use the following notations throughout this paper:

eA
F =

∞∑
n=0

An

Fn! and EA
F =

∞∑
n=0

(−1)
n(n−1)

2
An

Fn!

There are the following relations for the Golden matrix exponential functions

eA
−F = EA

F and eA
F eB

−F = eA+B
F

where A and B are rth order commutable matrices [21]. Some Golden matrix trigonometric and
hyperbolic functions are defined with the help of the Golden matrix exponential functions as follows:

sinF (A) = eiA
F − e−iA

F

2i
= EA

F − E−A
F

2

cosF (A) = eiA
F + e−iA

F

2 = EA
F + E−A

F

2

sinhF (A) = eA
F − e−A

F

2 = EiA
F − E−iA

F

2i

and
coshF (A) = eA

F + e−A
F

2 = EiA
F + E−iA

F

2
where A is the rth order matrix [21].

In the present paper, we conduct a detailed examination of the 1st and 2nd type Golden matrix
exponential functions. A thorough understanding of these functions may offer alternative approaches
to solving differential equations, which play a significant role in various scientific fields. We explore
what these functions represent for certain special matrices. In this process, we compare the findings
of [6] and [13] regarding the matrix exponential function when similar matrices are used, with the
findings we obtained for the 1st and 2nd type Golden matrix exponential functions. We note that
to avoid similarity in proving our results, we provide proofs only for the 1st type Golden matrix
exponential function, since the 2nd type can be derived in a similar manner.

2. Main Results

The matrix exponential function holds the equality e0r = Ir, for the rth order zero matrix 0r, where
Ir is the rth order identity matrix. We provide similar equalities for the Golden matrix exponential
functions in the first proposition.

Proposition 2.1. For the Golden matrix exponential functions of the rth order zero matrix 0r,

e0r
F = Ir and E0r

F = Ir

where Ir is the rth order identity matrix.



Journal of New Theory 48 (2024) 61-77 / Computation of the Golden Matrix Exponential Functions of Special Matrices 65

Proof. Considering the Golden Taylor series expansion of eA
F , for A = 0r,

e0r
F = Ir

F0! +
∞∑

n=1

0n
r

Fn! = Ir

The matrix exponential function has the property e(AT ) = (eA)T , where AT is the transpose matrix of
the rth order matrix A. The Golden matrix exponential functions have the following property similar
to the matrix exponential function.

Proposition 2.2. Let AT be the transpose matrix of the rth order matrix A. Then, for the Golden
matrix exponential functions,

e
(AT )
F =

(
eA

F

)T
and E

(AT )
F =

(
EA

F

)T

Proof. Using the Golden Taylor series expansion of the 1st type Golden matrix exponential function
and the well known property

(
AT
)s

= (As)T of the matrix A, for s ∈ {1, 2, 3, . . .},

e
(AT )
F =

∞∑
n=0

(
AT
)n

Fn!

=
∞∑

n=0

(An)T

Fn!

=
( ∞∑

n=0

An

Fn!

)T

=
(
eA

F

)T

For the matrix exponential function, emIr = (em)Ir, where Ir is the rth order identity matrix and
m ∈ Z. The Golden matrix exponential functions have similar properties to the matrix exponential
function, as follows:

Proposition 2.3. The Golden matrix exponential functions hold the following equalities

emIr
F = em

F Ir and EmIr
F = Em

F Ir

for the rth order identity matrix Ir and m ∈ Z.

Proof. Considering the Golden Taylor series expansion of the 1st type Golden matrix exponential
function and the property Is

r = Ir of identity matrix Ir, for s ∈ {1, 2, 3, . . .},

emIr
F =

∞∑
n=0

(mIr)n

Fn!

=
∞∑

n=0

mn

Fn!Ir

= em
F Ir

The matrix exponential function satisfies the equation eAeB = eA+B, for the rth order commutable
matrices A and B. However, this property is not provided for the Golden matrix exponential func-
tions. We investigate the Golden matrix exponential functions in terms of this property in the next
proposition.
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Proposition 2.4. For the rth order commutable matrices A and B,

eA
F eB

F ̸= eA+B
F and EA

F EB
F ̸= EA+B

F

Proof. Consider the matrix A + B =
[
0 0
0 0

]
. Then,

eA+B
F = e0r

F = Ir

where 0r is the rth order zero matrix. On the other hand, for the matrices A =
[
1 0
0 2

]
and B =[

−1 0
0 −2

]
, eA

F =
[
e1

F 0
0 e2

F

]
and eB

F =
[
e−1

F 0
0 e−2

F

]
. Then,

eA
F eB

F =
[
e1

F 0
0 e2

F

] [
e−1

F 0
0 e−2

F

]

Since 3.7041 < eF < 3.7044, it is clear that ea
F e−a

F ̸= 1 for an arbitrary number a. Thus, eA
F eB

F ̸= Ir.
Therefore,

eA
F eB

F ̸= eA+B
F

The inverse of the matrix exponential eA is (eA)−1 = e−A, for the rth order matrix A. However, this
property is not held by the Golden matrix exponential functions. We provide this property by the
next proposition.

Proposition 2.5. Let the matrices
(
eA

F

)−1
and

(
EA

F

)−1
be the inverses of eA

F and EA
F , respectively,

for the rth order matrix A. Then,(
eA

F

)−1
̸= e−A

F and
(
EA

F

)−1
̸= E−A

F

Proof. If the inverse of eA
F is equal to e−A

F , the equality eA
F e−A

F = Ir must be held, where Ir is the rth
order identity matrix. It is clear from the example in the proof of Proposition 2.4 that this equality
is unsatisfied.

The matrix exponential function has the property (eA)m = emA, where A is the rth order matrix and
m ∈ Z. However, in the following proposition, we state that Golden matrix exponential functions do
not have similar properties.

Proposition 2.6. The Golden matrix exponential functions satisfy the following inequalities(
eA

F

)m
̸= emA

F and
(
EA

F

)m
̸= EmA

F

for the rth order matrix A and m ∈ Z.

The proof is clear from Proposition 2.4.

Let A and B be rth order commutable matrices. Then, the matrix exponential function has the
equality eAeB = eBeA. We investigate the same property for the Golden matrix exponential functions
in the following proposition.

Proposition 2.7. For the Golden matrix exponential functions,

eA
F eB

F = eB
F eA

F and EA
F EB

F = EB
F EA

F

where A and B are rth order commutable matrices.
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Proof. For the commutable rth order matrices A and B,

eA
F eB

F =
∞∑

n=0

An

Fn!

∞∑
n=0

Bn

Fn!

=
∞∑

n=0

Bn

Fn!

∞∑
n=0

An

Fn!

= eB
F eA

F

The matrix exponential function has the property emIr = cosh (m) Ir + sinh (m) Ir, for the rth order
anti-identity matrix Ir, where Ir is the rth order identity matrix. We investigate the Golden matrix
exponential functions in terms of this property in the following proposition.

Proposition 2.8. Let Ir = adiag [1, 1, · · · , 1] be the rth order anti-identity matrix. Then,

emIr
F = coshF (m) Ir + sinhF (m) Ir and EmIr

F = cosF (m) Ir + sinF (m) Ir

where Ir is the rth order identity matrix.

Proof. For the rth order anti-identity matrix Ir, Ir
2s = Ir and Ir

2s−1 = Ir, for s ∈ {1, 2, 3, · · · },
where Ir is rth order identity matrix. If we use these equalities in the Golden Taylor series expansion
of the 1st type Golden matrix exponential function, then

emI
F =

∞∑
n=0

(
mIr

)n

Fn!

= Ir

F0! + mIr

F1! + (mIr)2

F2! +

(
mIr

)3

F3! + (mIr)4

F4! + · · ·

=
(

1
F0! + m2

F2! + m4

F4! + · · ·
)

Ir +
(

m

F1! + m3

F3! + m5

F5! + · · ·
)

Ir

= coshF (m) Ir + sinhF (m) Ir

The matrix exponential function provide the equality emD = diag
[
emd1 , emd2 , emd3 , · · · , emdr

]
, for the

rth order diagonal matrix D. We present the following proposition to indicate that the Golden matrix
exponential functions have similar properties.

Proposition 2.9. Let D = diag [d1, d2, d3, · · · , dr] be the rth order diagonal matrix. Then,

emD
F = diag

[
emd1

F , emd2
F , emd3

F , · · · , emdr
F

]
and

EmD
F = diag

[
Emd1

F , Emd2
F , Emd3

F , · · · , Emdr
F

]
Proof. Considering the Golden Taylor series expansion of the 1st type Golden matrix exponen-

tial function emD
F =

∞∑
n=0

(mD)n

Fn! and the sth power matrices Ds = diag [ds
1, ds

2, ds
3, · · · , ds

r], for s ∈

{1, 2, 3, . . .}, the proof is clear.

The matrix exponential function holds emD = coshF (mξ) Ir + 1
ξ sinh (mξ) D, for the rth order anti-

diagonal matrix D = adiag [d′
1, d′

2, d′
3, · · · , d′

r] and identity matrix Ir, where d′
id

′
r−i+1 = ξ2 and

i ∈ {1, 2, . . . , r}. The Golden matrix exponential functions have similar properties to the matrix
exponential functions, as follows:
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Proposition 2.10. Let D be the rth order anti-diagonal matrix mentioned above. Then, the Golden
matrix exponential functions hold the following equalities:

emD
F = coshF (mξ) Ir + 1

ξ
sinhF (mξ) D and EmD

F = cosF (mξ) Ir + 1
ξ

sinF (mξ) D

where d′
id

′
r−i+1 = ξ2 and Ir is the rth order identity matrix.

Proof. Let D = adiag [d′
1, d′

2, d′
3, · · · , d′

r] be the rth order anti-diagonal matrix. Then,

D
2s = adiag

[(
d′

1d′
r

)s
,
(
d′

2d′
r−1
)s

,
(
d′

3d′
r−2
)s

, · · · ,
(
d′

rd′
1
)s] = ξ2sIr

and
D

2s−1 = ξ2s−1D

for s ∈ {1, 2, 3, . . .}, where d′
id

′
r−i+1 = ξ2, i ∈ {1, 2, · · · , r}, and Ir is the rth order identity matrix.

If we substitute these equalities in the Golden Taylor series expansion of 1st type Golden matrix
exponential function, then

emD
F =

∞∑
n=0

(
mD

)n

Fn!

= Ir

F0! + mD

F1! +

(
mD

)2

F2! +

(
mD

)3

F3! +

(
mD

)4

F4! + · · ·

=

 Ir

F0! +

(
mD

)2

F2! +

(
mD

)4

F4! + · · ·

+

mD

F1! +

(
mD

)3

F3! +

(
mD

)5

F5! + · · ·



=
(

1
F0! + (mξ)2

F2! + (mξ)4

F4! + · · ·
)

Ir +
(

m

F1! + m3ξ2

F3! + m5ξ4

F5! + · · ·
)

D

= coshF (mξ) Ir + 1
ξ

sinhF (mξ) D

The matrix exponential function holds the equality emA = diag [emIr, e−mIr], for the 2rth order

positive negative identity matrix A =
[
Ir

−Ir

]
, where Ir is the rth order identity matrix. The Golden

matrix exponential functions have properties similar to those of the matrix exponential function, as
indicated in the next proposition.

Proposition 2.11. Let A be the 2rth order positive negative identity matrix mentioned above. Then,

emA
F = diag

[
em

F Ir, e−m
F Ir

]
and EmA

F = diag
[
Em

F Ir, E−m
F Ir

]
where Ir is the rth order identity matrix.

Proof. For the 2rth order positive negative identity matrix A =
[
Ir

−Ir

]
,

A2s = I2r and A2s+1 = A

where I2r is the 2rth order identity matrix and s ∈ {1, 2, 3, . . .}. Then,
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emA
F =

∞∑
n=0

(mA)n

Fn!

= I2r

F0! + mA

F1! + (mA)2

F2! + (mA)3

F3! + (mA)4

F4! + · · ·

=
(

I2r

F0! + (mA)2

F2! + (mA)4

F4! + · · ·
)

+
(

mA

F1! + (mA)3

F3! + (mA)5

F5! + · · ·
)

=
(

1
F0! + m2

F2! + m4

F4! + · · ·
)

I2r +
(

m

F1! + m3

F3! + m5

F5! + · · ·
)

A

= coshF (m) I2r + sinhF (m) A

= diag
[
em

F Ir, e−m
F Ir

]

The matrix exponential function satisfies emA = cos (m) I2r + sin (m) A, for the 2rth order positive

negative anti-identity matrix A =
[

Ir

−Ir

]
, where Ir is the rth order identity matrix. The following

proposition gives the corresponding equalities for the Golden matrix exponential functions.

Proposition 2.12. Let A be the 2rth order positive negative anti-identity matrix mentioned above.
Then,

emA
F = cosF (m) I2r + sinF (m) A and EmA

F = coshF (m) I2r + sinhF (m) A

where I2r is the 2rth order identity matrix.

Proof. For the 2rth order positive negative anti-identity matrix A, A2 = −I2r, A3 = −A, A4 = I2r,
A5 = A, A6 = −I2r, A7 = −A, A8 = I2r, A9 = A, ..., where I2r is the 2rth order identity matrix.
Considering these equalities and the Golden Taylor series expansion of the Golden matrix trigonometric
function,

emA
F = I2r

F0! + mA

F1! + (mA)2

F2! + (mA)3

F3! + (mA)4

F4! + · · ·

=
(

I2r

F0! + (mA)2

F2! + (mA)4

F4! + · · ·
)

+
(

mA

F1! + (mA)3

F3! + (mA)5

F5! + · · ·
)

=
(

1
F0! − m2

F2! + m4

F4! − · · ·
)

I2r +
(

m

F1! − m3

F3! + m5

F5! − · · ·
)

A

= cosF (m) I2r + sinF (m) A

For the rth order positive negative alternating identity matrix A = diag
[
1, −1, 1, −1, · · · , (−1)r−1

]
,

the matrix exponential function is equal to emA = diag
[
em, e−m, em, e−m, · · · , e(−1)r−1m

]
. In the

following proposition, we investigate the Golden matrix exponential functions for this kind of matrix.

Proposition 2.13. For the rth order positive negative alternating identity matrix A mentioned above,
the Golden matrix exponential are

emA
F = diag

[
em

F , e−m
F , em

F , e−m
F , · · · , e

(−1)r−1m
F

]
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and
EmA

F = diag
[
Em

F , E−m
F , Em

F , E−m
F , · · · , E

(−1)r−1m
F

]
Proof. Let A be the rth order positive negative alternating identity matrix. Then, A2s = I2r and
A2s+1 = A, where I2r is the 2rth order identity matrix and s ∈ {1, 2, 3, . . .}. Thus the proof is similar
to the proof of Proposition 2.11.

The matrix exponential function holds emA = cos (m) Ir + sin (m) A, for the rth order positive nega-
tive alternating anti-identity matrix A = adiag

[
1, −1, 1, −1, · · · , (−1)r−1

]
, where Ir is the rth order

identity matrix. The Golden matrix exponential functions have similar properties to the matrix ex-
ponential function, as follows:

Proposition 2.14. Let A be the rth order positive negative alternating anti-identity matrix men-
tioned above. Then,

emA
F = cosF (m) Ir + sinF (m) A and EmA

F = coshF (m) Ir + sinhF (m) A

where Ir is the rth order identity matrix.

Proof. For the rth order positive negative alternating anti-identity matrix A, A2 = −Ir, A3 = −A,
A4 = Ir, A5 = A, A6 = −Ir, A7 = −A, A8 = Ir, A9 = A, ..., where Ir is the rth order identity matrix.
Using these equalities and the Golden Taylor series expansions of the Golden matrix trigonometric
functions,

emA
F = Ir

F0! + mA

F1! + (mA)2

F2! + (mA)3

F3! + (mA)4

F4! + · · ·

=
(

Ir

F0! + (mA)2

F2! + (mA)4

F4! + · · ·
)

+
(

mA

F1! + (mA)3

F3! + (mA)5

F5! + · · ·
)

=
(

1
F0! − m2

F2! + m4

F4! − · · ·
)

Ir +
(

m

F1! − m3

F3! + m5

F5! − · · ·
)

A

= cosF (m) Ir + sinF (m) A

The matrix exponential function is equal to emA = cosh (m) Ir + sinh (m) A, for the rth order square
identity matrix A with A2 = Ir, where Ir is the rth order identity matrix. We provide the following
proposition to give similar properties of the Golden matrix exponential functions.

Proposition 2.15. For the rth order square identity matrix A mentioned above,

emA
F = coshF (m) Ir + sinhF (m) A and EmA

F = cosF (m) Ir + sinF (m) A

where Ir is the rth order identity matrix.

Proof. The matrix A with A2 = Ir has the equalities

A2s = Ir and A2s−1 = A

for s ∈ {1, 2, 3, . . .}, where Ir is the rth order identity matrix. Considering these equalities and the
Golden Taylor series expansion of the Golden matrix hyperbolic function,
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emA
F = Ir

F0! + mA

F1! + (mA)2

F2! + (mA)3

F3! + (mA)4

F4! + · · ·

=
(

Ir

F0! + (mA)2

F2! + (mA)4

F4! + · · ·
)

+
(

mA

F1! + (mA)3

F3! + (mA)5

F5! + · · ·
)

=
(

1
F0! + m2

F2! + m4

F4! + · · ·
)

Ir +
(

m

F1! + m3

F3! + m5

F5! + · · ·
)

A

= coshF (m) Ir + sinhF (m) A

The matrix exponential function has the equality emA = cos (m) Ir + sin (m) A, where A is the rth
order square anti-identity matrix and Ir is the rth order identity matrix. We investigate the Golden
matrix exponential functions in terms of this property in the following proposition.

Proposition 2.16. Let A be the rth order square anti-identity matrix with A2 = −Ir. Then,

emA
F = cosF (m) Ir + sinF (m) A and EmA

F = coshF (m) Ir + sinhF (m) A

Proof. For the rth order square anti-identity matrix A with A2 = −Ir, A3 = −A, A4 = Ir, A5 = A,
A6 = −Ir, A7 = −A, A8 = Ir, A9 = A, ..., where Ir is the rth order identity matrix. Thus, the proof
is similar to the proof of Proposition 2.14.

The matrix exponential function has the property emA = Ir +(em − 1) A, for the rth order idempotent
matrix A, where Ir is the rth order identity matrix. The Golden matrix exponential functions have
similar properties to the matrix exponential function, as follows:

Proposition 2.17. Let A be the rth order idempotent matrix with As = A, for s ∈ {1, 2, 3, . . .}.
Then,

emA
F = Ir + (em

F − 1) A and EmA
F = Ir + (Em

F − 1) A

where Ir is the rth order identity matrix.

Proof. By the Golden Taylor series expansion of the 1st type Golden matrix exponential function,

emA
F = Ir

F0! + mA

F1! + (mA)2

F2! + (mA)3

F3! + (mA)4

F4! + · · ·

= Ir

F0! +
(

m

F1! + m2

F2! + m3

F3! + m4

F4! + · · ·
)

A

= Ir + (em
F − 1) A

The matrix exponential function has the equality emA = Ir + (1 − e−m) A, for the rth order anti-
idempotent matrix A. In the following proposition, we research the Golden matrix exponential func-
tions for this kind of matrix.

Proposition 2.18. For the rth order anti-idempotent matrix A with As = (−1)s−1 A, for
s ∈ {1, 2, 3, . . .}, the Golden matrix exponential functions are

emA
F = Ir +

(
1 − e−m

F

)
A and EmA

F = Ir +
(
1 + E−m

F

)
A

where Ir is the rth order identity matrix.
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Proof. By the Golden Taylor series expansions of the Golden hyperbolic functions,

emA
F = Ir

F0! + mA

F1! + (mA)2

F2! + (mA)3

F3! + (mA)4

F4! + · · ·

= Ir

F0! +
(

−m2

F2! − m4

F4! − m6

F6! − · · ·
)

A +
(

m

F1! + m3

F3! + m5

F5! + · · ·
)

A

= Ir + (1 − coshF (m) + sinhF (m)) A

= Ir +
(
1 − e−m

F

)
A

Let A =
[
Ir Ir

Ir Ir

]
be the 2rth order block identity matrix, where Ir is the rth order identity matrix.

Then, the matrix exponential function has the equality emA = I2r+ 1
2
(
e2m − 1

)
A, where I2r is the 2rth

order identity matrix. The following proposition indicates the Golden matrix exponential functions
have similar equalities to the matrix exponential function for this kind of matrix.

Proposition 2.19. For the 2rth order block identity matrix A mentioned above,

emA
F = I2r + 1

2
(
e2m

F − 1
)

A and EmA
F = I2r + 1

2
(
E2m

F − 1
)

A

where I2r is the 2rth order identity matrix.

Proof. For the 2rth order block identity matrix A, As = 2s−1A, for s ∈ {2, 3, . . .}. Substituting these
equalities in the Golden Taylor series expansion of the 1st type Golden matrix exponential function,

emA
F = I2r

F0! + mA

F1! + (mA)2

F2! + (mA)3

F3! + (mA)4

F4! + · · ·

= I2r

F0! + mA

F1! + (m)2 2A

F2! + (m)3 22A

F3! + (m)4 23A

F4! + · · ·

= I2r

F0! + 1
2

(
2m

F1! + (2m)2

F2! + (2m)3

F3! + (2m)4

F4! + · · ·
)

A

= I2r + 1
2
(
e2m

F − 1
)

A

Let A =
[
−Ir Ir

Ir −Ir

]
, where Ir is the rth order identity matrix. Then, the matrix exponential function

for A is equal to emA = I2r − 1
2
(
e2m − 1

)
A. In the next proposition, we investigate the Golden matrix

exponential functions for this kind of matrix.

Proposition 2.20. Let A be the 2rth order block identity matrix mentioned above. Then,

emA
F = I2r − 1

2
(
e2m

F − 1
)

A and EmA
F = I2r − 1

2
(
E2m

F − 1
)

A

where I2r is the 2rth order identity matrix.

Proof. Using the Golden Taylor series expansion of the 1st type Golden matrix exponential function
and considering As = (−2)s−1 A, for s ∈ {2, 3, . . .},
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emA
F = I2r

F0! + mA

F1! + (mA)2

F2! + (mA)3

F3! + (mA)4

F4! + · · ·

= I2r

F0! + mA

F1! + (m)2 2A

F2! + (m)3 22A

F3! + (m)4 23A

F4! + · · ·

= I2r

F0! + 1
2

(
2m

F1! − (2m)2

F2! + (2m)3

F3! − (2m)4

F4! + · · ·
)

A

= I2r

F0! − 1
2

(
(2m)2

F2! + (2m)4

F4! + (2m)6

F6! + · · ·
)

A + 1
2

(
2m

F1! + (2m)3

F3! + (2m)5

F5! + · · ·
)

A

= I2r − 1
2 (coshF (2m) − 1 + sinhF (2m)) A

= I2r − 1
2
(
e2m

F − 1
)

A

For the 2rth order matrix A =
[

Ir −Ir

−Ir Ir

]
, where Ir is the rth order identity matrix, the matrix

exponential function for A is equal to emA = I2r − 1
2
(
e2m − 1

)
A, where I2r is the 2rth order identity

matrix. The Golden matrix exponential functions behave similarly to matrix exponential function, as
stated in the proposition below.

Proposition 2.21. Let the matrix A be as mentioned above. Then,

emA
F = I2r − 1

2
(
e2m

F − 1
)

A and EmA
F = I2r − 1

2
(
E2m

F − 1
)

A

where I2r is the 2rth order identity matrix.

The proof is similar to the proof of Proposition 2.20, considering As = (2)s−1 A, for s ∈ {2, 3, . . .}.

The matrix exponential function is equal to emA = Ir − 1
r (erm − 1) A, for the rth order unity matrix

A, i.e., all entries of A equal to 1, where Ir is the rth order identity matrix. We investigate the Golden
matrix exponential functions for the unity matrix.

Proposition 2.22. Let A be the rth order unity matrix. Then,

emA
F = Ir − 1

r
(erm

F − 1) A and EmA
F = Ir − 1

r
(Erm

F − 1) A

where Ir is the rth order identity matrix.

Proof. For the unity matrix A, As = rs−1A for s ∈ {2, 3, . . .}. Considering these equalities and the
Golden Taylor series expansion of the 1st type Golden matrix exponential function,

emA
F = Ir

F0! + mA

F1! + (mA)2

F2! + (mA)3

F3! + (mA)4

F4! + · · ·

= Ir

F0! + mA

F1! + (m)2 rA

F2! + (m)3 r2A

F3! + (m)4 r3A

F4! + · · ·

= Ir

F0! + 1
r

(
rm

F1! + (rm)2

F2! + (rm)3

F3! + (rm)4

F4! + · · ·
)

A

= Ir − 1
r

(erm
F − 1) A
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The matrix exponential function is emA =
s−1∑
n=0

(mA)n

n! , for the nilponent matrix A with As = 0, where

s ∈ {2, 3, . . .}. The next proposition includes the values of the Golden matrix exponential functions
for the nilpotent matrix.

Proposition 2.23. For the rth order nilpotent matrix A with As = 0, for s ∈ {2, 3, . . .},

emA
F =

s−1∑
n=0

(mA)n

Fn!

and

EmA
F =

s−1∑
n=0

(−1)
n(n−1)

2
(mA)n

Fn!

Proof. Since As = As+1 = As+2 = · · · = 0r, where 0r is the rth order zero matrix, the result is clear.

Corollary 2.24. A strictly triangular matrix which is a triangular matrix with zero diagonal entries
has similar results to the matrix in Proposition 2.23, because it is also a nilpotent matrix.

The matrix exponential function of the rth order matrix A can be obtained via its similar matrix B,
that is, emA = PemBP −1, where P is a non-singular matrix. We investigate this property for the
Golden matrix exponential functions.

Proposition 2.25. Let the rth order matrices A and B be similar. Then, the Golden matrix expo-
nential functions of A can be calculated by the rules

emA
F = PemB

F P −1 and EmA
F = PEmB

F P −1

where P is a non singular matrix such that A = PBP −1.

Proof. By applying the Golden Taylor series expansion of the 1st type Golden matrix exponential
function,

emA
F = emP BP −1

F

= Ir

F0! + mPBP −1

F1! +
(
mPBP −1)2

F2! +
(
mPBP −1)3

F3! +
(
mPBP −1)4

F4! + · · ·

= Ir + mPBP −1 + m2PB2P −1

F2! + m3PB3P −1

F3! + m4PB4P −1

F4! + · · ·

= P

(
Ir + mB + (mB)2

F2! + (mB)3

F3! + (mB)4

F4! + · · ·
)

P −1

= PemB
F P −1

where Ir is the rth order identity matrix.

For the rth order Jordan matrix A, the matrix exponential function is equal to emA = [cij ]ri,j=1 with

cij =


mk

k! emλ, i = j − k and k ∈ {0, 1, 2, · · · , r − 1}
0, otherwise

Finally, we explore the Golden matrix exponential functions for the Jordan matrix A.
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Proposition 2.26. For the rth order Jordan matrix A = [aij ]ri,j=1 with aij =


λ, i = j

1, i = j − 1
0, otherwise

, the

Golden matrix exponential functions are

emA
F =

[
c∗

ij

]r
i,j=1

with c∗
ij =


mk

Fk!e
mλ
F , i = j − k

0, otherwise

and

EmA
F =

[
c∗∗

ij

]r
i,j=1

with c∗∗
ij =


mk

Fk!E
mλ
F , i = j − k

0, otherwise

where k ∈ {0, 1, 2, . . . , r − 1}.

Proof. The sth power of matrix A is

As =



λs sλs−1 s(s−1)
2! λs−2 s(s−1)(s−2)

3! λs−3 · · · s(s−1)(s−2)...(s−r+1)
(r−1)! λs−r+1

0 λs sλs−1 s(s−1)
2! λs−2 · · ·

...
0 0 λs sλs−1 · · · s(s−1)(s−2)

3! λs−3

...
...

... . . . ...
...

0 0 0 · · · λs sλs−1

0 0 0 · · · 0 λs


and the Golden Taylor series expansion of the 1st type Golden matrix exponential function

emA
F = Ir

F0! + mA

F1! + (mA)2

F2! + (mA)3

F3! + (mA)4

F4! + · · ·

This completes the proof.

3. Conclusion

In the present paper, we have computed the values of the 1st and 2nd type Golden matrix exponential
functions for some special matrices. We have presented a comparative analysis of these values with
the well-known matrix exponential function value for the same special matrices. We believe that
a good understanding of these functions will enable the development of new alternative approaches
to solving differential equations and optimization problems in various sciences and engineering. For
future research, the solution of the linear Golden 1st order autonomous system Dt

F f = Af , where DF

is the Golden time derivative, can be written as Golden matrix exponential f = eF (At) f0, where A

is an rth order matrix. Additionally, by selecting different forms for the matrix A, various dynamical
systems with Golden evolution can be defined.
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the hyper-dual Fibonacci quaternions and hyper-dual Lucas quaternions, are analyzed. In
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1. Introduction

Dual numbers invented in 1873 by Clifford [1] are an extension of real numbers. Hyper-dual numbers
are an extension of dual numbers. Fike and Alonso [2] introduced hyper-dual numbers to demonstrate
the advantages of hyper-dual numbers in second-order numerical differentiation. Dual and hyper-dual
numbers have become a useful tool in mathematics and engineering. For further information about the
applications of dual and hyper-dual numbers, see [3–13]. Quaternions discovered by Hamilton [14] are
a 4-dimensional hyper-complex number system. Cohen and Shoham [9] defined hyper-dual quaternions
by replacing each real number in a quaternion with the associated hyper-dual number.

Integer sequences are an important field of study in mathematics. The Fibonacci sequence is one of
the most well-known examples of special integer sequences. This sequence is widely used in many
scientific fields, including mathematics, physics, engineering, and art. Another well-known sequence
is the Lucas sequence, closely related to the Fibonacci sequence. Many authors have investigated the
Fibonacci and Lucas sequences in [15–17], among others. Another integer sequence studied intensively
by researchers in recent years and closely related to the Fibonacci sequence is the Leonardo sequence.
Some properties of this sequence have been investigated in [18,19]. Several authors have investigated
the properties of hyper-complex numbers with distinct integer sequences from various perspectives.
Some examples of recent studies on quaternions and hyper-dual numbers with the Fibonacci, Lucas,
and Leonardo sequences can be found in [20–25].

This paper aims to define the hyper-dual Leonardo quaternions by considering the concepts of hyper-
dual numbers, quaternions, and Leonardo numbers and to investigate some of their algebraic and
combinatorial properties.
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2. Preliminaries

This section provides some basic notions to provide a background for the next section.

Definition 2.1. [1] Let a and b be arbitrary real numbers. Then, a dual number x has the form

x = a + bε

where ε is the dual unit that satisfies the rules ε2 = 0 and ε ̸= 0.

Definition 2.2. [2] Let x1 and x2 be any dual numbers and ε be the dual unit. Then, a hyper-dual
number z is represented as follows:

z = x1 + x2ε

Furthermore, it is easy to see that any hyper-dual number z can be characterized by

z = a1 + a2ε1 + a3ε2 + a4ε1ε2

where, for all i ∈ {1, 2, 3, 4}, ai is a real number and ε1 and ε2 are the dual units that satisfy the rules

ε1
2 = ε2

2 = (ε1ε2)2 = 0, ε1 ̸= ε2, ε1ε2 = ε2ε1, ε1 ̸= 0, ε2 ̸= 0, and ε1ε2 ̸= 0 (2.1)

Let z1 = a1 + a2ε1 + a3ε2 + a4ε1ε2 and z2 = b1 + b2ε1 + b3ε2 + b4ε1ε2 be any two hyper-dual numbers.
Then, the addition, scalar multiplication (by a scalar λ), and multiplication of two hyper-dual numbers
are defined as follows, respectively:

z1 + z2 = (a1 + b1) + (a2 + b2)ε1 + (a3 + b3)ε2 + (a4 + b4)ε1ε2

λz1 = λa1 + λa2ε1 + λa3ε2 + λa4ε1ε2

and
z1z2 = (a1b1) + (a1b2 + a2b1)ε1 + (a1b3 + a3b1)ε2 + (a1b4 + a2b3 + a3b2 + a4b1)ε1ε2

The set of all the hyper-dual numbers forms a 4-dimensional, with the basis {1, ε1, ε2, ε1ε2}, com-
mutative, and associative algebra over the real numbers. For detailed information about hyper-dual
numbers, see [2].

Definition 2.3. [14] A quaternion q is of the form

q = q1 + q2i + q3j + q4k

where, for all i ∈ {1, 2, 3, 4}, qi is a real number and i, j, and k are the quaternionic units that satisfy
the multiplication rules

i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj, and ki = j = −ik (2.2)

Let p = p1 + p2i + p3j + p4k and q = q1 + q2i + q3j + q4k be any two quaternions. Then, the addition,
scalar (λ) multiplication, and multiplication of two quaternions are defined as follows, respectively:

p + q = (p1 + q1) + (p2 + q2)i + (p3 + q3)j + (p4 + q4)k

λq = λq1 + λq2i + λq3j + λq4k

and
pq = (p1q1 − p2q2 − p3q3 − p4q4) + (p1q2 + p2q1 + p3q4 − p4q3)i + (p1q3 + p3q1 + p4q2 − p2q4)j

+(p1q4 + p4q1 + p2q3 − p3q2)k

The set of all the quaternions forms a 4-dimensional, with the basis {1, i, j, k}, non-commutative, and
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associative algebra over the real numbers. For further quaternion information, see [14,26].

Definition 2.4. [9] A hyper-dual quaternion Q is defined as

Q = z1 + z2i + z3j + z4k

where, for all i ∈ {1, 2, 3, 4}, zi is a hyper-dual number and i, j, and k are the quaternionic units
defined as in (2.2).

Note that the dual units ε1 and ε2 commute with the quaternionic units i, j, and k, e.g., ε1i = iε1 [9].
In the rest of this section, we provide some definitions and identities of the sequences of Fibonacci,
Lucas, and Leonardo numbers.

Definition 2.5. [15] For n ≥ 2, the Fibonacci and Lucas numbers are defined by the recurrence
relations, respectively:

Fn = Fn−1 + Fn−2 with F0 = 0, F1 = 1

and
Ln = Ln−1 + Ln−2 with L0 = 2, L1 = 1

Here, Fn and Ln denote the n-th Fibonacci and Lucas numbers, respectively.

Definition 2.6. [18] The Leonardo numbers are defined recursively by

Len = Len−1 + Len−2 + 1, n ≥ 2

or

Len = 2Len−1 − Len−3, n ≥ 3

with the initial conditions Le0 = Le1 = 1 and Le2 = 3. Here, Len denotes the n-th Leonardo number.

Moreover, Ömür and Koparal [24] defined the hyper-dual generalized Fibonacci and Lucas numbers. In
particular cases of the hyper-dual generalized Fibonacci and Lucas numbers, the hyper-dual Fibonacci
and Lucas numbers can be derived as:

Definition 2.7. [24] The hyper-dual Fibonacci and hyper-dual Lucas numbers are defined as follows,
respectively:

HDFn = Fn + Fn+1ε1 + Fn+2ε2 + Fn+3ε1ε2 (2.3)

and

HDLn = Ln + Ln+1ε1 + Ln+2ε2 + Ln+3ε1ε2 (2.4)

where ε1 and ε2 are the dual units defined as in (2.1).

Definition 2.8. [25] The hyper-dual Leonardo numbers are

HDLen = Len + Len+1ε1 + Len+2ε2 + Len+3ε1ε2 (2.5)

where ε1 and ε2 are the dual units in (2.1).

Moreover, the recurrence relation of the hyper-dual Leonardo numbers is provided by

HDLen = HDLen−1 + HDLen−2 + A, n ≥ 2 (2.6)

or

HDLen = 2HDLen−1 − HDLen−3, n ≥ 3 (2.7)

Here, A := 1 + ε1 + ε2 + ε1ε2 [25].
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Definition 2.9. [20] The Fibonacci and Lucas quaternions are defined as follows, respectively:

QFn = Fn + Fn+1i + Fn+2j + Fn+3k

and
QLn = Ln + Ln+1i + Ln+2j + Ln+3k

where i, j, and k are the quaternionic units in (2.2).

Definition 2.10. [23] The Leonardo quaternions are defined by

QLen = Len + Len+1i + Len+2j + Len+3k (2.8)

where i, j, and k are the quaternionic units in (2.2).

Binet’s formula for QLen is

QLen = 2αn+1α̂ − βn+1β̂

α − β
− qu (2.9)

where α = 1+
√

5
2 , β = 1−

√
5

2 , α̂ := 1 + αi + (1 + α)j + (1 + 2α)k, β̂ := 1 + βi + (1 + β)j + (1 + 2β)k,
and qu := 1 + i + j + k [23]. Then, the following properties hold [23]:

QLen = 2QFn+1 − qu (2.10)

QLen+1 − QLen = 2QFn (2.11)

QLen+2 = QLen+1 + QLen + qu (2.12)
n∑

k=1
QLek = QLen+2 − QLe2 − nqu (2.13)

n∑
k=1

QLe2k−1 = QLe2n − QLe0 − nqu (2.14)

and
n∑

k=1
QLe2k = QLe2n+1 − QLe1 − nqu (2.15)

Here, QFn is the n-th Fibonacci quaternion and QLen is the n-th Leonardo quaternion.

Ait-Amrane et al. [27] defined the hyper-dual Horadam quaternions from two perspectives. In the par-
ticular case of the hyper-dual Horadam quaternions, the hyper-dual Fibonacci and Lucas quaternions
can be derived as follows:

Definition 2.11. [27] The hyper-dual Fibonacci and Lucas quaternions are defined by

QHDFn = HDFn + HDFn+1i + HDFn+2j + HDFn+3k

and
QHDLn = HDLn + HDLn+1i + HDLn+2j + HDLn+3k

respectively, where HDFn is the n-th hyper-dual Fibonacci number, HDLn is the n-th hyper-dual
Lucas number, and i, j, and k are the quaternionic units in (2.2).

In addition, the hyper-dual Fibonacci and Lucas quaternions can be defined as:

Definition 2.12. [27] The hyper-dual Fibonacci and Lucas quaternions are defined by

QHDFn = QFn + QFn+1ε1 + QFn+2ε2 + QFn+3ε1ε2
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and
QHDLn = QLn + QLn+1ε1 + QLn+2ε2 + QLn+3ε1ε2

respectively, where ε1 and ε2 are the dual units in (2.1).

3. Main Results

This section begins with defining the general term of the hyper-dual Leonardo quaternions.

Definition 3.1. For n ≥ 0, the n-th hyper-dual Leonardo quaternion is

QHDLen = HDLen + HDLen+1i + HDLen+2j + HDLen+3k (3.1)

where HDLen is the n-th hyper-dual Leonardo number and i, j, and k are the quaternionic units in
(2.2).
Moreover, considering (2.5) and (2.8), we can obtain

QHDLen = HDLen + HDLen+1i + HDLen+2j + HDLen+3k

= (Len + Len+1ε1 + Len+2ε2 + Len+3ε1ε2) + (Len+1 + Len+2ε1 + Len+3ε2 + Len+4ε1ε2)i

+(Len+2 + Len+3ε1 + Len+4ε2 + Len+5ε1ε2)j + (Len+3 + Len+4ε1 + Len+5ε2 + Len+6ε1ε2)k

= (Len + Len+1i + Len+2j + Len+3k) + (Len+1 + Len+2i + Len+3j + Len+4k)ε1

+(Len+2 + Len+3i + Len+4j + Len+5k)ε2 + (Len+3 + Len+4i + Len+5j + Len+6k)ε1ε2

= QLen + QLen+1ε1 + QLen+2ε2 + QLen+3ε1ε2

Therefore, the general term of the hyper-dual Leonardo quaternions can be reidentified in the following.

Definition 3.2. For n ≥ 0, the n-th hyper-dual Leonardo quaternion is

QHDLen = QLen + QLen+1ε1 + QLen+2ε2 + QLen+3ε1ε2 (3.2)

where QLen is the n-th Leonardo quaternion and ε1 and ε2 are the dual units in (2.1).

The first three hyper-dual Leonardo quaternions are as follows:

QHDLe0 = (1 + i + 3j + 5k) + (1 + 3i + 5j + 9k)ε1 + (3 + 5i + 9j + 15k)ε2

+(5 + 9i + 15j + 25k)ε1ε2

QHDLe1 = (1 + 3i + 5j + 9k) + (3 + 5i + 9j + 15k)ε1 + (5 + 9i + 15j + 25k)ε2

+(9 + 15i + 25j + 41k)ε1ε2

and
QHDLe2 = (3 + 5i + 9j + 15k) + (5 + 9i + 15j + 25k)ε1 + (9 + 15i + 25j + 41k)ε2

+(15 + 25i + 41j + 67k)ε1ε2

Throughout this paper, let A := 1 + ε1 + ε2 + ε1ε2, qu := 1 + i + j + k, and ∆ := Aqu = quA.

By (2.6) and (3.1), the following recurrence relation of the hyper-dual Leonardo quaternions is ob-
tained:

QHDLen = QHDLen−1 + QHDLen−2 + ∆, n ≥ 2 (3.3)

Moreover, by (2.7) and (3.1), the alternative recurrence relation of the hyper-dual Leonardo quater-
nions is obtained:

QHDLen = 2QHDLen−1 − QHDLen−3, n ≥ 3 (3.4)



Journal of New Theory 48 (2024) 78-89 / Hyper-Dual Leonardo Quaternions 83

Theorem 3.3. For n ≥ 0,

i. QHDLen − QHDLen+1i − QHDLen+2j − QHDLen+3k = 3(HDLen+4 + HDLen+2) + 2A

ii. QHDLen − QHDLen+1ε1 − QHDLen+2ε2 − QHDLen+3ε1ε2 = QLen − 2QLen+3ε1ε2

Proof. Let n ≥ 0.

i. Using (3.1) to the left-hand side (LHS),

LHS = HDLen + HDLen+1i + HDLen+2j + HDLen+3k

− (HDLen+1 + HDLen+2i + HDLen+3j + HDLen+4k)i
− (HDLen+2 + HDLen+3i + HDLen+4j + HDLen+5k)j
− (HDLen+3 + HDLen+4i + HDLen+5j + HDLen+6k)k

From the multiplication rules of the quaternionic units in (2.2),

LHS = HDLen + HDLen+2 + HDLen+4 + HDLen+6

Using (2.6),

LHS = 3HDLen+4 + 3HDLen+2 + 2A

ii. Using (3.2) to the left-hand side (LHS),

LHS = QLen + QLen+1ε1 + QLen+2ε2 + QLen+3ε1ε2

− (QLen+1 + QLen+2ε1 + QLen+3ε2 + QLen+4ε1ε2)ε1

− (QLen+2 + QLen+3ε1 + QLen+4ε2 + QLen+5ε1ε2)ε2

− (QLen+3 + QLen+4ε1 + QLen+5ε2 + QLen+6ε1ε2)ε1ε2

Considering the multiplication rules of the dual units in (2.1),

LHS = QLen − 2QLen+3ε1ε2

Lemma 3.4. For positive integer n, the followings hold:

i. HDLen−1 + HDLen+1 = 2HDLn+1 − 2A [25]

ii. HDLen + HDFn + HDLn = 2HDLen + A

where HDLen, HDFn, and HDLn are the n-th hyper-dual Leonardo, hyper-dual Fibonacci, and
hyper-dual Lucas numbers, respectively.

Proof. ii. From (2.3)-(2.5) and the relation Len + Fn + Ln = 2Len + 1 provided in [19], the proof is
clear.

Theorem 3.5. For n ≥ 0, the followings hold:

i. QHDLen−1 + QHDLen+1 = 2QHDLn+1 − 2∆

ii. QHDLen + QHDFn + QHDLn = 2QHDLen + ∆

iii. QHDLen = 2QHDFn+1 − ∆

iv. QHDLen+1 − QHDLen = 2QHDFn

where QHDFn and QHDLn are the n-th hyper-dual Fibonacci and hyper-dual Lucas quaternions,
respectively.
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Proof. From (2.10), (2.11), (3.1), and (3.2) and Lemma 3.4, the proofs of i., ii., iii., and iv. are
obvious.

Theorem 3.6. For n ≥ 0, Binet’s formula of the hyper-dual Leonardo quaternions is

QHDLen = 2
(

α∗αn+1 − β∗βn+1

α − β

)
− ∆ (3.5)

where α = 1+
√

5
2 , β = 1−

√
5

2 ,

α∗ := (1 + αi + (1 + α)j + (1 + 2α)k)(1 + αε1 + (1 + α)ε2 + (1 + 2α)ε1ε2)

and
β∗ := (1 + βi + (1 + β)j + (1 + 2β)k)(1 + βε1 + (1 + β)ε2 + (1 + 2β)ε1ε2)

Proof. From (2.9) and (3.2) and the equalities 1+α = α2, 1+2α = α3, 1+β = β2, and 1+2β = β3,

QHDLen = QLen + QLen+1ε1 + QLen+2ε2 + QLen+3ε1ε2

=
(

2αn+1α̂ − βn+1β̂

α − β
− qu

)
+
(

2αn+2α̂ − βn+2β̂

α − β
− qu

)
ε1

+
(

2αn+3α̂ − βn+3β̂

α − β
− qu

)
ε2 +

(
2αn+4α̂ − βn+4β̂

α − β
− qu

)
ε1ε2

= 2αn+1α̂

α − β
(1 + αε1 + α2ε2 + α3ε1ε2) − 2βn+1β̂

α − β
(1 + βε1 + β2ε2 + β3ε1ε2)

− qu(1 + ε1 + ε2 + ε1ε2)

= 2α∗αn+1

α − β
− 2β∗βn+1

α − β
− ∆

Theorem 3.7. The ordinary generating function for the hyper-dual Leonardo quaternions is

g(x) = QHDLe0 + (QHDLe1 − 2QHDLe0)x + (QHDLe2 − 2QHDLe1)x2

1 − 2x + x3

Proof. Let

g(x) =
∞∑

n=0
QHDLenxn

be the ordinary generating function for the hyper-dual Leonardo quaternions. Then, from (3.4),

g(x) = QHDLe0 + QHDLe1x + QHDLe2x2 +
∞∑

n=3
QHDLenxn

= QHDLe0 + QHDLe1x + QHDLe2x2 +
∞∑

n=3
(2QHDLen−1 − QHDLen−3)xn

= QHDLe0 + QHDLe1x + QHDLe2x2 + 2x
∞∑

n=3
QHDLen−1xn−1 − x3

∞∑
n=3

QHDLen−3xn−3

= QHDLe0 + QHDLe1x + QHDLe2x2 − 2x(QHDLe0 + QHDLe1x) + 2x
∞∑

n=0
QHDLenxn

− x3
∞∑

n=0
QHDLenxn

= QHDLe0 + (QHDLe1 − 2QHDLe0)x + (QHDLe2 − 2QHDLe1)x2 + 2xg(x) − x3g(x)
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Hence,

g(x)(1 − 2x + x3) = QHDLe0 + (QHDLe1 − 2QHDLe0)x + (QHDLe2 − 2QHDLe1)x2

Theorem 3.8. The exponential generating function for the hyper-dual Leonardo quaternions is

eg(x) =
∞∑

n=0
QHDLen

xn

n! = 2 α∗α

α − β
eαx − 2 β∗β

α − β
eβx − ∆ex

where α∗ and β∗ are defined as in Theorem 3.6.

Proof. From (3.5), we obtain

eg(x) =
∞∑

n=0
QHDLen

xn

n!

=
∞∑

n=0

(
2
(

α∗αn+1 − β∗βn+1

α − β

)
− ∆

)
xn

n!

= 2 α∗α

α − β

∞∑
n=0

(αx)n

n! − 2 β∗β

α − β

∞∑
n=0

(βx)n

n! − ∆
∞∑

n=0

xn

n!

= 2 α∗α

α − β
eαx − 2 β∗β

α − β
eβx − ∆ex

Corollary 3.9. The Poisson generating function for the hyper-dual Leonardo quaternions is

pg(x) = 2 α∗α

α − β
e(α−1)x − 2 β∗β

α − β
e(β−1)x − ∆

Proof. Since pg(x) = eg(x)e−x, the proof is straghtforward.

Theorem 3.10. For n ≥ 1, the followings hold:

i.
n∑

k=1
QHDLek = QHDLen+2 − QHDLe2 − n∆

ii.
n∑

k=1
QHDLe2k−1 = QHDLe2n − QHDLe0 − n∆

iii.
n∑

k=1
QHDLe2k = QHDLe2n+1 − QHDLe1 − n∆

Proof. i. From (2.13) and (3.2),
n∑

k=1
QHDLek =

n∑
k=1

(QLek + QLek+1ε1 + QLek+2ε2 + QLek+3ε1ε2)

=
(

n∑
k=1

QLek

)
+
(

n∑
k=1

QLek+1

)
ε1 +

(
n∑

k=1
QLek+2

)
ε2 +

(
n∑

k=1
QLek+3

)
ε1ε2

= (QLen+2 − QLe2 − nqu) + (QLen+2 + QLen+1 − QLe2 − QLe1 − nqu) ε1

+ (2QLen+2 + QLen+1 − 2QLe2 − QLe1 − nqu) ε2

+ (QLen+3 + 2QLen+2 + QLen+1 − QLe3 − 2QLe2 − QLe1 − nqu) ε1ε2
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Then, considering (2.12),
n∑

k=1
QHDLek = (QLen+2 − QLe2 − nqu) + (QLen+3 − QLe3 − nqu) ε1 + (QLen+4 − QLe4 − nqu) ε2

+ (QLen+5 − QLe5 − nqu) ε1ε2

Then, it follows that
n∑

k=1
QHDLek = (QLen+2 + QLen+3ε1 + QLen+4ε2 + QLen+5ε1ε2)

− (QLe2 + QLe3ε1 + QLe4ε2 + QLe5ε1ε2) − nqu(1 + ε1 + ε2 + ε1ε2)

= QHDLen+2 − QHDLe2 − n∆

This completes the proof of i. In a similar manner, ii. and iii. can be proved by using (2.14) and
(2.15).

Theorem 3.11. For n ≥ 0, the followings hold:

i. QHDLe2n =
n∑

k=0

(n
k

)
(QHDLek + ∆) − ∆

ii. QHDLe2n+1 =
n+1∑
k=0

(n+1
k

)
(QHDLek−1 + ∆) − ∆

Proof. i. From (3.5),

QHDLe2n = 2
(

α∗α2n+1 − β∗β2n+1

α − β

)
− ∆

= 2
(

α∗α(α2)n − β∗β(β2)n

α − β

)
− ∆

= 2
(

α∗α(1 + α)n − β∗β(1 + β)n

α − β

)
− ∆

Since (1 + α)n =
n∑

k=0

(n
k

)
αk and (1 + β)n =

n∑
k=0

(n
k

)
βk, then

QHDLe2n = 2
(

α∗α

α − β

n∑
k=0

(
n

k

)
αk − β∗β

α − β

n∑
k=0

(
n

k

)
βk

)
− ∆

= 2
n∑

k=0

(
n

k

)(
α∗αk+1 − β∗βk+1

α − β

)
− ∆

=
n∑

k=0

(
n

k

)(
2α∗αk+1 − β∗βk+1

α − β
− ∆

)
+

n∑
k=0

(
n

k

)
∆ − ∆

=
n∑

k=0

(
n

k

)
(QHDLek + ∆) − ∆

ii. The proof is similar to the proof of i.

Theorem 3.12. (Vajda’s Identity) For non-negative integers n, r, and s,

QHDLen+rQHDLen+s − QHDLenQHDLen+r+s = 4√
5

(−1)n+1(β∗α∗αs − α∗β∗βs)Fr

+ ∆(QHDLen + QHDLen+r+s)
− ∆(QHDLen+r + QHDLen+s)

where Fr is the r-th Fibonacci number.
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Proof. Applying (3.5) to the left-hand side (LHS),

LHS =
(

2
(

α∗αn+r+1 − β∗βn+r+1

α − β

)
− ∆

)(
2
(

α∗αn+s+1 − β∗βn+s+1

α − β

)
− ∆

)

−
(

2
(

α∗αn+1 − β∗βn+1

α − β

)
− ∆

)(
2
(

α∗αn+r+s+1 − β∗βn+r+s+1

α − β

)
− ∆

)

= 4
(

(αβ)n+1(αr − βr)(β∗α∗αs − α∗β∗βs)
(α − β)2

)

− ∆ (QHDLen+r + QHDLen+s − QHDLen − QHDLen+r+s)

= 4√
5

(−1)n+1(β∗α∗αs − α∗β∗βs)Fr

+ ∆(QHDLen + QHDLen+r+s − QHDLen+r − QHDLen+s)

Here, Fr = αr−βr

α−β [15].

In the particular case of Theorem 3.12, we have the following results:

Corollary 3.13. (Catalan’s Identity) For non-negative integers n and s such that n ≥ s,

QHDLen−sQHDLen+s − (QHDLen)2 = 4√
5

(−1)n+s(β∗α∗αs − α∗β∗βs)Fs

+ ∆(2QHDLen − QHDLen−s − QHDLen+s)

Proof. Taking r → −s in Theorem 3.12 and considering the relation F−r = (−1)r+1Fr [15], the
proof is obvious.

Corollary 3.14. (Cassini’s Identity) For positive integer n,

QHDLen−1QHDLen+1 − (QHDLen)2 = 4√
5

(−1)n+1(β∗α∗α − α∗β∗β)

+ ∆(QHDLen−2 − QHDLen−1)

Proof. Taking r → −s and s = 1 in Theorem 3.12 and using (3.3), the proof is clear.

Corollary 3.15. (d’Ocagne’s Identity) For positive integers n and m,

QHDLen+1QHDLem − QHDLenQHDLem+1 = 4√
5

(−1)n+1(β∗α∗αm−n − α∗β∗βm−n)

+ ∆(QHDLem−1 − QHDLen−1)

Proof. Taking s → m − n and r = 1 in Theorem 3.12 and using (3.3), the proof is clear.

4. Conclusion

In this study, the hyper-dual Leonardo quaternions have been proposed from two different perspec-
tives. At first, the hyper-dual quaternions have been defined using the hyper-dual Leonardo numbers
as coefficients in quaternions. Then, as equivalent to this first definition, the hyper-dual Leonardo
quaternions have been defined using the Leonardo quaternions as coefficients in hyper-dual numbers.
Some of their properties, such as non-homogeneous and homogeneous recurrence relations, Binet’s
formula, certain sum formulae, and binomial-sum formulae, have been provided. The ordinary, ex-
ponential, and Poisson-generating functions, Vajda’s identity, and, in particular cases, Catalan’s,
Cassini’s, and d’Ocagne’s identities of the hyper-dual Leonardo quaternions have been presented. For
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future studies, researchers may define hyper-dual split quaternions provided in [10] with the Leonardo
number coefficients.
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Abstract − In 1993, the theory of Chen invariants started when Chen wrote basic in-
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1. Introduction

One of the most interesting topics in differential geometry is the submanifolds of the almost Hermitian
manifold. We note that the Kaehler manifold’s submanifolds are determined by its tangent space
behavior under the action of a complex structure J . One of the classes of submanifolds of Kaehler
manifolds is holomorphic submanifolds and the other is total real submanifolds. In the first case,
the tangent bundle of the submanifold is invariant under J where as in the second case, the normal
bundle of the submanifold is invariant under J . CR-submanifolds were introduced by Bejancu in [1] as
a natural generalization of invariant submanifolds and anti-invariant submanifolds. Chen investigated
the first detailed research on this subject in [2]. Moreover, the topology of CR-submanifolds was
widely studied [3–7]. The authors defined the quaternion CR-submanifolds in quaternion Kaehler
manifolds [8], and were followed by several geometers [9–18]. Generic submanifold was defined as
a generalization of the concept of CR-submanifold [19]. These submanifolds are known by relaxing
the condition on the complementary distribution of holomorphic distribution. More precisely, if the
maximal complex subspaces Dp = TpM ∩ J(TpM) determine on M a distribution D : Dp ⊆ TpM , the
M is called a generic submanifold of M̄ . Generic submanifolds have been commonly studied [20–26].

The present article is organized as follows: Section 2 recalls basic notions and results of quaternion
Kaehler manifolds. New optimal inequalities were introduced in [27] for anti-holomorphic submanifolds
in complex space forms. In recent years, this new inequality has been obtained by distinct researchers
for different classes of submanifolds in different ambient manifolds [28, 29]. Section 3 establishes new
inequality for quaternionic generic submanifolds in a quaternionic space form and gives some results.
The last part of this paper obtains this inequality for real hypersurfaces.
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2. Preliminaries

In this section, some basic concepts will be given from [1,30] for the following sections. A Riemannian
manifold (M̄, g̃) of dimension 4m, for m ≥ 1, is called quaternion Kaehler manifold with 3-dimensional
vector bundle σ of local basis of almost Hermitian structures J1, J2, and J3 if the following conditions
are satisfied

J1 ◦ J2 = −J2 ◦ J1 = J3

and

∇̄XJm =
3∑

b=1
Aml(X)Jl, m ∈ {1, 2, 3}, ∀X ∈

(
¯TM
)

where Aml are certain local 1-forms on M̄ such that Aml + Alm = 0. For a Riemann submanifold
N ⊂ M̄ of a Riemannian manifold M̄ , Gauss and Weingarten formulas are respectively given by

∇̄W Z = ∇W Z + h(W, Z)

and
∇̄W V = −AV W + ∇⊥

W V (2.1)

for all W, Z ∈ TN and V ∈ TN⊥, where ∇ and ∇̄ are the Levi-Civita connections of N and M̄ , re-
spectively. Moreover, h and ∇⊥

X denote the second fundamental form of N , and the normal connection
on the normal bundle, respectively. From (2.1), Aξ the second fundamental tensor and h the second
fundamental form are related by

g̃(h(W, Z), ξ) = g̃(AξW, Z)

If quaternionic sectional curvature of a quaternionic Kaehler manifold is constant, then it is called a
quaternionic space form and denoted by M̄(c). The curvature tensor R̄ of M̄(c) is given by

R̄(P, Q)R = c

4

{
g̃(Q, R)P − g̃(P, R)Q +

3∑
a=1

g̃(R, JaQ)JaP − g̃(R, JaP)JaQ + 2g̃(P, JaQ)JaR
}

for all P, Q, R ∈ Γ(TN) [1]. For the second fundamental form h, the covariant derivation (∇Ph)(Q, R)
is as follows:

(∇Ph)(Q, R) = ∇⊥
Ph(Q, R) − h(∇PQ, R) − h(Q, ∇PR)

for any P, Q, R ∈ Γ(TN). For the submanifold N , the Gauss, Codazzi, and Ricci equations of N are
provided as follows, respectively:

R(P, Q, R, W) = R̄(P, Q, R, W) + g̃(h(P, W), h(Q, R)) − g̃(h(P, R), h(Q, W)) (2.2)(
R̄(P, Q)R

)⊥
= (∇Ph)(Q)R) − (∇Qh)(P, R)

and
R̄(P, Q, ξ, η) = R⊥(P, Q, ξ, η) + g̃([Aξ, Aη] P, Q)

for all P, Q, R, W ∈ Γ(TN) and ξ, η ∈ Γ(TN)⊥. The H mean curvature vector of a submanifold N is
as follows:

H =
(1

p

)
trace h, p = dimN

Definition 2.1. A submanifold N of a quaternion Kaehler manifold M̄ is called a generic submanifold
of M̄ if there are two subspace D differentiable distribution and D⊥ purely real distribution with
constant ranks on N such that D = JaTN ∩ TN and D⊥ are complementary orthogonal to D.
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Thus, from the definition, it is expressed as follows:

TN = D ⊕ D⊥ and Ja(D) = D

For X ∈ Γ(D⊥), a ∈ {1, 2, 3},
JaX = TaX + FaX

where TaX ∈ Γ
(
D⊥

)
and FaX ∈ Γ

(
ϑ⊥
)
. Moreover, ϑ⊥ and ϑ are complementary orthogonal to each

other. Thus, from the definition, it is expressed as follows:

TN⊥ = ϑ ⊕ ϑ⊥ and Ja(ϑ) = ϑ

For V ∈ Γ
(
ϑ⊥
)
,

JaV = taV + faV

where taV ∈ Γ(TN) and faV ∈ Γ
(
ϑ⊥
)

[25].

3. Chen-Type Inequality for Generic Submanifolds of Quaternionic Space
Form

Let M be a generic submanifold of a quaternion Kaehler manifold M̄ with the differentiable distribution
D and the purely real distribution D⊥ of M . Consider orthonormal frame {e1, e2, · · · , e2q+p} on M

in such that {e1, e2, · · · , e2q} are in D and {e2q+1, e2q+2, · · · , e2q+p} are in D⊥.

Chen [31] investigated new types of Riemannian invariants for submanifolds in space forms, now known
as the Chen invariants. Chen [32] defined for CR-submanifold N in a Kaehler manifold M̄ with τ

the scalar curvature of N , and τ(D) the scalar curvature of the holomorphic distribution D of N as
follows:

δ(D)(p) = τ(p) − τ(Dp), p ∈ N

Let H⃗D and H⃗D⊥ be the two partial mean curvature vectors of M , respectively, i.e.,

H⃗D = 1
2q

2q∑
i=1

h(ei, ei) and H⃗D⊥ = 1
p

2q+p∑
r=2q+1

h(er, er) (3.1)

Theorem 3.1. Let M be a quaternionic generic submanifold of quaternionic space form M̄ with
minimal codimension, i.e., dimϑx = 0, for x ∈ M , dimDx = 2q, dimD⊥

x = p, and dimTM⊥ =
2m − (2q + p), then

δ(D) ≤ 2qp
c

4 + p(p − 1)
2

c

4 + 9c

4 ∥Ta∥2 + (2q + p)2

2 H2 + (p − 1)p2

p + 2 |HD⊥ |2

Proof. Let {e1, e2, · · · , e2q, e2q+1, · · · , e2q+p} be orthonormal bases on TM such that {e1, e2, · · · , e2q}
are in D and {e2q+1, e2q+2, · · · , e2q+p} are in D⊥ and let {e2q+p+1, e2q+p+2, · · · , e2q+p+2m} of TM⊥.
Since

τ =
∑

1≤i<j≤2q

K(ei ∧ ej) +
∑

2q+1≤r<s≤2q+p

K(er ∧ es) +
2q∑

i=1

2q+p∑
r=2q+1

K(ei ∧ er)

and
τ(D) =

∑
1≤i<j≤2q

K(ei ∧ ej)

then

δ(D) = τ − τ(D) =
∑

2q+1≤r<s≤2q+p

K(er ∧ es) +
2q∑

i=1

2q+p∑
r=2q+1

K(ei ∧ er)



Journal of New Theory 48 (2024) 90-98 / Chen-Type Inequality for Generic Submanifolds of Quaternionic Space Form · · · 93

From (2.2),

K(P ∧ Q) = K̄(P ∧ Q) + g̃(h(P, P), h(Q, Q)) − g̃(h(P, Q), h(P, Q))

= c

4
[
1 + 3

∑3
a=1 g̃(JaP, Q)2

]
+ g̃(h(P, P), h(Q, Q)) − g̃(h(P, Q), h(P, Q))

(3.2)

From (3.2), for P = ei, Q = er, i ∈ {1, 2, · · · , 2q}, and r ∈ {2q + 1, 2q + 2, · · · , 2q + p},

K(ei ∧ er) = c

4

[
1 + 3

3∑
a=1

g̃(Jaei, er)2
]

+ g̃(h(ei, ei), h(er, er)) − g̃(h(ei, er), h(ei, er)) (3.3)

Since Jaei ∈ D and er ∈ D⊥,
g̃(Jaei, er) = 0

By summation in (3.3) over i ∈ {1, 2, · · · , 2q} and r ∈ {2q + 1, 2q + 2, · · · , 2q + p},
2q∑

i=1

2q+p∑
r=2q+1

K(ei ∧ er) = 2qp
c

4 +
2q∑

i=1

2q+p∑
r=2q+1

[g̃(h(ei, ei), h(er, er)) − g̃(h(ei, er), h(ei, er))]

From (3.2), for P = er, Q = es, and r, s ∈ {2q + 1, 2q + 2, · · · , 2q + p},

K(er ∧ es) = c

4

[
1 + 3

3∑
a=1

g̃(Jaer, es)2
]

+ g̃(h(er, er), h(es, es)) − g̃(h(er, es), h(er, es))

Since Taer ∈ D⊥ and es ∈ D⊥,
g̃(Jaer, es) ̸= 0

By summation in (3.3) over i ∈ {1, 2, · · · , 2q} and r ∈ {2q + 1, 2q + 2, · · · , 2q + p},∑
2q+1≤r<s≤2q+p

K(er ∧ es) = p(p − 1)
2

c

4 + 9c

4 ∥Ta∥2

+
∑

2q+1≤r<s≤2q+p
[g̃(h(er, er), h(es, es)) − g̃(h(er, es), h(er, es))]

where

∥Ta∥2 =
2q+p∑

i,j=2q+1
g̃(Taer, es)2

and
δ(D) = 2qp

c

4 + p(p − 1)
2

c

4 + 9c

4 ∥Ta∥2 +
2q∑

i=1

2q+p∑
r=2q+1

g̃(h(ei, ei), h(er, er))

+
∑

2q+1≤r<s≤2q+p
g̃(h(er, er), h(es, es)) −

∑
2q+1≤r<s≤2q+p

∥h(er, es)∥2

−
2q∑

i=1

2q+p∑
r=2q+1

∥h(ei, er)∥2

(3.4)

Moreover,

(2q + p)2

2 H2 + p2|HD⊥ |2 − ∥hD⊥∥2 (3.5)

where ∥hD⊥∥2 is defined by
∥hD⊥∥2 =

∑
2q+1≤r<s≤2q+p

∥h(er, es)∥2 (3.6)

Combining (3.4) and (3.5),

δ(D) = 2qp
c

4 + p(p − 1)
2

c

4 + 9c

4 ∥Ta∥2 + (2q + p)2

2 H2 + p2|HD⊥ |2 − ∥hD⊥∥2 −
2q∑

i=1

2q+p∑
r=2q+1

∥h(ei, er)∥2
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and
p2|HD⊥ |2 + (p + 2)

p − 1

[
(2q + p)2

2 H2 −
2q∑

i=1

2q+p∑
r=2q+1

∥h(ei, er)∥2 − δ(D)
]

+ c

4

(
2qp + p(p + 2)

2 + 9∥Ta∥2
)

= p + 2
p − 1∥hD⊥∥2 − 3p2

p − 1 |HD⊥ |2

From (3.1) and (3.6),

p + 2
p − 1∥hD⊥∥2 − 3p2

p − 1 |HD⊥ |2 = p + 2
p − 1

[
2q+p∑

s=2q+1
(hr

ss) +
∑
s ̸=t

(hr
st)2

+
2q+p+2m∑
k=2q+p+1

2q+p∑
s,t=2q+1

(hk
st)2

]
− 3

p − 1

(
2q+p∑

s=2q+1
hr

ss

)2

Moreover, since

0 ≤
∑
i≤j

(ai − aj)2 = (n − 1)
n∑

i=1
a2

i − 2
∑
i≤j

aiaj (3.7)

then

n2∥H∥2 =
(

n∑
i=1

ai

)2

=
n∑

i=1
a2

i + 2
∑
i≤j

aiaj (3.8)

Thus, from (3.7) and (3.8),

p + 2
p − 1∥hD⊥∥2 − 3p2

p − 1 |HD⊥ |2 = 1
p − 1

{
(p + 2)

2q+p∑
s=2q+1

(hr
ss)2 + (p + 2)

[∑
s ̸=t

(hr
st)2

+
2q+p+2m∑
k=2q+p+1

2q+p∑
s,t=2q+1

(hk
st)2

]
− 3

(
2q+p∑

s=2q+1
hr

ss

)2


p + 2
p − 1∥hD⊥∥2 − 3p2

p − 1 |HD⊥ |2 = 1
p − 1

(p − 1)
2q+p∑

s=2q+1
(hr

ss)2 − 6
∑
s≤t

hr
sshr

tt + (p + 2)

∑
s ̸=t

(hr
st)2

+
2q+p+2m∑
k=2q+p+1

2q+p∑
s,t=2q+1

(hk
st)2


= 1

p − 1

2(1 − p)
2q+p∑

s=2q+1
(hr

ss)2 + 3
∑
s≤t

(hr
ss − hr

tt) + (p + 2)

∑
s ̸=t

(hr
st)2

+
2q+p+2m∑
k=2q+p+1

2q+p∑
s,t=2q+1

(hk
st)2


≥ 0

Thus,

∥hD⊥∥2 ≥ 3p2

p + 2 |HD⊥ |2

and

2qp
c

4 + p(p − 1)
2

c

4 + 9c

4 ∥Ta∥2 + (2q + p)2

2 H2 +p2|HD⊥ |2 −δ(D) ≥ 3p2

p + 2 |HD⊥ |2 +
2q∑

i=1

2q+p∑
r=2q+1

∥h(ei, er)∥2

then
2qp

c

4 + p(p − 1)
2

c

4 + 9c

4 ∥Ta∥2 + (2q + p)2

2 H2 + p2|HD⊥ |2 − δ(D) ≥ 3p2

p + 2 |HD⊥ |2
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Hence,

δ(D) ≤ 2qp
c

4 + p(p − 1)
2

c

4 + 9c

4 ∥Ta∥2 + (2q + p)2

2 H2 + (p − 1)p2

p + 2 |HD⊥ |2

Corollary 3.2. If Mn is a quaternionic generic submanifold of the quaternionic Euclidean m space
Hm with c = 0, then

δ(D) ≤ (2q + p)2

2 H2 + (p − 1)p2

p + 2 |HD⊥ |2

Corollary 3.3. If Mn is a quaternionic generic submanifold of the quaternionic projective m space
HP m(4c) with c > 0, then

δ(D) ≤ 2qp + p(p − 1)
2 + 9∥Ta∥2 + (2q + p)2

2 H2 + (p − 1)p2

p + 2 |HD⊥ |2

Corollary 3.4. If Mn is a quaternionic generic submanifold of the quaternionic hyperbolic m space
HHm(4c) with c < 0, then

δ(D) ≥ 2qp + p(p − 1)
2 + 9∥Ta∥2 + (2q + p)2

2 H2 + (p − 1)p2

p + 2 |HD⊥ |2

4. An Inequality for Real Hypersurfaces

Indeed, generic submanifolds with ϑ = {0} and D⊥ = Sp{JaN} are real hypersurface of a quaternion
Kaehler manifold, where N is the unit normal vector field of the hypersurface. Therefore, Theorem
3.1 lead to the following

Theorem 4.1. Let M be a real hypersurface of quaternionic space form M̄(4c). Then,

δ(D) ≤ (2q + 3)2

2 H2 + 9|HD⊥ |2 + (6q + 3)c

Proof. Let M be a real hypersurface of quaternionic space form M̄(4c). Then, it follows from the
definition δ(D) that

δ(D) = τ − τ(D) =
∑

1≤a<b≤3
K(JaN ∧ JbN) +

2q∑
i=1

3∑
a=1

K(ei ∧ JaN)

For i ∈ {1, 2, · · · , 2q} and a ∈ {1, 2, 3},

δ(D) = 6qc + 3c +
2q∑

i=1

3∑
a=1

g̃(h(ei, ei), h(JaN, JaN))

+
∑

1≤a<b≤3
g̃(h(JaN, JaN), h(JbN, JbN)) −

∑
1≤a<b≤3

∥h(JaN, JbN)∥2

−
2q∑

i=1

3∑
a=1

∥h(ei, JaN)∥2

(4.1)

Moreover,
2q∑

i=1

3∑
a=1

g̃(h(ei, ei), h(JaN, JaN)) +
∑

1≤a<b≤3
g̃(h(JaN, JaN), h(JbN, JbN))

−
∑

1≤a<b≤3
∥h(JaN, JbN)∥2 = (2q + 3)2

2 H2 + 9|HD⊥ |2 − ∥hD⊥∥2
(4.2)

where ∥hD⊥∥2 is defined by
∥hD⊥∥2 =

∑
1≤a<b≤3

∥h(JaN, JbN)∥2
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Combining (4.1) and (4.2),

δ(D) = 6qc + 3c + (2q + 3)2

2 H2 + 9|HD⊥ |2 − ∥hD⊥∥2 −
2q∑

i=1

3∑
a=1

∥h(ei, JaN)∥2

≤ (2q + 3)2

2 H2 + 9|HD⊥ |2 + (6q + 3)c

5. Conclusion

This study investigates an inequality for an intrinsic invariant of Chen-type defined on quaternionic
generic submanifolds in a quaternionic space form. Its application obtains this inequality for real
hypersurfaces. Although results for certain submanifolds have been obtained in previous studies, their
generalized state has not been made. Thus, this study will provide new fields for researchers studying
generic submanifolds by working in different space forms such as generalized complex space forms,
Sasakian space forms, cosymplectic space forms, and locally conformal Kähler space forms.
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1. Introduction

Fixed point theory provides a powerful tool for solving various problems encountered in fields such
as engineering, economics, biology, physics and chemistry [1, 2]. Let X be a non-empty set and S a
mapping from X to X. If Su = u, for an element u in X, then u is called a fixed point of S. Fixed point
theory has been studied on various spaces, including metric spaces, finite dimensional spaces, infinite
dimensional Banach spaces, and Hilbert spaces. Various theories have been developed to determine
the existence and uniqueness of fixed points of a mapping. However, finding the value of a fixed point
is not easy in general. To approximate the fixed point, many effective iterative algorithms have been
defined and studied, such as the Mann iterative algorithm [3], Ishikawa iterative algorithm [4], two step
Mann iterative algorithm [5], Suantai-Phuengrattana (SP) iterative algorithm [6]. The convergence
speed, stability, and data dependency of an iterative algorithm are significant factors in determining
the performance of one algorithm compared to another. There are many studies [7–12] in the literature
that deal with these factors.

Chauhan et al. [13] introduced a new iterative algorithm inspired by the Karakaya et al. [14], providing
better results than the Karakaya iterative algorithm in terms of convergence speed. They named this
new algorithm the Surjeet-Naveen-Imdad-Asim (SNIA) iterative algorithm (Naveen et al. iterative
algorithm) and proved that the iterative sequence (σn)n generated by this algorithm converges strongly
to the fixed point of S if the coefficient sequences (αi

n)∞
n=1 are in (1

2 , 1), for i ∈ {1, 2, 3, 4, 5}, and the
mapping S satisfies quasi contraction condition. We denote that the proof of Theorem 2.1 in [13] was
done under the assumptions 1 − α2

n − α3
n ≥ 0 and 1 − α4

n − α5
n ≥ 0, for all n ∈ N, the set of all the
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natural numbers. However, under the condition (1
2 , 1) on the coefficient sequences, 1 − α2

n − α3
n < 0

and 1 − α4
n − α5

n < 0, for all n ∈ N.

The aim of this paper is to reconstruct the convergence result in Theorem 2.1 in [13], removing the
restricting conditions (1

2 , 1) on the coefficient sequences and obtain the convergence results for some
algorithms. The another aim is to prove the stability and data dependency of the SNIA iterative
algorithm generated by quasi-contractive mappings. Nontrivial examples will be presented to confirm
the validity and applicability of all obtained theoretical results.

2. Preliminaries

We remind the basic terminology that is connected to our study. Let (X, d) be a metric space and S

a mapping from X to X. Osilike [15] considered the mapping S having a fixed point and satisfying
the contractive condition:

∀x1, x2 ∈ X, d(Sx1, Sx2) ≤ Ld(x1, Sx1) + δd(x1, x2) (2.1)

where δ ∈ [0, 1) and L ≥ 0. He obtained stability results for some iterative algorithms generated with
the mapping S satisfying (2.1). Imoru and Olatinwo [16] defined a more general conctractive condition
than (2.1) as follows:

∀x1, x2 ∈ X, d(Sx1, Sx2) ≤ φ(d(x1, Sx1)) + δd(x1, x2) (2.2)

where δ ∈ [0, 1) and φ : R+ → R+ is monotone increasing such that φ(0) = 0. They proved some
stability results using mappings satisfying (2.2). If φ(x) = Lx is taken in (2.2), which L ≥ 0 is a
constant, then the condition (2.2) is reduced to condition (2.1). Thus, (2.2) is more general than
(2.1). Bosede and Rhoades [17] made an assumption which makes all generalizations of the form (2.2)
meaningless and implied by (2.1). In their assumption, S is a self mapping on a complete metric space
that has a fixed point x∗ and satisfies the following quasi contractive condition:

∀x ∈ X, d(Sx, x∗) ≤ δd(x, x∗) (2.3)

where δ ∈ [0, 1). Bosede and Rhoades [17] obtained some stability results using mappings satisfying
(2.3). It is clear that, if X is a normed space, then the quasi contractive condition (2.3) turns into

∀x ∈ X, ∥Sx − x∗∥ ≤ δ∥x − x∗∥ (2.4)

Throughout this paper, we denote the set of all the fixed points of a mapping S by FS .

Let C be a nonempty convex subset of a normed space E. Karakaya et al. [14] have described a
three-step iterative algorithm that can be used to generate several types of iterative algorithms by
choosing specific coefficient sequences as follows:

Karakaya iterative algorithm
Input: Self mapping S on C, initial point s1, (αi

n)∞
n=1 ⊂ [0, 1], i ∈ {1, 2, 3, 4, 5} ,

such that (α2
n + α3

n)∞
n=1 ⊂ [0, 1], (α4

n + α5
n)∞

n=1 ⊂ [0, 1], and N ∈ N.

1: for n ∈ {1, 2, · · · , N} do

2: pn =
(
1 − α1

n

)
sn + α1

nSsn

rn =
(
1 − α2

n − α3
n

)
pn + α2

nSpn + α3
nSsn

sn+1 =
(
1 − α4

n − α5
n

)
rn + α4

nSrn + α5
nSpn

3: end for

Output: Approximate solution sN
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Some iterative algorithms obtained by special choosing of the coefficient sequences in Karakaya iter-
ative algorithm are given below.

If α1
n = 1, for all n ∈ N, and the other coefficient sequences are zero, then Karakaya iterative algorithm

turns into Picard iterative algorithm. If all coefficient sequences except for (α4
n)n are zero, then it turns

into Mann iterative algorithm. If α5
n = α3

n = 0 for all n ∈ N, then it turns into SP iterative algorithm.
If α5

n = α3
n = α1

n = 0, for all n ∈ N, then it turns into two-step Mann iterative algorithm [14].

Let E be a Banach space. SNIA iterative algorithm is defined by Chauhan et al. [13] as follows:

SNIA iterative algorithm
Input: Self mapping S on E, initial point σ1, (αi

n)∞
n=1 ⊂ (1

2 , 1), i ∈ {1, 2, 3, 4, 5}, and

N ∈ N.

1: for n ∈ {1, 2, · · · , N} do

2: φn = S
[(

1 − α1
n

)
σn + α1

nSσn
]

τn = S
[(

1 − α2
n − α3

n

)
φn + α2

nSφn + α3
nSσn

]
σn+1 = S

[(
1 − α4

n − α5
n

)
τn + α4

nSτn + α5
nSφn

]
3: end for

Output: Approximate solution σN

Karakaya iterative algorithm is obtained if S is taken as the identity operator in SNIA iterative
algorithm. Therefore, SNIA iterative algorithm is more general than Karakaya iterative algorithm [13].

The following definitions and lemmas are important in obtaining the findings stated in this study.

Definition 2.1. [18] Let (an)n be a sequence in a (X, d) metric space. The sequence (bn)n ⊂ X is
called the approximate sequence of the sequence (an)n if, for all m ∈ N, there exists an ζ = ζ(m) such
that

∀i ≥ m, d(ai, bi) ≤ ζ

Lemma 2.2. [18] The sequence (bn)n is an approximate sequence of the sequence (an)n if and only
if there is a decreasing sequence of positive numbers (cn)n converging to some η ≥ 0 such that

∀n ≥ k (fixed), d(an, bn) ≤ cn

Definition 2.3. [18] Let S : X → X be a mapping, in which (X, d) is a metric space. Let an+1 =
f(S, an) be an iterative algorithm such that (an)n converges to the fixed point x∗ of S. Let (bn)n ⊂ X

be an approximate sequence of (an)n and εn := d(bn+1, f(S, bn)), for all n ∈ N. The iterative algorithm
an+1 = f(S, an) is said to be weakly S-stable if

lim
n→∞

εn = 0 ⇒ lim
n→∞

bn = x∗

Definition 2.4. [18] Let S, S̃ : X → X be two mappings, where (X, d) is a metric space. S̃ is referred
to as an approximate mapping for S if there exists a suitable ε > 0 such that d(Sx, S̃x) ≤ ε, for all
x ∈ X.

Lemma 2.5. [19] Let (pn)n and (tn)n be nonnegative real number sequences and θ ∈ [0, 1) such that
pn+1 ≤ θpn + tn, for all n ∈ N. If lim

n→∞
tn = 0, then lim

n→∞
pn = 0.
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3. Main Results

In this section, we reconstruct the strong convergence result in [13] by removing the restriction on
the coefficient sequences and provide some convergence results. We then obtain new results related to
stability and data dependency for the SNIA iterative algorithm.

The following theorem is a reformulated version of Theorem 2.1 in [13], with the restriction on the
coefficient sequences removed.

Theorem 3.1. Let C be a non-empty convex and closed subset of a Banach space E and S : C → C

be a mapping satisfying (2.4) with FS ̸= ∅. For all σ1 ∈ C, let (σn)n be a sequence generated by
SNIA iterative algorithm with (αi

n)∞
n=1 ⊂ [0, 1], i ∈ {1, 2, 3, 4, 5}, such that (α2

n + α3
n)∞

n=1 ⊂ [0, 1] and
(α4

n + α5
n)∞

n=1 ⊂ [0, 1]. Then, the sequence (σn)n converges strongly to the fixed point of S.

Proof. Assume that x∗ is a fixed point of S. It can be observed from (2.4) that x∗ is unique fixed
point of S. Using (2.4) and (α1

n)n ⊂ [0, 1],

∥φn − x∗∥ ≤ δ[1 − α1
n(1 − δ)]∥σn − x∗∥ (3.1)

and by (2.4), 1 − α2
n − α3

n ≥ 0, α2
n ≥ 0, and α3

n ≥ 0, for all n ∈ N, and δ < 1,

∥τn − x∗∥ ≤ δ(1 − α2
n − α3

n + α2
nδ)∥φn − x∗∥ + δ2α3

n∥σn − x∗∥ (3.2)

If (3.1) is used in (3.2), then the following inequality are valid:

∥τn − x∗∥ ≤ δ(1 − α2
n − α3

n + α2
nδ)δ[1 − α1

n(1 − δ)]∥σn − x∗∥ + α3
nδ2∥σn − x∗∥

= δ2 [(1 − α2
n − α3

n + α2
nδ)

(
1 − α1

n(1 − δ)
)

+ α3
n

]
∥σn − x∗∥

(3.3)

Moreover,
∥σn+1 − x∗∥ = ∥S

[(
1 − α4

n − α5
n

)
τn + α4

nSτn + α5
nSφn

]
− x∗∥

≤ δ(1 − α4
n − α5

n + α4
nδ)∥τn − x∗∥ + δ2α5

n∥φn − x∗∥
(3.4)

If (3.1) and (3.3) are used in (3.4), then

∥σn+1 − x∗∥ ≤ {δ3(1 − α4
n − α5

n + α4
nδ)

[
(1 − α2

n − α3
n + α2

nδ)
(
1 − α1

n(1 − δ)
)

+ α3
n

]
+δ3α5

n[1 − α1
n(1 − δ)]}∥σn − x∗∥

(3.5)

Since 1 − α1
n(1 − δ) ≤ 1, for all n ∈ N, by (3.5),

∥σn+1 − x∗∥ ≤ {δ3
(
1 − α4

n − α5
n + α4

nδ
) (

1 − α2
n − α3

n + α2
nδ + α3

n

)
+ δ3α5

n}∥σn − x∗∥

= δ3[(1 − α4
n − α5

n + α4
nδ)

(
1 − α2

n + α2
nδ
)

+ α5
n]∥σn − x∗∥

and if 1 − α2
n(1 − δ) ≤ 1, for all n ∈ N, is used in the last inequality, then

∥σn+1 − x∗∥ ≤ δ3(1 − α4
n − α5

n + α4
nδ + α5

n)∥σn − x∗∥ ≤ δ3
(
1 − α4

n(1 − δ)
)

∥σn − x∗∥ (3.6)

is obtained. Using that 1 − α4
n(1 − δ) ≤ 1, for all n ∈ N, in (3.6),

∥σn+1 − x∗∥ ≤ δ3∥σn − x∗∥

Since δ ∈ [0, 1), by Lemma 2.5, σn → x∗ as n → ∞.

Remark 3.2. Chauhan et al. stated that the main results of Karakaya [14] could be obtained by
assuming S(x) = 0, for all x ∈ C, in Theorem 2.1 of [13]. However, if S(x) = 0 is taken in Theorem 2.1
of [13], then the SNIA iterative algorithm does not denote Karakaya iterative algorithm. Therefore,
the main results of Karakaya [14] can not be obtained. We denote that if S is taken as the identity
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operator in Theorem 2.1 of [13], then the Karakaya iterative algorithm can be obtained but in this
case the necessary hypotheses (2.4) on S is not provided. Thus, the main result(s) of Karakaya [14]
can not be obtained from Theorem 2.1 in [13].

We observed that if the condition on S in Theorem 3 of [14] is replaced by the quasi contractive
condition (2.4), then this theorem is satisfied under the same hypotheses. In the following theorem,
we will consider this situation by an extra condition on the sequence

(
α4

n

)
n. It means that if the

sequence (σn)n in Theorem 3.1 is replaced by the sequence (sn)n generated by Karakaya iterative
algorithm, then an extra condition is required to the hypotheses in Theorem 3.1. The proof of the
theorem will be done by following similar steps in the proof of Theorem 3 in [14].

Theorem 3.3. Let C be a non-empty convex and closed subset of a Banach space E and S : C → C

be a mapping satisfying (2.4) with FS ̸= ∅. For all s1 ∈ C, let (sn)n be a sequence generated by
Karakaya iterative algorithm with (αi

n)∞
n=1 ⊂ [0, 1], i ∈ {1, 2, 3, 4, 5}, such that (α2

n + α3
n)∞

n=1 ⊂ [0, 1],
(α4

n + α5
n)∞

n=1 ⊂ [0, 1], and
∑∞

n=1 α4
n = ∞. Then, the sequence (sn)n converges strongly to the fixed

point of S.

Proof. If similar steps in the proof of Theorem 3 in [14] are followed using (2.4), then the below
inequalities are obtained, for all n ∈ N:

∥pn − x∗∥ = ∥(1 − α1
n)sn + α1

nSsn − x∗∥ ≤ [1 − α1
n(1 − δ)]∥sn − x∗∥

∥rn − x∗∥ ≤ [(1 − α2
n(1 − δ) − α3

n)(1 − α1
n(1 − δ)) + δα3

n]∥sn − x∗∥

and
∥sn+1 − x∗∥ ≤ {(1 − α4

n(1 − δ) − α5
n)
[
(1 − α2

n − α3
n + α2

nδ)
(
1 − α1

n(1 − δ)
)

+ δα3
n

]
⇒ +δα5

n(1 − α1
n(1 − δ))}∥sn − x∗∥

≤ {(1 − α4
n(1 − δ) − α5

n) + δα5
n(1 − α1

n(1 − δ))}∥sn − x∗∥

≤ [1 − α4
n(1 − δ)]∥sn − x∗∥

(3.7)

Thus, by using induction,

∥sn+1 − x∗∥ ≤ ∥s1 − x∗∥
n∏

k=1
{(1 − α4

k(1 − δ)}

It is well known that 1 − t ≤ e−t, for all t ∈ [0, 1]. Therefore,

∥sn+1 − x∗∥ ≤ ∥s1 − x∗∥e−(1−δ)
∑n

i=1 α4
i (3.8)

By using the condition
∞∑

i=1
α4

i = ∞ in (3.8), we obtain ∥sn+1 − x∗∥ → 0 as n → ∞. Thus, the proof is

completed.

Remark 3.4. We observe that the condition
∞∑

n=1
α4

n = ∞ can be replaced by
∞∑

n=1
α5

n = ∞ in Theorem

3.3. In this case, the proof of Theorem 3.3 is followed by rearranging the inequality in (3.7) as follows:

∥sn+1 − x∗∥ ≤ [1 − α5
k(1 − δ)]|sn − x∗∥

Corollary 3.5. Assume that all the hypotheses in Theorem 3.3 are satisfied. Then, we get the
following results, which possibly existing in the literature.

i. Mann iterative algorithm generated by S satisfying quasi contraction condition (2.4) converges
strongly to the fixed point of S if taken α5

n = α2
n = α3

n = α1
n = 0, for all n ∈ N, in Theorem 3.3.
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ii. SP iterative algorithm generated by S satisfying quasi contraction condition (2.4) converges strongly
to the fixed point of S if taken α5

n = α3
n = 0, for all n ∈ N, in Theorem 3.3.

iii. Two-step Mann iterative algorithm generated by S satisfying quasi contraction condition (2.4)
converges strongly to the fixed point of S if taken α5

n = α3
n = α1

n = 0, for all n ∈ N, in Theorem 3.3.

3.1. Stability Results

An iterative algorithm that converges to a unique fixed point is stable if the numerical errors that
occur in each step have no effect on the convergence of algorithm. In this part, we show the stability
of SNIA iterative algorithm for quasi contractive mappings.

Theorem 3.6. Let C be a non-empty convex and closed subset of a Banach space E and S : C → C

be a mapping satisfying (2.4) with FS ̸= ∅ and σ1, c1 ∈ C. Let (σn)n be a sequence generated by
SNIA iterative algorithm with (αi

n)∞
n=1 ⊂ [0, 1], i ∈ {1, 2, 3, 4, 5}, such that (α2

n + α3
n)∞

n=1 ⊂ [0, 1],
(α4

n + α5
n)∞

n=1 ⊂ [0, 1], and (yn)∞
n=1 ⊂ C be an approximate sequence of (σn)n. Define a sequence

(εn)∞
n=1 ⊂ R+ by

vn = S
[
(1 − α1

n)yn + α1
nSyn

]
un = S

[(
1 − α2

n − α3
n

)
vn + α2

nSvn + α3
nSyn

]
f(S, yn) = S

[(
1 − α4

n − α5
n

)
un + α4

nSun + α5
nSvn

]
and

εn = ∥yn+1 − f(S, yn)∥, n ∈ N

Then, lim
n→∞

εn = 0 implies lim
n→∞

yn = x∗. In other words, SNIA iterative algorithm is weakly S-stable.

Proof. By Theorem 3.1, the sequence (σn)n generated by SNIA iterative algorithm converges the
fixed point x∗ of S. Assume that lim

n→∞
εn = 0. We will prove that lim

n→∞
yn = x∗.

∥yn+1 − x∗∥ ≤
∥∥yn+1 − S

[(
1 − α4

n − α5
n

)
un + α4

nSun + α5
nSvn

]∥∥
+∥S

[(
1 − α4

n − α5
n

)
un + α4

nSun + α5
nSvn

]
− σn+1∥ + ∥σn+1 − x∗∥

= εn + ∥S
[(

1 − α4
n − α5

n

)
un + α4

nSun + α5
nSvn

]
− σn+1∥ + ∥σn+1 − x∗∥

(3.9)

By (2.4),
∥Sx − Sy∥ ≤ δ∥x − x∗∥ + δ∥y − x∗∥, for all x, y ∈ C (3.10)

If (3.10), (2.4), and the definition of SNIA iterative algorithm are used and operations are continued
as in Theorem 3.1, then

∥S
[(

1 − α4
n − α5

n

)
un + α4

nSun + α5
nSvn

]
− σn+1∥ ≤

[
δ(1 − α4

n − α5
n) + δ2α4

n

]
[∥un − x∗∥ + ∥τn − x∗∥]

+δ2α5
n [∥vn − x∗∥ + ∥φn − x∗∥]

≤ δ2 [(1 − α2
n(1 − δ) − α3

n)(1 − α1
n(1 − δ)) + α3

n

]
×
[
δ
(
1 − α4

n(1 − δ) − α5
n

)]
[∥yn − x∗∥ + ∥σn − x∗∥]

+δ3α5
n

(
1 − α1

n(1 − δ)
)

[∥yn − x∗∥ + ∥σn − x∗∥]

(3.11)

Using δ < 1 and 1 − α1
n(1 − δ) ≤ 1, 1 − α2

n(1 − δ) ≤ 1, and 1 − α4
n(1 − δ) ≤ 1, for all n ∈ N, in (3.11),∥∥∥S [(1 − α4

n − α5
n

)
un + α4

nSun + α5
nSvn

]
− σn+1

∥∥∥ ≤ δ [∥yn − x∗∥ + ∥σn − x∗∥] (3.12)

If (3.12) is used in (3.9), then it is obtained

∥yn+1 − x∗∥ ≤ δ∥yn − x∗∥ + εn + δ∥σn − x∗∥ + ∥σn+1 − x∗∥
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Let tn := εn + δ∥σn − x∗∥ + ∥σn+1 − x∗∥. By hypotheses, lim
n→∞

tn = 0. Thus, by Lemma 2.5,
lim

n→∞
yn = x∗. This completes the proof.

3.2. Data Dependency Results

In this part, we give a result regarding the data dependency of SNIA iterative algorithm for mappings
satisfying quasi contractive condition (2.4).

Theorem 3.7. Let E, C, and S be as in Theorem 3.1. Let S̃ be an approximate mapping of S as in
Definition 2.4 with a suitable error ε. Let (σn)n be the sequence generated by SNIA iterative algorithm
and let the sequence (σ̃n)n be as follows:

σ̃1 ∈ C

φ̃n = S̃[
(
1 − α1

n

)
σ̃n + α1

nS̃σ̃n]

τ̃n = S̃[
(
1 − α2

n − α3
n

)
φ̃n + α2

nS̃φ̃n + α3
nS̃σ̃n]

σ̃n+1 = S̃[
(
1 − α4

n − α5
n

)
τ̃n + α4

nS̃τ̃n + α5
nS̃φ̃n], n ∈ N

(3.13)

where (αi
n)∞

n=1 ⊂ [0, 1], for i ∈ {1, 2, 3, 4, 5}, are sequences satisfying the conditions in Theorem 3.1. If
Sx∗ = x∗ and S̃x̃∗ = x̃∗ such that lim

n→∞
σ̃n = x̃∗, then

∥x∗ − x̃∗∥ ≤ 1 + δ

1 − δ
ε

Proof. By Definition 2.4 and (2.4), the mapping S satisfies the below inequality, for all x, x̃ ∈ C:

∥Sx − S̃x̃∥ ≤ ∥Sx − x∗∥ + ∥Sx̃ − x∗∥ + ε ≤ 2δ∥x − x∗∥ + δ∥x − x̃∥ + ε (3.14)

By the definition of SNIA iterative algorithm, (3.13), and (3.14),

∥σn+1 − σ̃n+1∥ ≤ δ
∥∥∥[(1 − α4

n − α5
n

)
τn + α4

nSτn + α5
nSφn

]
−
(
1 − α4

n − α5
n

)
τ̃n − α4

nS̃τ̃n − α5
nS̃φ̃n]

∥∥∥
+ 2δ

∥∥∥[(1 − α4
n − α5

n

)
τn + α4

nSτn + α5
nSφn

]
− x∗

∥∥∥+ ε

and, by using (3.14) and (2.4),

∥σn+1 − σ̃n+1∥ ≤ δ
(
1 − α4

n − α5
n

)
∥τn − τ̃n∥ + δα4

n∥Sτn − S̃τ̃n∥ + +δα5
n∥Sφn − S̃φ̃n∥

+ 2δ
(
1 − α4

n − α5
n

)
∥τn − x∗∥ + 2δα4

n∥Sτn − x∗∥ + 2δα5
n∥Sφn − x∗∥ + ε

≤ δ
(
1 − α4

n − α5
n

)
∥τn − τ̃n∥ + δ2α4

n∥τn − τ̃n∥ + 2δ2α4
n∥τn − x∗∥ + δα4

nε

+ δ2α5
n∥φn − φ̃n∥ + 2δ2α5

n∥φn − x∗∥ + δα5
nε + 2δ

(
1 − α4

n − α5
n

)
∥τn − x∗∥

+ 2δ2α4
n∥τn − x∗∥ + 2δ2α5

n∥φn − x∗∥ + ε

By arranging the last inequality,

∥σn+1 − σ̃n+1∥ ≤ {δ
(
1 − α4

n − α5
n

)
+ δ2α4

n}∥τn − τ̃n∥ + δ2α5
n∥φn − φ̃n∥

+2δ{1 − α4
n − α5

n + 2δα4
n}∥τn − x∗∥ + 4δ2α5

n∥φn − x∗∥ + δα4
nε + δα5

nε + ε
(3.15)

By following similar steps above,

∥τn − τ̃n∥ ≤ {δ
(
1 − α2

n − α3
n

)
+ δ2α2

n}∥φn − φ̃n∥ + δ2α3
n∥σn − σ̃n∥

+2δ{1 − α2
n − α3

n + 2δα2
n}∥φn − x∗∥ + 4δ2α3

n∥σn − x∗∥ + δα2
nε + δα3

nε + ε
(3.16)

and

∥φn − φ̃n∥ ≤ δ
{

1 − α1
n(1 − δ)

}
∥σn − σ̃n∥ + 2δ{1 − α1

n + 2δα1
n}∥σn − x∗∥ + δα1

nε + ε (3.17)
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If (3.16) and (3.17) are used in (3.15), we obtain the following inequality:

∥σn+1 − σ̃n+1∥ ≤ A∥σn − σ̃n∥ + B∥σn − x∗∥ + C∥φn − x∗∥ + D∥τn − x∗∥ + E (3.18)

where
A := δ(1 − α1

n(1 − δ))
{
[δ(1 − α4

n − α5
n) + δ2α4

n][δ(1 − α2
n − α3

n) + δ2α2
n] + δ2α5

n

}
+δ2α3

n{δ(1 − α4
n − α5

n) + δ2α4
n}

B := 2δ(1 − α1
n + 2δα1

n)
{
[δ(1 − α4

n − α5
n) + δ2α4

n][δ(1 − α2
n − α3

n) + δ2α2
n] + δ2α5

n

}
+4δ2α3

n{δ(1 − α4
n − α5

n) + δ2α4
n}

C := 2δ(1 − α2
n − α3

n + 2δα2
n)[δ(1 − α4

n − α5
n) + δ2α4

n] + 4δ2α5
n

D := 2δ(1 − α4
n − α5

n + 2δα4
n)

and
E :=

{
[δ(1 − α4

n − α5
n) + δ2α4

n][δ(1 − α2
n − α3

n) + δ2α2
n] + δ2α5

n

}
(δα1

nε + ε)

+[δ(1 − α4
n − α5

n) + δ2α4
n][δα2

nε + δα3
nε + ε] + δα4

nε + δα5
nε + ε

Arrange the number A,

A =
[
δ(1 − α4

n − α5
n) + δ2α4

n

] {[
δ(1 − α2

n − α3
n) + δ2α2

n

] [
δ(1 − α1

n(1 − δ))
]

+ δ2α3
n

}
+ δ3α5

n(1 − α1
n(1 − δ))

Since δ ∈ [0, 1) and 1 − α1
n(1 − δ) ≤ 1, for all n ∈ N,

A ≤
[
δ(1 − α4

n − α5
n) + δ2α4

n

] {
δ(1 − α3

n)δ(1 − α1
n(1 − δ)) + δ2α3

n

}
+ δ3α5

n

≤
[
δ(1 − α4

n − α5
n) + δ2α4

n

] {
δ(1 − α3

n)δ + δ2α3
n

}
+ δ3α5

n

≤
[
δ(1 − α4

n − α5
n) + δα4

n

]
δ2 + δ3α5

n = δ3

(3.19)

Since δ ∈ [0, 1), and 1 − α3
n ≤ 1 and 1 − α5

n ≤ 1, for all n ∈ N,

B = 2δ(1 − α1
n + 2δα1

n)
{
[δ(1 − α4

n − α5
n) + δ2α4

n][δ(1 − α2
n − α3

n) + δ2α2
n] + δ2α5

n

}
+4δ2α3

n{δ(1 − α4
n − α5

n) + δ2α4
n}

≤ 2δ(1 − α1
n + 2δα1

n)
{
[δ(1 − α4

n − α5
n) + δα4

n][δ(1 − α2
n − α3

n) + δα2
n] + δ2α5

n

}
+4δ2α3

n{δ(1 − α4
n − α5

n) + δα4
n}

= 2δ(1 − α1
n + 2δα1

n)
{
δ(1 − α5

n)δ(1 − α3
n) + δ2α5

n

}
+ 4δ3α3

n(1 − α5
n)

≤ 2δ(1 − α1
n + 2δα1

n)
{
δ2 + δ2α5

n

}
+ 4δ3α3

n

(3.20)

Using 1 − α1
n ≤ 1, α5

n ≤ 1 and α3
n ≤ 1, for all n ∈ N in (3.20),

B ≤ 2δ(1 − α1
n + 2δα1

n)2δ2 + 4δ3 ≤ 2δ(1 + 2δ)2δ2 + 4δ3 = 8δ3(1 + δ) (3.21)

Since 1 − α2
n − α3

n ≤ 1, α2
n ≤ 1, δ < 1, and α5

n ≤ 1, 1 − α5
n ≤ 1, for all n ∈ N, we get

C = 2δ(1 − α2
n − α3

n + 2δα2
n)[δ(1 − α4

n − α5
n) + δ2α4

n] + 4δ2α5
n

≤ 2δ(1 + 2δ)[δ(1 − α4
n − α5

n) + δα4
n] + 4δ2α5

n ≤ 2δ(1 + 2δ)δ(1 − α5
n) + 4δ2 ≤ 2δ2(3 + 2δ)

(3.22)

Since 1 − α4
n − α5

n ≤ 1 and α4
n ≤ 1, for all n ∈ N,

D = 2δ(1 − α4
n − α5

n + 2δα4
n) ≤ 2δ(1 + 2δ) (3.23)



Journal of New Theory 48 (2024) 99-112 / Results of Convergence, Stability, and Data Dependency for an Iterative Algorithm 107

Using δ ∈ [0, 1) and α2
n + α3

n ≤ 1 and α4
n + α5

n ≤ 1, for all n ∈ N,

E =
{

[δ(1 − α4
n − α5

n) + δ2α4
n][δ(1 − α2

n − α3
n) + δ2α2

n] + δ2α5
n

}
(δα1

nε + ε)

+ [δ(1 − α4
n − α5

n) + δ2α4
n][δα2

nε + δα3
nε + ε] + δα4

nε + δα5
nε + ε

≤
{

[δ(1 − α4
n − α5

n) + δ2α4
n][δ(1 − α3

n)] + δ2α5
n

}
(δα1

nε + ε)

+ [δ(1 − α4
n − α5

n) + δ2α4
n][δε(α2

n + α3
n) + ε] + δε(α4

n + α5
n) + ε

≤
{

[δ(1 − α4
n − α5

n) + δα4
n][δ(1 − α3

n)] + δ2α5
n

}
(δα1

nε + ε) + [δ(1 − α4
n − α5

n) + δα4
n][δε + ε] + δε + ε

=
{

δ(1 − α5
n)(1 − α3

n) + δα5
n

}
δε(δα1

n + 1) + δ(1 − α5
n)[δε + ε] + δε + ε

Since δ ∈ [0, 1) and 1 − α3
n ≤ 1, 1 − α5

n ≤ 1, and α1
n ≤ 1, for all n ∈ N, we get the following inequality

for the number E:
E ≤

{
δ(1 − α5

n) + δα5
n

}
δε(δα1

n + 1) + (δε + ε)[δ(1 − α5
n) + 1]

= δ2ε(δα1
n + 1) + (δε + ε)[δ(1 − α5

n) + 1]

≤ δ2ε(δ + 1) + (δε + ε)(δ + 1) = ε(δ + 1)(δ2 + δ + 1)

(3.24)

Therefore, using (3.19) and (3.21)-(3.24) in (3.18),

∥σn+1 − σ̃n+1∥ ≤ δ3∥σn − σ̃n∥ + 8δ3(1 + δ)∥σn − x∗∥ + 2δ2(3 + 2δ)∥φn − x∗∥

+2δ(1 + 2δ)∥τn − x∗∥ + ε(δ + 1)(δ2 + δ + 1)
(3.25)

By (3.1) and (3.3),

∥φn − x∗∥ ≤ ∥σn − x∗∥ and ∥τn − x∗∥ ≤ ∥σn − x∗∥

Besides, under hypotheses, by Theorem 3.1, since lim
n→∞

∥σn − x∗∥ = 0,

lim
n→∞

∥φn − x∗∥ = lim
n→∞

∥τn − x∗∥ = 0

Thus, taking the limit for n → ∞ in (3.25),

∥x∗ − x̃∗∥ ≤ ε(δ + 1)(δ2 + δ + 1)
1 − δ3 = 1 + δ

1 − δ
ε

4. Numerical Examples

In this section, we provide some numerical examples that support our theoretical results.

The first example, built on an infinite dimensional Banach space and satisfying the conditions of The-
orem 3.1 and Theorem 3.3, shows that the SNIA iterative algorithm is more effective than Karakaya,
SP, and two-step Mann iterative algorithms in terms of convergence.

Example 4.1. Let E be the Banach space l1 = {(xi)∞
i=1 ⊂ K :

∑∞
i=1 |xi| < ∞} endowed with norm

∥(xi)i∥1 =
∞∑

i=1
|xi| and be defined a sequence (xi)i as follows:

∀i ∈ N, xi = (xi
n)∞

n=1, xi
n =


0, n ̸= i

1
i
, n = i
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It is clear that (xi)i is a sequence in E. Moreover, limi→∞ ∥xi − 0∥1 = 0. We define the set

C :=
{ ∞∑

k=1
µkxk : (µk)∞

k=1 ∈ Bl1

}

where Bl1 is the closed unit ball of l1. Since (xn)n is a null sequence in E, it is well known in the
literature that C is a convex and closed subset in E [20, 21]. Moreover, by Grothendieck’s character-
ization [22], we can say that C is a proper subset of BE . Using the above definition of the sequence
(xi)i, we get the set C as follows:

C =
{(

µk

k

)∞

k=1
: (µk)∞

k=1 ∈ Bl1

}
We define a mapping S : C → C by

S

((
µk

k

)∞

k=1

)
:=
(

k

4

(
µk

k

)2
)∞

k=1

It can be observed that the mapping S is well defined and S has a unique fixed point x∗ = (0, 0, 0, 0, · · · ).
We show that there exist a number δ ∈ [0, 1) such that ∥Sx − x∗∥1 ≤ δ∥x − x∗∥1, for all x ∈ C. If
x ∈ C, then there is a (µk)∞

k=1 ∈ Bl1 such that x =
(

µk

k

)∞

k=1
. Thus,

∥Sx − x∗∥1 =
∥∥∥∥∥
(

1
4

µ2
k

k

)
k

∥∥∥∥∥
1

= 1
4

∞∑
k=1

|µ2
k|

k
≤ 1

4

∞∑
k=1

|µk|
k

= 1
4∥x − x∗∥1

This shows that δ = 1
4. That is, S satisfies quasi contractive condition (2.4). However, we denote that

for all x, y ∈ C, ∥Sx−Sy∥1 ≰
1
4∥x−y∥1. For example, for x = (1, 0, 0, 0, · · · ) and y =

(1
2 , 0, 0, 0, · · ·

)
,

∥Sx − Sy∥1 ≰
1
4∥x − y∥1. Let the initial terms of all mentioned algorithms be s0 = σ0 =

( 1
n2n

)
n
,

α4
n = α2

n = α1
n = 1 − 1

n5 + 1, and α5
n = α3

n = 1
2(n5 + 1), for all n ∈ N, satisfying (α4

n + α5
n)n ⊂ [0, 1]

and (α2
n + α3

n)n ⊂ [0, 1]. Figure 1 manifests that the sequence generated by SNIA iterative algorithm
converges the fixed point x∗ = 0 of S faster than the sequences generated by Karakaya, Mann, SP,
and two-step Mann iterative algorithms.

1 2 3 4 5 6 7 8 9 10

Number of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SNIA

Karakaya

Mann

Two-step Mann

SP

Figure 1. Convergence behaviors of algorithms in Example 4.1

The following example, which supports the accuracy of the result in Theorem 3.6 shows that SNIA
iterative algorithm in Example 4.1 is weakly S-stable.
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Example 4.2. Let E, C, and S be as in Example 4.1. We define the sequence (yn)n in C as follows:

∀n ∈ N, yn = (yn
i )∞

i=1, yn
i =


0, i < n

2i

i5i
, i ≥ n

Figure 2 (a) shows that the (yn)n is an approximate sequence of the sequence (σn)n generated by
SNIA iterative algorithm. Further, Figure 2 (a)-(b) manifests that lim

n→∞
εn = 0 implies lim

n→∞
yn = x∗.

In other words, SNIA iterative algorithm is weakly S-stable.
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Figure 2. Graphs showing the convergence states of the sequences (yn − σn)n, (yn − x∗)n, and (εn)n

The following example deals with the data dependency of the sequence (σn)n generated by SNIA
iterative algorithm in Example 4.1.

Example 4.3. Let E, C, and S be as in Example 4.1. We define a mapping S̃ : C → C as in the
following:

S̃

((
αk

k

)
k

)
:= (βk)k, βk =


1/4, k = 1

αk−1
k3k−1 , k ≥ 2

where (αk)∞
k=1 ∈ BE . Then, S̃ : C → C is well defined, and for all x =

(
αk

k

)
k

∈ C,

∥Sx − S̃x∥1 = 1
4

∣∣∣α2
1 − 1

∣∣∣+ ∞∑
k=2

1
k

∣∣∣∣∣α2
k

4 − αk−1
3k−1

∣∣∣∣∣ , ((αk)k ∈ Bl1)

≤ 1
4 + 1

8

∞∑
k=2

|α2
k| + 1

6

∞∑
k=2

|αk−1|, ((αk)k ∈ Bl1)

≤ 1
4 + 1

8 + 1
6 = 0.5416666 = ε

Thus, we can consider the mappings S and S̃ as approximate operators in Definition 2.4. If S̃ has a
fixed point x̃∗ and the sequence (σ̃n)n generated by (3.13) with the choice of the coefficient sequences
satisfying the conditions in Theorem 3.7, converges to x̃∗, then without knowing and calculating x̃∗,
we can determine an upper bound for x̃∗ by (3.7) as follows:

∥x∗ − x̃∗∥ ≤ 1 + δ

1 − δ
ε = 1 + 1/4

1 − 1/4(0.5416666) = 0.902730
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We get that the fixed point of S̃ as x̃∗ =
(

1

3
k(k−1)

2 4k

)
k

. Figure 3 shows that the sequence (σ̃n)n

generated by (3.13) converges to x̃∗. In addition, ∥x∗ − x̃∗∥ = 1177
3992 = 0.2948. That is, (3.7) is

satisfied.
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Figure 3. Graphs showing the values of ∥σn −x̃∗∥1, ∥σ̃n −x̃∗∥1, ∥σ̃n∥1, and ∥x̃∗∥1, for n ∈ {1, 2, ..., 10}

5. Conclusion

In this study, the convergence result of the SNIA iterative algorithm introduced by Chauhan et al. [13]
has been revised and improved while simultaneously obtaining its weak stability and data dependency.
The findings of this study are substantiated by nontrivial examples in an infinite dimensional Banach
space, thereby bridging the gap between practice and theory. Based on the graphs presented, it
has been observed that the algorithm yields superior results in numerical examples. Furthermore,
the algorithm’s convergence, which does not necessitate additional conditions (except for convexity)
on coefficient sequences, sets it apart from the aforementioned algorithms. Consequently, it can be
concluded that the algorithm with the stability and data dependency properties is more effective for
quasi-contractive mappings when compared to the algorithms discussed in this study, based on both
theoretical and practical outcomes. In future studies, researchers can examine the convergence of the
SNIA iterative algorithm for different mapping classes under appropriate conditions. Moreover, they
can compare the algorithm’s performance speed with existing algorithms in the literature for these
mapping classes.
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[12] A. Keten Çopur, E. Hacıoğlu, F. Gürsoy, New insights on a pair of quasi-contractive operators in
Banach spaces: Results on Jungck type iteration algorithms and proposed open problems, Mathe-
matics and Computers in Simulation 215 (2024) 476-497.

[13] S. S. Chauhan, N. Kumar, M. Imdad, M. Asim, New fixed point iteration and its rate of conver-
gence, Optimization 72 (9) (2023) 2415-2432.
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