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The imperative for alternative energy sources has become increasingly 

evident due to the rising impacts of climate change and greenhouse gas 

emissions. Biodiesel has emerged as a prominent contender among 

alternative fuels, offering advantages such as low toxicity, 

biodegradability, and favorable emission profiles. However, its 

production faces significant cost burdens, mainly from the expense of 

vegetable oil. Mustard, with its high oil content in seeds, presents a 

promising alternative oil source for biodiesel production. This study 

evaluates the effects of blending biodiesel derived from Brassica rapa ssp. 

Oil turnip seeds with diesel fuel on fuel properties and engine 

performance. Transesterification was employed for biodiesel production, 

and experimental fuels were prepared with varying biodiesel ratios. 

Engine performance tests, energy analyses, and uncertainty analyses were 

conducted, revealing a decrease in torque, power, and an increase in 

specific fuel consumption with higher biodiesel ratios. Energy analysis 

showed an increase in fuel energy flow with engine speed. Overall, the 

study contributes to the understanding of Brassica rapa biodiesel 

production and its application in internal combustion engines. 

Keywords: biodiesel, energy analyses, engine performance, diesel engine,fuel properties. 

1. Introduction 

In contemporary times, the imperative for the 

development of alternative energy sources has 

been underscored by the escalating impacts of 

climate change and the concomitant rise in 

greenhouse gas emissions. This pressing need 

is further compounded by the swift depletion 

of fossil fuel reservoirs [1-2] and the enactment 

or prospective enactment of legislative 

measures aimed at curbing vehicular exhaust 

emissions, prompting numerous scholars to 

delve into the exploration of alternative fuel 

utilization modalities [3]. Biodiesel has 

emerged as a prominent contender among 

alternative fuels, with blends of biodiesel and 

diesel fuel garnering significant popularity. 

Renowned for its applicability in internal 

combustion engines, biodiesel offers distinct 
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advantages over other forward-looking 

alternative fuels owing to its attributes of low 

toxicity, biodegradability, favorable 

lubricating properties, and commendable 

emission profiles [4-5]. However, the 

production of biodiesel is beset by significant 

cost burdens, primarily stemming from the 

production expenses associated with vegetable 

oil. Notably, the procurement of seeds, 

constituting 78% of biodiesel production costs, 

accounts for a substantial portion of the overall 

expenditure [6]. Predominantly, palm oil 

(Elaeis oliefera), soybean (Glycine max), 

sunflower (Helianthus annuus), and rapeseed 

(Brassica napus) represent the lion's share of 

global oil production, collectively exceeding 

80% [7-8]. These crops, primarily cultivated 

for alimentary purposes, potentially engender 

competition between biodiesel production and 

food provision sectors. Furthermore, the 

utilization of non-edible oils for biodiesel 

synthesis is constrained by the indirect impact 

on food production resultant from the 

utilization of arable land [3]. Consequently, 

researchers are increasingly exploring avenues 

beyond traditional food manufacturing sectors 

in pursuit of alternative high-quality oil 

sources for biofuel applications [7-8]. One 

such promising source is mustard, an ancient 

spice dating back to antiquity. With a rich 

historical legacy tracing back 3000 years [9], 

mustard finds versatile application in both 

culinary and industrial domains, particularly 

within the spice and energy sectors. Key 

species within the mustard genus, including 

Sinapis alba syn., Brassica alba, S. arvensis 

syn. B. arvensis, B. juncea, B. rapa syn. B. 

campestris, and B. nigra, constitute integral 

components of Turkey's indigenous flora [10]. 

These species boast diverse compositions, 

featuring glycosides, arachidic acid, sinabin, 

lignoceric acid, among other compounds, in 

their oils. Notably, the pronounced presence of 

erucic acid renders these oils unsuitable for 

culinary purposes [11]. Previous investigations 

have revealed a significantly elevated 

percentage (25-35%) of seed oil within 

Turkey's mustard flora [12-14]. In light of 

these findings, it is evident that mustard holds 

considerable promise as a viable alternative oil 

source for biodiesel production. Addressing 

the burgeoning cost concerns associated with 

biodiesel manufacturing necessitates 

innovative approaches that capitalize on the 

unique attributes of mustard and other non-

traditional oil sources, thereby fostering 

sustainable advancements within the realm of 

biofuel production. Eryilmaz and Öğüt (2011) 

[15] conducted a study to examine the 

performance impacts of various blending ratios 

of mustard oil biodiesel in a diesel engine. The 

formulated fuels were evaluated in a four 

stroke, three cylinders, 60 HP, direct injection 

diesel engine, and compared with conventional 

diesel fuel in terms of torque, power, fuel 

consumption, and smoke density. It was 

elucidated that the maximum torque for all fuel 

blends, namely B100, B20, and B2, was observed 

at 1200 min-1. The investigations involving 

diesel, B100, B20, and B2 blends yielded the 

highest overall efficiencies of 34.348% at 1300 

min-1, 36.103% at 2000 min-1, 36.911% at 

1200 min-1, and 34.565% at 1200 min-1, 

respectively. It was noted that as the blending 

ratios increased, the exhaust smoke emissions 

exhibited greater reductions across all engine 

speeds when compared to conventional diesel 

fuel. Aysal et al. (2014) [16] examined the 

impact of biodiesel fuel derived from mustard 

oil-diesel blends at different proportions on 

engine performance and exhaust emissions. 

With increasing biodiesel ratio, there was a 

decrease in both power and torque output of 

the internal combustion engine, accompanied 

by a rise in SFC. Furthermore, comparisons 

were made among the NOx and CO emissions 

of biodiesel, diesel fuels, and biodiesel-diesel 

fuel blends. It was observed that the emission 

values of mustard oil biodiesel were lower than 

those of diesel fuel. Bannikov (2011) [17] 

investigated the combustion and emission 

characteristics of biodiesel derived from 

mustard oil in a single-cylinder, 4-stroke, 

direct injection, naturally aspirated, 5 kW, air-

cooled diesel engine, and compared them with 

those of diesel fuel. The findings revealed that 

the utilization of mustard oil biodiesel led to an 

increase in specific fuel consumption, a 

decrease in NOx emissions and smoke density, 

a slight increase in CO emission, and no 

significant change in HC emission when 

compared to diesel fuel. Additionally, 
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combustion analysis indicated that biodiesel 

usage resulted in earlier injection initiation, a 

shortened ignition delay period, a reduction in 

maximum heat release rate, and cylinder 

pressure. Yeşilyurt et al. (2019) [18] employed 

the CCD response surface methodology to 

optimize biodiesel production from yellow 

mustard seed oil. The study encompassed 30 

experiments aimed at examining the effects of 

various variables on biodiesel yield. A second-

degree polynomial model effectively 

forecasted the biodiesel yield, achieving a 

96.695% yield under the optimized conditions. 

These findings underscored the efficacy of 

RSM in maximizing biodiesel yield through 

the fine-tuning of reaction parameters. 

Mitrovic et al. (2020) [19] undertook a study 

highlighting the potential favorable effects of 

white mustard oil-based biodiesel on 

sustainable development, akin to other oilseed 

crops. These effects encompass bolstering 

energy security, stimulating economic growth, 

and advocating environmental conservation. 

Nevertheless, the authors underscored the need 

for additional research and analysis to conduct 

a thorough comparison between white mustard 

oil and alternative feedstocks for biodiesel 

production. 

The primary objective of this study is to 

evaluate the effects of blending biodiesel 

derived from Brassica rapa ssp. Oil turnip 

seeds, specifically the Br-2-Kaan variety 

candidate, with diesel fuel on fuel properties 

and engine performance. The central aim of 

this research is to assess the feasibility and 

energy efficiency of these biofuel blends. 

Emphasis is placed on the utilization of 

Brassica rapa ssp. Oil turnip seeds as an 

alternative source for biodiesel production. 

This plant species holds considerable 

significance due to its widespread presence in 

Turkey's natural flora and its high oil content 

in its seeds. The study investigates the impact 

of biodiesel fuel obtained from this plant on 

crucial parameters such as engine performance 

and energy analysis. 

The contributions of this study to the field can 

be delineated as follows: 

• It examines the viability of Brassica 

rapa ssp. oil turnip seeds as a potential 

alternative oil source for biodiesel production, 

emphasizing the significance of this plant 

within the bioenergy sector. 

• Through the evaluation of engine 

performance, it investigates the energy 

efficiency and environmental ramifications of 

biodiesel-diesel fuel blends. 

By employing methods such as energy analysis 

and uncertainty analysis, it provides a more 

comprehensive assessment of the energy 

balance and efficiency of biodiesel-diesel 

mixtures. 

2. Materials and Method 

Transesterification was employed for the 

production of biodiesel from Brassica Rapa oil 

at the pilot production facility established at 

Selçuk University Faculty of Agriculture, 

Department of Agricultural Machinery and 

Technologies Engineering [20]. For biodiesel 

synthesis, a mixture comprising 20% crude 

Brassica Rapa oil, CH3OH, and 3.5g NaOH per 

liter of oil was utilized to generate methoxide. 

The mixture underwent heating to 55 ºC, 

followed by the addition of methoxide, and an 

8-hour incubation period for glycerol 

precipitation and subsequent separation. 

Subsequently, the temperature was raised to 

75ºC to eliminate the remaining methyl alcohol 

from the crude biodiesel. Washing was carried 

out at 50ºC, with the wash water being 

separated from the methyl ester. Finally, the 

drying process at 100ºC yielded biodiesel. 

Material fuels were prepared by incorporating 

Brassica Rapa biodiesel at volumetric ratios of 

5%, 10%, 20%, and 50% into diesel oil. Diesel 

fuel sourced from Shell, complying with EN 

590 standards, was employed. The properties 

of the material fuels are comparatively 

illustrated in detailed in Table 1. 

In the experiments, an internal combustion 

diesel engine with a power of 15 HP and torque 

of 60 Nm was utilized. The experiments were 

conducted in accordance with EN 1231 

standards to measure specific fuel 

consumption, torque, and power values. The 

ester content of the biodiesel produced in this 

study is determined to be 96.5%. 

3. Estimation of Uncertainty and Error 

Analysis 

Uncertainty analysis is used in experimental 

studies to determine the accuracy and 

repeatability of data. 
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Table 1. Measurement results of material fuels 

Typical 
The 

Monads 

Turnip 

Oil 
B100 D100 B50D50 B20D80 B10D90 B5D95 

Standards 

EN 

14214 

ASTM 

D6751 

Density 

(at 15°C) 
g/cm3 908.5 862.7 827.2 848.9 836.7 830.6 829.7 

0.86-

0.90 

- 
 

Kinematic 

Viscosity 

(at 40°C) 

mm2/s 42 5.9 2.9 3.96 3.47 3.26 3.01 3.5-5.0 
1.9-6.0 
 

pH _______ 5 5 5 5 5 5 5 - - 

CFPP °C -12 -4 -11 -6 -7 -8 -9 - 
Min. 

+5 

Cloud 

Point 
°C -10 -1.5 -7.8 -3 -5 -6 -7.1 - 

-3 to -

12 

Pour 

Point 
°C -15 -16 <-20 <-20 <-20 <-20 <-20 - 

-15 to -

16 

Freezing 

Point 
°C -17 -18 <-20 <-20 <-20 <-20 <-20 - - 

Calorific 

Value 
Cal/gr - 9833 11053 10242 10869 10882 10906 - - 

Flash 

Point 
°C - 130 68 100 80 77 73 120 130 

Water 

Content 
ppm 302.11 173.63 19.64 137.29 109.65 94.61 52.36 500 500 

Color ASTM 2.7 2.2 0.7 1.7 1.5 1.3 1.2 - - 

Copper 

Rod 

Corrosion 

_______ 1a 1a 1a 1a 1a 1a 1a Class 1 
No.3 

max. 

 

Thus, it may be possible to identify the sources 

of uncertainty and to reduce the amount and 

ratio in the system. It is calculated by Equation 

of n independent variables (y1,…, yn) and 

uncertainty ratios (z1, …, zn). (1) [21, 22]. 

𝑊𝑅 = [(
𝜕𝑅

𝜕𝑦1
𝑧1)

2

+ (
𝜕𝑅

𝜕𝑦2
𝑧2)

2

+

⋯ … … . + (
𝜕𝑅

𝜕𝑦𝑛
𝑧𝑛)

2

]
1/2

             (1) 

Based on the above equation, the state of the 

uncertainty ratio equations for the braking 

power of the motor test setup Eq. (2). Where zτ 

and zn are the uncertainty ratios of the braking 

torque and engine speed [23]. 

𝑊𝑝𝑏 = [(
𝜕𝑝𝑏

𝜕𝑛
𝑧𝑛)

2

+ (
𝜕𝑝𝑏

𝜕𝜏
𝑧𝜏)

2

]
1/2

            (2) 

Below is a power calculation for D100 fuel. 

𝑃 =
𝑛∗𝐿∗𝐹

9549
(𝑘𝑊)              (3) 

Moment is measured in Nm. Speed is 

measured in min-1. Power is measured in watts. 

n: 1000 min-1 ± 50 

P: 7.483 HP = 7.483 / 1.36 = 5.503 kW 

L: 0.35 m±0.01 

F: 150.135 N ± 0.01 

∂P

∂F
=

n∗L

9549
=

1000∗0.35

9549
= 0.037            (4) 

∂P

∂L
=

n∗F

9549
=

1000∗150.135

9549
= 15.723            (5) 

𝜕𝑃

𝜕𝑛
=

𝐿∗𝐹

9549
=

0.35∗150.135

9549
= 0.006            (6) 

𝑊𝑃 = √[

(0,037)2 ∗ (0,01)2

+ (15,723)2 ∗ (0,01)2

+ (0,006)2 ∗ (50)2

]            (7) 

𝑊𝑝 = 0.317  

%𝑊𝑝 =
𝑊𝑝

𝑃
∗ 100 =

0.317

5.503
∗ 100 = 5.75%   (8) 

The results of uncertainty analysis are given in 

table 2 for all measurements. 

Error Bars give a general idea of how accurate 

measurement helps to show estimated error or 

uncertainty. This is done using the notation, the 

original chart, and the markings drawn on the 

data points. Error bars are plotted with 

uncertainty analysis in experiments. 

4. Energy Analysis 

Combustion process in internal combustion 

engines; It provides the movement of piston 
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Table 2. Results of uncertainty analysis 

Speed, 

min-1 
Power, 

% 

D100 B50D50 B20D80 B10D90 B5D95 

T, % 
SFC 

% 
T, % 

SFC 

% 
T, % 

SFC 

% 
T, % 

SFC 

% 
T, % 

SFC 

% 
1000 5.759 0.600 0.106 0.606 0.106 0.604 0.106 0.607 0.109 0.575 0.100 
1100 5.369 0.624 0.111 0.626 0.112 0.625 0.110 0.627 0.114 0.623 0.113 
1200 5.052 0.636 0.116 0.635 0.114 0.627 0.115 0.638 0.118 0.639 0.117 
1300 4.791 0.651 0.120 0.656 0.120 0.664 0.125 0.661 0.128 0.662 0.126 
1400 4.574 0.676 0.137 0.685 0.131 0.679 0.133 0.684 0.139 0.678 0.131 
1500 4.390 0.707 0.154 0.698 0.140 0.699 0.141 0.692 0.150 0.698 0.139 
1600 4.234 0.711 0.131 0.725 0.121 0.716 0.122 0.725 0.129 0.721 0.121 
1700 4.100 0.743 0.109 0.736 0.111 0.738 0.107 0.760 0.136 0.743 0.106 
1800 3.985 0.759 0.108 0.766 0.102 0.759 0.106 0.761 0.104 0.757 0.105 
1900 3.884 0.761 0.093 0.779 0.087 0.779 0.094 0.789 0.119 0.777 0.099 
2000 3.796 0.804 0.091 0.799 0.088 0.798 0.096 0.806 0.090 0.805 0.090 
2100 3.719 0.824 0.083 0.823 0.081 0.820 0.094 0.839 0.091 0.825 0.086 
2200 3.651 0.823 0.075 0.829 0.078 0.816 0.084 0.828 0.091 0.829 0.082 
2300 3.590 0.842 0.057 0.827 0.050 0.850 0.060 0.837 0.069 0.841 0.070 
2400 3.536 0.882 0.037 0.882 0.033 0.891 0.039 0.864 0.044 0.883 0.042 

by converting the chemical energy of the fuel 

into heat energy and converting the heat energy 

released into mechanical energy in the cylinder 

[24]. In internal combustion engines, not all of 

the fuel energy released as a result of the 

combustion of fuel can be converted into work 

[25]. Energy analysis gives an idea to calculate 

energy changes [26]. 

∑ 𝑚̇𝑖𝑛 = ∑ 𝑚̇𝑜𝑢𝑡              (9) 

𝑚̇𝑖𝑛: The inlet mass that consisting of air and 

fuel 

𝑚̇𝑜𝑢𝑡∶ The outlet mass consisting of exhaust 

gases 

𝐸̇𝑓𝑢𝑒𝑙 = 𝑊̇ + 𝑄̇𝑙𝑜𝑠𝑡            (10) 

𝐸̇𝑓𝑢𝑒𝑙: The fuel energy rate 

𝑊̇: Brake power 

𝑄̇𝑙𝑜𝑠𝑡: The lost energy rate 

𝐸̇𝑓𝑢𝑒𝑙 = 𝑚̇𝑓𝑢𝑒𝑙. 𝐻𝑢              (5) 

𝑚̇𝑓𝑢𝑒𝑙∶ Flow rate (Mass) 

Hu : Calorific value (Lower) 

The reason for the low calorific value of the 

fuel in this process is that the water released in 

the vapor phase at the end of combustion has 

the maximum combustion temperature [22]. In 

the literature, the calorific value (lower) of the 

fuel is used in calculations. 

𝑊 ̇ = (𝜏. 𝑛. 𝜋)/30              (5) 

5. Result and Discussion 

5.1. Engine torque 

The variation of torque values in the 

experiments performed at full load in the use 

of D100, B50D50, B20D80, B10D90 and B5D95 fuel 

mixtures is shown in Figure 1. Maximum 

torque (engine) was measured as 53.723 Nm in 

D100 fuel at 1200 min-1. Comparison to D100 

fuel, B50D50 fuel produced 3.639%, B20D80 fuel 

3.421%, B10D90 fuel 1.481% and B5D95 fuel 

0.437% less torque. 

 
Figure 1. Torque values related to engine speed 

 
Figure 2. Power values related to engine speed 

5.2. Engine power 

The variation of power values in the 

experiments performed at full load in the use 
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of D100, B50D50, B20D80, B10D90 and B5D95 fuel 

mixtures is shown in Figure 2. Maximum 

power (engine) was measured as 10.120 kW in 

D100 fuel at 2000 min-1. Comparison to D100 

fuel, B50D50 fuel produced 7.658%, B20D80 fuel 

6.511%, B10D90 fuel 3.705% and B5D95 fuel 

1.442% less power. 

5.3. Specific fuel consumption 

The variation of fuel consumption (specific) 

values in the experiments performed at full 

load in the use of D100, B50D50, B20D80, B10D90 

and B5D95 fuel mixtures is shown in Figure 3. 

Minimum fuel consumption (specific) was 

measured as 326.425 g/kWh in D100 fuel at 

1500 min-1. Comparison to D100 fuel, B50D50 

fuel used 10.475%, B20D80 fuel 8.967%, 

B10D90 fuel 7.184% and B5D95 fuel 2.309% 

more specific fuel consumption. 

 
Figure 3. Specific fuel consumption values related to 

engine speed 

 
Figure 4. Energy analytics of fuels at a maximum 

torque of 1200 min-1 

 
Figure 5. Energy analytics of fuels at a maximum 

power of 2000 min-1 

5.4. Energy analytics 

Figure 4 and Figure 5 show the energy analysis 

results for maximum torque and maximum 

power cycles of the experiments with material 

fuels. For all fuels, it was determined that the 

fuel energy flow increased with the engine 

speed. 

6. Conclusions 

In this study, biodiesel production was 

conducted using Brassica rapa ssp. Oily turnip 

seeds from the Br-2 (Kaan variety candidate) 

genotype. The oily turnip obtained from the 

Br-2 genotype underwent transesterification 

and was blended with biodiesel at volumetric 

ratios of 50%, 20%, 10%, and 5%. This 

resulted in the creation of experimental fuels 

denoted as D100, B50D50, B20D80, B10D90, and 

B5D95, respectively. The fuel properties were 

examined, and single-cylinder diesel engine 

performance tests, energy analyses, and 

uncertainty analyses were performed. The 

obtained data are presented graphically. In the 

test results, the maximum torque was measured 

as 53.723 Nm at 1200 min-1 for D100 fuel. 

Compared to D100 fuel, B50D50 fuel exhibited a 

3.639% decrease in torque, while B20D80 fuel 

showed a 3.421% decrease, B10D90 fuel 

displayed a 1.481% decrease, and B5D95 fuel 

demonstrated a 0.437% decrease. Similarly, 

the maximum power was measured as 10.120 

kW at 2000 min-1 for D100 fuel. Compared to 

D100 fuel, B50D50 fuel showed a 7.658% 

decrease in power, while B20D80 fuel exhibited 

a 6.511% decrease, B10D90 fuel displayed a 

3.705% decrease, and B5D95 fuel demonstrated 

a 1.442% decrease. This trend is attributed to 

the lower calorific value and higher viscosity 

of biodiesel, as indicated in Table 1. The 

decrease in torque and power correlates with 

the proportion of biodiesel in the blend fuels. 

The minimum specific fuel consumption in 

D100 fuel at 1500 min-1 was measured as 

326.425 g/kWh. Compared to D100 fuel, B50D50 

fuel showed a 10.475% increase in specific 

fuel consumption, while B20D80 fuel exhibited 

an 8.967% increase, B10D90 fuel displayed a 

7.184% increase, and B5D95 fuel demonstrated 

a 2.309% increase. This is attributed to the 

lower heating value of biodiesel compared to 
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D100 fuel, as shown in Table 1. The increase in 

specific fuel consumption is consistent with 

the ratio of biodiesel in the blended fuels. 

Energy analysis results are provided for the 

maximum torque speed of 1200 min-1 and the 

maximum power speed of 2000 min-1 for the 

experimental fuels. It was observed that as 

engine speed increased, fuel energy flow 

increased for all fuels. This is due to the 

independent nature of the lower calorific 

values of the fuels relative to engine speed, 

resulting in an increase in fuel flow rate with 

engine speed. 

In conclusion, the addition of Brassica rapa 

ssp. biodiesel to diesel fuel at volumetric ratios 

of 5%, 10%, 20%, and 50% yielded negative 

results in terms of performance. While these 

test fuels can be utilized without engine 

modifications, they are likely to incur losses in 

engine performance. This study contributes to 

the literature on Brassica rapa biodiesel 

production and its application in internal 

combustion engines. 
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In this study, an artificial neural network (ANN) based method is 

discussed to determine the aerodynamic performance of propellers used 

for Unmanned Aerial Vehicles (UAVs). Here, wind tunnel test data was 

used to obtain data for propellers without test data. First, wind tunnel test 

data was converted to a specific format using Python and modeling was 

done using ANN. With this modeling process, it was seen how close the 

model obtained with artificial neural networks produced results to the 

data obtained from wind tunnel tests. This study allows for more precise 

analysis of the aerodynamic performance of UAV propellers and 

optimization of their design. This approach provided a very accurate 

modeling of the aerodynamic performance of UAV propellers and took 

an important step towards determining the performance of propellers 

without wind tunnel test data. The obtained data constitutes a valuable 

resource for optimizing the design and performance of UAVs. 

Keywords: Unmanned Aerial Vehicles (UAV), Propeller, Artificial Neural Network, 

Modeling, Internal-Combustion Engine. 

1. Introduction 

Wind tunnel tests and simulations play an 

important role in evaluating the design and 

performance of UAVs. Wind tunnel tests are 

used to determine the aerodynamic properties 

of the UAV and optimize its performance. 

Additionally, thanks to simulations, different 

flight scenarios can be modeled and the 

behavior of the UAV can be predicted. One of 

the important elements affecting the 

aerodynamic performance of UAVs is 

propellers. Propellers enable the UAV to stay 

in the air by converting the power produced by 

the engine into thrust force. Therefore, the 

aerodynamic design of propellers must be done 

carefully, considering factors such as 

efficiency and noise. During the propeller 

selection process of unmanned aerial vehicles 

(UAV), a detailed analysis is made using 

various methods and techniques. The basis of 

these analyzes are research and testing 

methods such as computer-aided design 

(CAD), fluid dynamics (CFD) analyses, 

artificial neural networks, machine learning, 

flight tests and wind tunnel experiments [1]. 

Artificial neural networks and machine 

learning techniques are used to predict and 
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optimize propeller performance. These 

technologies, which have the ability to learn 

from complex datasets, enable more precise 

and efficient results in propeller design. Flight 

tests are important to verify propeller 

performance in real-world conditions and 

optimize the design. In these tests, the UAV is 

flown in different weather conditions and 

altitudes to evaluate its propeller performance 

[6]. Finally, wind tunnel tests are also used in 

the propeller selection process. In these 

experiments, the aerodynamic properties of 

UAV propellers are tested in different wind 

conditions and their performance is evaluated 

[3]. Integration of these various methods is 

critical in determining the optimal propeller 

design and ensuring optimum performance of 

the UAV. In this study, artificial neural 

networks and machine learning applications 

were preferred to determine the aerodynamic 

behavior of UAV propellers. Technologies 

such as artificial neural networks and machine 

learning play an important role in simulations 

and data analysis. Artificial neural networks 

are artificial intelligence models capable of 

learning from complex datasets. Machine 

learning, on the other hand, is based on the 

ability of algorithms to learn from datasets and 

recognize patterns. These technologies are 

used to obtain more precise results in UAV 

design and performance analysis and in 

determining the aerodynamic behavior of 

propellers. In order to determine the 

aerodynamic performance of propellers for 

unmanned aerial vehicles, datasets will be 

compared using artificial neural networks and 

methods will be followed to obtain data 

representing the real environment. The focus is 

on integrating wind tunnel test data of UAV 

propellers and thus achieving the closest result 

to reality. 

2. Literature Review 

Gamble, investigated the effects of Reynolds 

number on propeller performance in this study. 

It was found that the geometric features of the 

propeller, such as shape, twist, and blade 

chord, are highly dependent on Reynolds 

number. In wind tunnel tests, propellers 

produced by APC, which include glass-filled 

epoxy for high torsional strength, were used 

[1]. 

 
Figure 1. APC Propeller [1] 

Figure 1 shows a propeller belonging to the 

APC propeller. APC 18x12 and APC 18x8 

propellers were tested at 7 different rotation 

speeds for different Reynolds numbers ranging 

from 400,000 to 502,000 and 1,080,000 to 

1,213,000 respectively. It has been found that 

efficiency, thrust coefficient, power coefficient 

and slope increase when the number of 

Reynolds increases. It was determined that the 

efficiency of the APC 18x12 propeller 

increased by 5% by increasing the Reynolds 

number from 400,000 (1,700 rpm) to 

1,155,000 (4850 rpm). It can be seen that the 

same thrust force is produced at lower speeds 

as the pitch is reduced while the diameter is 

kept constant. In other words, as the pitch or 

pitch/diameter ratio increases, efficiency 

increases, and the propeller produces thrust at 

higher advance rates. In conclusion, 

experimental results show that Reynolds 

number has a strong effect on small propellers. 

Therefore, the designer must take the Reynolds 

number into account. 

 

 
Figure 2. Wind Tunnel performance of APC 14×10 

Thin Electric Propeller: (a) Thrust coefficient (Ct), (b) 

Power coefficient (Cp) [2] 

Dantsker and colleagues observed from wind 

tunnel performance tests that, for a given 
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propeller diameter, as the pitch angle 

increases, the thrust, power, and efficiency 

coefficient curves shift upwards and to the 

right. Figure 2 shows the Ct and Cp values of 

the 14x10 APC propeller as they vary 

according to the Advance Ratio from the wind 

tunnel test results. This observation indicates a 

trend where, as the advance ratio of a propeller 

increases, the thrust, power, and efficiency 

coefficients tend to have higher values, which 

is an expected general trend. It should be noted 

that for propellers with high diameter and pitch 

ratio, the performance curves are incomplete 

due to the 80 ft/s speed limit set by the 

propeller balance cover's structural design. 

Similarly, it is expected that, for a given 

propeller diameter, increasing the pitch angle 

will result in higher static (zero-speed) thrust 

and power coefficients. This study focuses on 

how propellers behave under different 

conditions in real-world environments [2]. The 

Blade Element Momentum (BEM) model is 

presented and used for performance 

predictions of sUAS propellers. Several 

corrections have been proposed for the BEM 

model to capture the unique characteristics of 

rotating flow in low Reynolds number 

propellers. Notably, corrections such as the use 

of aerodynamic databases produced by 

XFOIL, stall corrections, Mach corrections, 

and the inclusion of the model’s angular flow 

components are included. For the specific 

propeller geometries addressed in this study, 

the BEM model predictions follow the 

expected general trends for fixed-pitch 

propellers. The BEM model has been validated 

through a series of wind tunnel tests, and 

positive comparisons have been made between 

the predicted and measured theoretical trends. 

In Figure 3, part (a) presents the relationship 

between Ct, which likely represents a thrust 

coefficient, and J across different 

configurations: "10x5," "10x6," and "10x7." 

Both analytical (solid lines) and experimental 

(markers) results are shown for each 

configuration. The analytical results are 

represented by continuous lines, with each 

color indicating a different blade or propeller 

type. The experimental data, depicted with 

error bars, generally aligns well with the 

analytical curves but shows more variance. In 

part (b), the relationship between Cq, likely a 

torque coefficient, and J is illustrated for the 

same configurations. The torque coefficients 

(Cq) values are lower than those of thrust 

coefficients (Ct), suggesting that the torque 

coefficient is smaller in magnitude. While the 

analytical and experimental trends are similar, 

the experimental data appears to have a larger 

error margin. Overall, both graphs demonstrate 

that the analytical models generally match the 

experimental data, although there are some 

discrepancies and variations, indicating that 

experimental conditions or modeling 

assumptions may have impacted the results.  

 

 
Figure 3. Figure Analytical and experimental (a) thrust 

coefficients (Ct), (b) torque coefficients (Cq) for APC 

Propeller [3] 

McCrink and colleagues found similar results 

in their full-power tests to those reported in 

previous studies on small-scale propellers. A 

new constant Reynolds number test was 

introduced to demonstrate the scaling effects 

on propeller efficiency. Comparisons between 

experimental and model-based performance 

measurements highlight the importance of 

including Reynolds number dependence in the 
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analysis of small-scale thrust systems. The 

presented and validated BEM model is highly 

useful for propeller design for sUAS, 

especially since the operating Reynolds 

numbers of these propellers are low, where 

viscous effects are predominantly significant. 

Additionally, the general power model for 

sUAS thrust systems enables high-fidelity 

vehicle performance predictions for sUAS and 

determination of vehicle performance during 

flight tests and routine operations [3]. 

In his study, Bağçe, determined the 

performance of mini aircraft propellers 

through static and dynamic tests. A propeller 

testing setup was designed and assembled to 

evaluate the static performance of the 

propellers. This setup was also placed inside a 

wind tunnel. In the static tests, thrust, power, 

and efficiency values for four different 

Turbotek propellers were obtained as a 

function of propeller rotational speed. These 

data were compared with the calculation 

results from Turbotek, Computational Fluid 

Dynamics (CFD) analysis, and the static test 

results. In the dynamic tests, the variation of 

thrust coefficient, power coefficient, and 

efficiency values of these four Turbotek 

propellers as a function of advance ratio was 

obtained. The experimental results were 

compared with the analytical and CFD results 

provided by Turbotek, and the experimental 

results were found to be successful [4]. 

Demirhan analyzed the fuel consumption 

performance of a commercial aircraft using an 

artificial neural network model. The data were 

modeled using a feedforward neural network 

and trained with high-accuracy simulation data 

(operational flight plans). Subsequently, real 

flight data from the Quick Access Recorder 

(QAR) were used to adjust the model’s 

hyperparameters. Ten models with the least 

errors were selected and tested with a portion 

of the QAR data. After a statistical comparison 

among these ten models, the best model was 

chosen. Finally, a classification process for 

flights with fuel consumption prediction errors 

exceeding the three-sigma limit was described. 

Although the model was created using only 

five key parameters (takeoff weight, air 

distance, average cruise Mach number, altitude 

parameter, and fuel mileage deviation), it 

demonstrated a high level of accuracy. 

Additionally, the study proposes an additional 

method for identifying abnormal fuel 

consumption [5]. 

In Figure 4, a propeller motor setup within a 

wind tunnel is shown. This setup is used to test 

the aerodynamic performance of the propeller. 

The large fan at the end of the tunnel generates 

airflow through the tunnel, allowing for 

analysis of the propeller's effects. Most UAVs 

use propellers operating at low Reynolds 

numbers ranging from 50,000 to 100,000. 

Although sufficient data for these propellers 

are lacking, the performance of propellers for 

larger aircraft is well-documented. Therefore, 

in this study, tests were conducted at the 

University of Illinois, Urbana-Champaign, 

where the performance of 79 propellers with 

diameters ranging from 9 to 11 inches was 

determined, and static thrust measurements 

were taken. The subsonic wind tunnel at the 

University of Illinois, Urbana-Champaign, is 

reported to have a rectangular cross-section of 

2.8 x 4.0 ft (0.853 x 1.219 m) and a maximum 

flow speed of 160 mph (71.53 m/s) [6]. 

 
Figure 4. Wind Tunnel Used for Propeller Testing [6] 

Whitmore and colleagues (2012) revisit and 

enhance the classical first-order design tool 

known as the Blade Element Momentum 

(BEM) theory. Blade element theory analyzes 

a propeller blade by dividing it into segments 

and evaluating each element individually. In 

Figure 5, the relationship between the advance 

ratio and both the thrust coefficient and the 

power coefficient is shown. In part (a), the 

thrust coefficient is compared across test data, 

Analytical BEM, and Nonlinear BEM models. 

The test data, displayed with error bars, 

generally aligns well with both models, though 

there is a slight divergence at higher advance 

ratios. In part (b), the power coefficient is 
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similarly compared, indicating good 

agreement between the test data and both 

models. However, slight discrepancies appear 

as the advance ratio increases. Overall, both 

graphs demonstrate that the Analytical and 

Nonlinear BEM models accurately capture the 

trends in the test data, with minor deviations at 

higher advance ratios. However, blade element 

theory alone lacks the capability to predict the 

inflow velocity required to complete the flow 

field of the propeller. By combining blade 

element and momentum theories, a combined 

low-order prediction tool known as the Blade 

Element Momentum (BEM) theory is created. 

The BEM theory uses momentum theory to 

calculate the local induced velocity and 

incorporates this information into the blade 

element model. The conventional method used 

to close the nonlinear BEM equations involves 

a small local angle of attack and assumptions 

of low local induced drag across all sections as 

proposed by McCormick. McCormick also 

assumes that the amount of local induced drag 

negligibly reduces the local propeller thrust 

coefficient. While these assumptions allow for 

a closed-form solution, they are known to be 

inaccurate at high advance ratios and for the 

inner radius of the blade. This paper presents a 

nonlinear solution method that avoids these 

flawed and simplifying assumptions and offers 

a general improvement over known analytical 

methods for the BEM model. Calculations 

using two BEM solution methods are 

compared with wind tunnel test data collected 

for a small radio-controlled (RC) aircraft 

propeller. The solution methods are compared, 

and it is shown that the traditional linear 

solution predicts propeller performance with 

high accuracy, especially at high advance 

ratios [7]. 

Hang Zhu and colleagues (2021) present an 

analysis of a model to calculate the 

requirements and aerodynamic performance of 

propellers for rotorcraft unmanned aerial 

vehicles (UAVs). Based on blade element 

momentum theory, the aerodynamic forces on 

a blade element are examined and utilized. The 

symbolic NACA0012 airfoil model is used as 

an example to validate the model's accuracy. 

An experimental system designed and 

constructed to test the aerodynamic 

 

 
Figure 5. Comparisons of a) Thrust Coefficient (Ct) 

and b) Power Coefficient (Cp) for the APC 8x8 Thin 

Electric Propeller [7] 

performance of propellers is used to evaluate 

six different types of APC propellers. 

Additionally, data processing software is 

developed to perform single-step calculations 

of three propeller parameters (airfoil drag 

power, induced velocity, and efficiency) for 

plotting aerodynamic graphs. The results of the 

experiment show that the thrust and torque of 

the propeller increase with rotational speed, 

propeller diameter, and pitch. The newly 

developed system and software provide more 

precise torque measurements and greater 

stability under current experimental 

conditions. Experimental data, including 

propeller speed, thrust, and torque, are used to 

analyze the aerodynamic performance of APC 

propellers. The chosen propeller type for the 
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experiment is one of the most commonly used 

for UAVs, making the experimental data more 

convincing for assisting in propeller selection 

for UAVs [8]. 

In their 2021 study, Zbigniew Czy and 

colleagues investigate the impact of propeller 

geometry on the aerodynamic performance of 

propellers. In Figure 6, the Thrust/Power ratio 

is shown for different PWM ratios. One of the 

factors affecting propeller performance is the 

propeller pitch. This parameter indicates the 

distance a propeller will advance during one 

rotation. The key aspect is to determine the 

pitch at which the propeller performance is 

optimal. In this study, the aerodynamic 

performance of propellers with different 

pitches is tested using a wind tunnel, and 

experimental results are obtained. The tests 

were conducted in a subsonic wind tunnel. As 

a result of the study, the values of 

dimensionless coefficients for thrust force, 

torque, power, efficiency, and thrust-to-power 

ratio were calculated. The results allow for the 

selection of the most suitable solution when 

these coefficients are used as criteria. It is 

shown that there is a decrease in the force 

produced per unit power at higher airflow 

speeds; however, high-pitch propellers were 

observed to perform better at higher airflow 

speed ranges [9]. 

Onay and colleagues (2012) compared the 

design, analytical-based analysis results, and 

performance test results of two propellers 

intended for unmanned aerial vehicles 

(UAVs). In Figure 7, the comparison of results 

obtained through BEM and experimental 

methods for the XOAR 26x12 propeller is 

shown. Dynamic tests of the two UAV 

propellers were conducted in a wind tunnel and 

compared with the results of the Blade Element 

Momentum (BEM) analysis. The study 

revealed that the results obtained from 

Computational Fluid Dynamics (CFD) closely 

matched the BEM analysis results. This 

indicates that the BEM analysis method can be 

used for propeller optimization [10]. 

In their 2024 study, Xiaojing Wu and 

colleagues investigated the efficiency of 

electric propulsion systems used in unmanned 

aerial vehicles (UAVs). 

The study highlights the conflict between 

accuracy and design efficiency in optimization 

designs when using Computational Fluid 

Dynamics (CFD) and Propeller Theory 

methods. To address this, the study introduces 

a high-accuracy artificial neural network-

based optimization framework for electric 

aircraft propellers. 

 

 

 

 
Figure 6. Thrust-to-Power Ratio as a Function of 

Advance Ratio for the Tested Propeller Set at Different 

PWM Values: (a) 40%; (b) 60%; (c) 80%; (d) 90% [9]. 
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Figure 7. Comparison of Thrust Coefficient (Ct) 

Values Obtained Experimentally and with the Blade 

Element Momentum (BEM) Analysis Method for the 

XOAR 26x16 Propeller [10] 

This method is based on high-accuracy CFD 

numerical simulations and combines low-order 

Blade Element Momentum Theory (BEMT) 

knowledge with fewer CFD simulations to 

achieve higher model accuracy. This method 

improves the propeller’s cruising efficiency 

from a point of 82.3% designed by CFD and 

BEMT to 87.1% using the newly employed 

method. It has been shown that this method 

offers advantages in optimization effectiveness 

and efficiency compared to single-order 

optimization approaches [11]. 

3. Applications 

Obtaining a Wind Tunnel Data Set 

Propeller tests were conducted in the UIUC 

low-turbulence subsonic wind tunnel. The 

wind tunnel is an open-return type with a 7.5:1 

contraction ratio. Here, many variable sizes 

and pitches of the APC propeller were tested. 

These tests were carried out by changing many 

parameters such as RPM and Speed of the 

propellers. As a result of these tests, UIUC has 

compiled the wind tunnel test results into a test 

data set and shared it with the companies using 

this propeller. 

Artificial Neural Network Model 

The Artificial Neural Network (ANN) model is 

a model generally used in the fields of machine 

learning and artificial intelligence. ANN is a 

computational model inspired by the 

functioning of biological neural networks and 

is used to solve various complex problems. In 

this study, the artificial neural network (ANN) 

model will be established with wind tunnel 

data. Here, the artificial neural network model 

will be taught wind tunnel test data of 

propellers of different sizes and different pitch 

combinations, and as a model output, it will be 

aimed to predict propeller combinations 

without wind tunnel test data with the help of 

the wind tunnel test data model. Here, while 

the model is being established, changes will be 

made to the model according to the state of 

learning the test data of the model, and the 

most optimum artificial neural network model 

will be found. 

Creating Wind Tunnel Models 

Thrust coefficients (Ct) and Power coefficients 

(Cp) values were arranged before creating the 

model according to the variable RPMs in 

different propeller diameters and pitch 

combinations in the Wind Tunnel data set. This 

data Set is divided into Ct/Cp for “Sport” type 

propeller wind tunnel and Ct/Cp for “Thin 

Electric” type propeller wind tunnel. Before 

creating wind tunnel models, the data will be 

examined and the necessary data editing 

procedures for the models have been carried 

out. For the use of APC propellers in the 

modeling of propellers with variable diameter 

and pitch combinations tested in the wind 

tunnel, there are actual test data in the wind 

tunnel regarding 30 different diameter and 

pitch combinations of the "Sport" propeller 

type propellers between 1000 RPM and 10000 

RPM. In addition, there are actual test data 

performed in the wind tunnel on propellers of 

the “Thin Electric” propeller type, in the range 

of 1000 RPM and 10000 RPM, in 34 different 

diameter and pitch combinations. These data 

are arranged so that the “Sport” and “Thin 

Electric” type propeller data are side by side in 

the format “RPM J V Ct Ct_Predited Cp 

Cp_Predicted Typed p”.  

APC Propeller Sport Type Data Set Ct 

(Thrust Coefficient) Prediction Model 

Creation 

With the wind tunnel data set, first a model will 

be created using the wind tunnel data set for the 

“Sport” type propeller. Before creating the 

model, the independent variables to be used in 

the training process of the model were 

determined. These variables are the X_train 

dataset. “RPM J Predicted_Ct Diameter Pitch 

V” values will be used for the x_train data set. 

These values are the features given as input to 
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the model and help the model estimate the Ct 

value for the wind tunnel by using these 

features. The reason why these values were 

chosen as x_train is that these values are the 

main factors that determine propeller 

performance. RPM (number of revolutions), J 

(advance coefficient), Diameter (diameter), 

Pitch (pitch) and V (speed) are important 

features that directly affect the performance of 

the propeller. It is important for the model to 

learn these factors that determine the estimated 

Ct value. Y_train training set is the dependent 

variable that the model tries to learn during the 

training process. So, Ct will be used for 

y_train. While determining the 

hyperparameters of the model, different 

combinations were used, and the models were 

tested. In this way, the parameters were 

finalized by trial-and-error method. The 

hyperparameters used for the Wind Tunnel 

"Sport" type propeller Ct prediction model are 

as follows: 

• 5 Layers  
• 1 Input Layer, 3 Layers, 1 Output Layer  
• Batch Size 16   
• 1000 Epochs, 
• 256 Neurons in layers except Output 

Layer   
• Mean Squared Error (MSE) Loss 

Function  
• ReLU Activation Function  
• Adam Optimization Algorithm 
• Standard Scaler 
• Validation (X_test, y_test)  
• Test Size 1%  
With these determined parameters, the 

artificial neural network (ANN) model for the 

wind tunnel was trained. 

For the artificial neural network (ANN) model 

created for wind tunnel Ct prediction, the 

number of layers and the number of neurons in 

the layer were adjusted to be the most optimum 

values at which the model would perform best, 

based on previous studies and trial and error 

method. According to the created model 

"Epochs" values, the point at which the model 

performs best will be determined. 

Accordingly, the “Epochs” value will be 

determined. 

When the loss function and R2 performances 

of the models are examined according to 2 

different "Epochs" values, Model 1 has lower 

loss function performance and R2 score. This 

shows that Model 1 performs better. When 

evaluating the number of "Epochs", it is seen 

that there is no need for more "Epochs" values 

since the performance of the model is quite 

good for 1000 "Epochs". 

Table 1. Wind Tunnel “Sport” Ct Sequential Model 

Structure 

Wind Tunnel “Sport” Ct Sequential Model 

Layer (type) 
Output 

Shape 
Parameter 

Dense  252 1764 

Dropout 252 0 

Dense  168 42504 

Dropout 168 0 

Dense  84 14196 

Dropout 84 0 

Dense  42 3570 

Dropout 42 0 

Dense  1 43 

Total Parameter = 62077 
Trainable 

Parameter = 

62077 

Table 2. Comparison of model performances according 

to Wind Tunnel Ct Forecast Model “Epoch” Values 

according to Loss functions and R2 method 

Model No 1 2 

Model 

Type 

Wind Tunnel 

“Sport” Ct 

Forecast Model 

Wind Tunnel 

“Sport” Ct 

Forecast Model 
Epochs 1000 2000 
MAE 0.032211390 0.056139356 
MSE 0.001689722 0.0077393565 
RMSE 0.17947532 0.2369374517 
R2 0.99833180 0.993742881 

When the Loss-Validation Loss graphs are 

examined in Figure 8, it is seen that the Loss 

and Validation Loss values overlap at 1000 

"Epochs". In this case, it appears that the model 

is not overfit. The fact that the loss values 

encountered during the training of the model 

are low and stable shows that the model works 

well in both the training and validation phases. 

This helps predict that the model can give good 

results against new data. When the graphics are 

evaluated, model 1 will be preferred for the 

wind tunnel Ct prediction model since the 

model performance shows good performance 

for 1000 "Epochs" value. Model 1 will be 

trained with the wind tunnel data set. 



International Journal of Automotive Engineering and Technologies, IJAET 13 (4) 153-169         161 

 

 

 
Figure 8. Wind Tunnel “Sport” Type Propeller Ct 

Forecast Model (top) 1000 “Epoch” and (bottom) 2000 

“Epoch” (Blue - Loss, Orange - Validation Loss) 

APC Propeller Sport Type Data Set Ct 

(Thrust Coefficient) Prediction Model 

Training and Outputs 

After the hyper parameters and “Epochs” value 

determined for the wind tunnel Ct prediction 

model, the artificial neural network (ANN) 

model was trained with the data set. 

When the "Predictions-Real Values" graph in 

Figure 9 is examined, it is seen that the graph 

shows a linear relationship. This shows that the 

model's predictions are quite close to the actual 

values and the performance of the model is 

very good. The fact that the points are regularly 

distributed around the ideal line shows the 

consistency of the model predictions and that 

the model has learned the data set well in 

general. Using an artificial neural network 

(ANN) model, the performance of the model 

was evaluated with the data set. 

When the performance of the wind tunnel 

“Sport” Ct prediction model is examined, it is 

seen that the performance of the model is 

almost the same as the real data set. Here, it is 

predicted that the predicted performance of the 

model is good and that it will make a good 

prediction for different propeller 

combinations. 

 
Figure 9. Wind Tunnel “Sport” Ct Forecast Model 

Predictions-Real Values 

 
Figure 10. Wind Tunnel “Sport” Type Propeller Ct 

Forecast Model 10x10 Propeller 2000 RPM Model 

Performance 

APC Propeller Sport Type Data Set Cp 

(Power Coefficient) Prediction Model 

Creation 

Wind tunnel data set was used to create the 

wind tunnel “Sport” Cp prediction model. 

While creating the model and determining the 

model parameters, the previously created wind 

tunnel model was taken as reference. The 

hyperparameters used for the Wind Tunnel 

"Sport" type propeller Cp prediction model are 

as follows: 

• 5 Layers  

• 1 Input Layer, 3 Layers, 1 Output Layer  
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• Batch Size 4  

• 500 Epochs,  

• 256 Neurons in layers except Output Layer  

• Mean Squared Error (MSE) Loss Function  

• ReLU Activation Function  

• Adam Optimization Algorithm  

• Standard Scaler  

• Validation (X_test, y_test) 

• Test Size 1% 

The determined parameters were determined 

based on the variables according to the 

prediction performance of the model and the 

Loss-Validation Loss graph. A neural network 

(ANN) model was trained according to these 

hyperparameters 

Table 3. Wind Tunnel “Sport” CP Sequential Model 

Structure 

Wing Tunnel “Sport” Cp Sequential Model 

Layer (type) Output Shape Parameter 

Dense  252 1764 

Dropout 252 0 

Dense  168 42504 

Dropout 168 0 

Dense  84 14196 

Dropout 84 0 

Dense  42 3570 

Dropout 42 0 

Dense  1 43 

Total Parameter = 62077 
Trainable Parameter = 

62077 

The artificial neural network (ANN) model 

structure created for wind tunnel Cp prediction 

was created based on previous models. In order 

for the model to give the best performance, 

different "Epochs" values were tested for the 

established model structure. 

Models trained with different "Epochs" values 

were examined. Among these Examined 

models, Model 1 has the lowest MSE and the 

highest R2. This shows that Model 1 performs 

better than other models. Since the models 

performed very well according to the 

examined "Epochs" values, the number of 

"Epochs" was limited to 2000 for comparison. 

When the Loss-Validation Loss graphs of the 

models for different "Epochs" values are 

examined, it appears that the graphs show 

almost similar behavior. Although the Loss 

and validation Loss values of the graph with an 

Table 4. Comparison of model performances according 

to Wind Tunnel Cp Forecast Model “Epoch” Values 

according to Loss functions and R2 method 

Model 

No 
1 2 

3 

Model 

Type 

Wind Tunnel 

“Sport” Ct 

Forecast 

Model 

Wind Tunnel 

“Sport” Ct 

Forecast 

Model 

Wind Tunnel 

“Sport” Cp 

Forecast 

Model 

Epochs 500 1000 2000 

MAE 0.03589336 0.05087223 0.043748091 

MSE 0.002298777 0.00520541 0.00403422 

RMSE 0.189455449 0.225548752 0.20916044 

R2 0.997517669 0.99659612 0.996350194 

 

 

 
Figure 11. Wind Tunnel “Sport” Type Propeller Cp 

Prediction Model a) 500 “Epoch” and b) 1000 “Epoch” 

c) 2000 “Epoch” (Blue - Loss, Orange - Validation 

Loss) 
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"Epochs" value of 500 in Figure 11 do not 

overlap completely, this does not matter in 

terms of the performance of the model. 

Because the loss and validation loss values do 

not overlap, it generally indicates that the 

model can generalize well and is not 

overfitting. This shows that the model does not 

overfit the training data and can perform well 

with new data. When the Loss-Validation Loss 

graphs are examined, as well as the loss 

function performances and R2 results of the 

models, it can be seen that the model that 

performs well is Model 1, Model 1 will be 

trained for the wind tunnel “Sport” Cp 

prediction model. 

APC Propeller Sport Type Data Set Cp 

(Power Coefficient) Prediction Model 

Training and Outputs 

The Cp prediction model, which will be 

created using the wind tunnel data set, was 

trained with the artificial neural network 

(ANN) model data set after the determined 

hyperparameters and "Epochs" value. 

 
Figure 12. Wind Tunnel “Sport” CP Forecast Model 

Predictions-Real Values 

When the Predictions-Real Values graph in 

Figure 12 is examined, it shows that the model 

and its predictions are consistent according to 

the behavior of the points in the graph, and that 

the model has learned the data set well in 

general. With the model trained with the wind 

tunnel data set, the performance of the model 

was examined according to propeller and RPM 

values in different combinations. 

When the prediction ability of the model is 

examined, it is seen that the Cp predictions 

make a close prediction to the values in the 

data set according to the variable J (Advance 

ratio) values. 

 
Figure 13. Wind Tunnel “Sport” Type Propeller CP 

Forecast Model 10x7 Propeller 6000 RPM Model 

Performance 

APC Propeller Thin Electrical Type Data 

Set Ct (Thrust Coefficient) Prediction 

Model Creation 

While creating the "Thin Electric" type 

propeller Ct prediction model, wind tunnel 

data set was initially used. Previous wind 

tunnel models were taken as a basis in the 

process of establishing the model and 

determining its parameters. The initial 

hyperparameters determined for the "Thin 

Electric" type propeller Ct prediction model 

are as follows: 

• 5 Layers  
• 1 Input Layer, 3 Layers, 1 Output Layer  

• Batch Size 4  
• 500 Epochs,  
• 256 Neurons in layers except Output 

Layer  
• Mean Absolute Error (MAE) Loss 

Function  

• ReLU Activation Function  

• Adam Optimization Algorithm  
• Standard Scaler  
• Validation (X_test, y_test) 

• Test Size 1% 
Artificial neural network (ANN) model 

structure will be established with the 

determined parameters. According to these 

parameters, the artificial neural network 

(ANN) model will be trained. Parameters can 
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be changed according to the performance of 

the model. 

Table 5. Wind Tunnel “Thin Electric” Ct Sequential 

Model Structure 

Wing Tunnel “Thin Electric” Ct Sequential Model 

Layer (type) Output Shape Parameter 

Dense  252 1764 

Dropout 252 0 

Dense 168 42504 

Dropout 168 0 

Dense  84 14196 

Dropout 84 0 

Dense  42 3570 

Dropout 42 0 

Dense  1 43 

Total Parameter = 62077 
Trainable Parameter = 

62077 

The model structure was determined by 

reference to previous models. It has been 

observed that models previously trained in this 

determined structure showed high prediction 

performance. The number of "Epochs" that 

would give the best performance with this 

model structure was determined by trial and 

error method. 

Table 6. Comparison of model performances according 

to Wind Tunnel “Thin Electric” Ct Estimation Model 

“Epoch” Values according to Loss functions and R2 

method 

Model No 1 2 

Model Type 

Wind Tunnel 

“Thin 

Electric” Ct 

Forecast 

Model 

Wind Tunnel 

“Thin 

Electric” Ct 

Forecast 

Model 
Epochs 500 1000 

MAE 0.03377714 0.04106794 

MSE 0.0018278 0.00286244 

RMSE 0.18378559 0.20265226 

R2 0.99827756 0.9974655550 

The performance of models trained according 

to different "Epochs" values was compared. 

When comparing between two models, the 

model with lower error values is generally 

considered better. Therefore, in this case, it can 

be seen that the MAE, MSE, RMSE and R 

values of Model 1, which has a value of 500 

epochs, are lower. Since the model learned the 

data set with good performance even at low 

Epochs numbers, there was no need for high 

Epochs values. 

 

 
Figure 14. Wind Tunnel “Thin Electric” type propeller 

Ct Prediction Model (left) 500 “Epoch” and (right) 

1000 “Epoch” (Blue - Loss, Orange - Validation Loss) 

When the Loss-Validation Loss graphs are 

examined, it appears that the Loss values and 

Validation Loss values show similar behavior. 

Although these behaviors are not very stable 

compared to other models, the data set learning 

performance of the models is quite good. 

When the graph of the model with an "Epochs" 

value of 500 is examined in Figure 14, it is seen 

that the model generally shows a good learning 

performance during the training process and 

there is no overfitting problem. Since the 

difference between training and validation 

losses is small, it can be said that the model 

generalizes well to both training data and 

unvalidated data. However, the fluctuation of 

training loss indicates that the learning rate 

may be too high, or some training examples are 

forced by the model. But in general, it seems 

that the predicted performance of the model 

will be good. Model 1, that is, the model with 

an "Epochs" value of 500, will be preferred for 

training with the data set. 



International Journal of Automotive Engineering and Technologies, IJAET 13 (4) 153-169         165 

 

APC Propeller Thin Electric Type Data Set 

Ct (Thrust Coefficient) Prediction Model 

Training and Outputs 

The model will be trained using the wind 

tunnel data set using the created model 

structure and the determined hyperparameters. 

After the artificial neural network (ANN) 

model is trained with the training data set, the 

performance of the model will be examined. 

 
Figure 15. Wind Tunnel “Thin Electric” Ct Forecast 

Model Predictions-Real Values Graph 

When you look at the Predictions-Real Values 

graph in Figure 15, you can see that there is a 

clear linear relationship in the graph. This 

indicates that the predictions of the model are 

very close to the real values and the 

performance of the model is quite good and the 

model performs well in learning the data set. 

The prediction performance of the artificial 

neural network (ANN) model trained with the 

data set was examined. 

Model prediction performance is very close to 

real data. The model performance output 

shows that the model can predict well both the 

propeller combinations in the data set and the 

propeller combinations not in the data set 

APC Propeller Thin Electrical Type Data 

Set Cp (Power Coefficient) Prediction 

Model Creation 

While creating the wind tunnel “Thin Electric” 

Cp prediction model, previous wind tunnel 

prediction models were taken as reference. 

Wind tunnel “Thin Electric” data set was used 

as the data set. For the wind tunnel “Thin 

Electric” Cp artificial neural network (ANN) 

prediction model, the following 

hyperparameters were determined for the 

model. 

 
Figure 16. Wind Tunnel “Thin Electric” Type Propeller 

Ct Forecast Model 14x10 Propeller 6000 RPM Model 

Performance 

• 5 Layers  

• 1 Input Layer, 3 Layers, 1 Output Layer  
• Batch Size 16  

• 1000 Epochs,  
• 256 Neurons in layers except Output 

Layer  

• Mean Absolute Error (MAE)Loss 

Function  

• ReLU Activation Function  
• Adam Optimization Algorithm  

• Standard Scaler  

• Validation (X_test, y_test) 

• Test Size 1% 

Artificial neural network (ANN) model 

structure will be established according to the 

determined parameters. This model structure 

was created based on the structure of artificial 

neural network (ANN) models created with 

previously good performing simulation and 

wind tunnel data sets. 

It has been observed that the number of layers 

and neurons is sufficient for previously created 

artificial neural network (ANN) models. 

Therefore, there was no need for more layers 

and number of neurons in the wind tunnel 

“Thin Electric” Cp prediction model structure. 

With the created model structure, the model 

will be trained with different "Epochs" values. 

“Epochs” values will be determined by trial 

and error method according to the prediction 

performance of the model. 
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Table 7. Wind Tunnel “Thin Electric” Cp Sequential 

Model Structure 

Wind Tunnel “Thin Electric” Cp Sequential Model 

Layer (type) Output Shape Parameter 

Dense  252 1764 

Dropout 252 0 

Dense  168 42504 

Dropout 168 0 

Dense  84 14196 

Dropout 84 0 

Dense  42 3570 

Dropout 42 0 

Dense  1 43 

Total Parameter = 62077 
Trainable Parameter 

= 62077 

Table 8. Comparison of model performances according 

to Wind Tunnel Cp Forecast Model “Epoch” Values 

according to Loss functions and R2 method 

Model No 1 2 

Model Type 

Wind Tunnel 

“Thin 

Electric” Cp 

Forecast 

Model 

Wind Tunnel 

“Thin 

Electric” Cp 

Forecast 

Model 
Epochs 500 1000 

MAE 0.0309182 0.030591069 

MSE 0.00173574 0.00196366 

RMSE 0.17498080 0.17490302 

R2 0.99818197 0.99820711 

With the created model structure, the 

performance of the model was examined for 

different "Epochs" values. It is seen that the 

model performs well when training the model 

with a low number of "Epochs". So there is no 

need for more Epochs values. In Figures 17 

and 18, the models trained with 500 and 1000 

"Epochs" values are compared. When these 

two models are examined, it is seen that the 

models perform very close to each other when 

the loss function performance and R2 score are 

examined. Although the R2 performance of the 

2nd model is very close, it is higher, so the 2nd 

model was preferred to train the prediction 

model. 

Loss-Validation When the loss graphs are 

examined, it is seen that the graph of the 2nd 

model shows a generally good learning 

performance in the process of learning the data 

set. 2. When the Loss-Validation Loss graph of 

the model is examined, it is seen that the Loss 

and Validation Loss values do not increase, so 

there is no overfitting problem. Since the 

difference between the training and validation 

losses of the model is small, it can be said that 

the model generalizes well to both training data 

and unvalidated data. Considering the loss 

function performance, R2 score and Loss-

Validation Loss graph for the wind tunnel 

“Thin Electric” Cp prediction model, it was 

decided to train the 2nd Model, which has a 

value of 1000 “Epochs”, with the data set and 

use it as the prediction model. 

 

 
Figure 17. Wind Tunnel “Thin Electric” Type Propeller 

Cp Prediction Model (left) 500 “Epoch” and (right) 

1000 “Epoch” (Blue - Loss, Orange - Validation Loss) 

APC Propeller Thin Electric Type Data Set 

Cp (Power Coefficient) Prediction Model 

Training and Outputs 

After the hyperparameters and "Epochs" value 

of the model were determined, the model was 

trained with the wind tunnel data set. After the 

artificial neural network (ANN) model was 

trained, the prediction performance of the 

model was examined. 

When the Predictions-Real Values graph in 

Figure 18 is examined, it is seen that there is a 
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linear and linear relationship between the 

prediction and real values. 

 
Figure 18. Wind Tunnel “Thin Electric” Cp Forecast 

Model Predictions-Real Values Graph 

 

Figure 19. Wind Tunnel “Thin Electric” Type Propeller 

Cp Forecast Model 19x12 Propeller 3000 RPM Model 

Performance 

This relationship shows that the model has a 

good performance in learning the data set well. 

The prediction performance of the artificial 

neural network (ANN) model trained with the 

data set was examined. 

When the prediction performance of the model 

is examined, it is seen that it performs well 

between the real data and the predicted data 

according to different RPM values and 

different propeller combinations. The 

performance of the model in predicting the real 

data in the data set and the data not in the data 

set is very good and gives results very close to 

reality. This model will be used for the wind 

tunnel “Thin Electric” Cp prediction model. 

Comparison of Wind Tunnel Artificial 

Neural Network Models 

Four artificial neural network (ANN) models 

were created using the wind tunnel data set. 

These created wind tunnel models will help 

find Ct (Thrust Coefficient) and Cp (Power 

Coefficient) for different RPM values of 

propeller combinations that do not have wind 

tunnel test data without going to the wind 

tunnel. 

When the four artificial neural network (ANN) 

models created are examined, it is seen that 

error metrics such as MAE, MSE and RMSE 

are at a very low level. These metrics show that 

the model's predictions are quite close to the 

actual values. Additionally, the R2 score is 

very close to 1 in 4 models. This means that the 

models fit the data set very well and their 

predictions exactly match the real values. 

4. Conclusion 

This study explores an approach that utilizes 

artificial neural networks and machine learning 

methods to determine the aerodynamic 

performance of propellers. The primary goal is 

to estimate the thrust and power values that 

different propeller combinations will produce 

without relying on wind tunnel data. The 

analyses demonstrate that artificial neural 

networks and machine learning models can 

accurately model the aerodynamic 

performance of propeller combinations 

without wind tunnel data. 

Table 9. Artificial Neural Network (ANN) Models for “Sport” and “Thin Electric” type propellers created using the 

Wind Tunnel dataset and Simulation Forecast dataset 

Model type Epochs MAE MSE RMSE R2 
Wind Tunnel “Sport” Ct 

Forecast Model 
1000 0.032211390 0.001689722 0.17947532 0.99833180 

Wind Tunnel “Sport” Cp 

Forecast Model 
500 0.03589336 0.002298777 0.189455449 0.997517669 

Wind Tunnel “Thin Electric” 

Ct Forecast Model 
500 0.03377714 0.0018278 0.18378559 0.99827756 

Wind Tunnel “Thin Electric” 

Cp Estimation Model 
1000 0.030591069 0.00196366 0.17490302 0.99820711 
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This provides a significant advantage by 

reducing dependence on wind tunnel testing 

and speeding up the design process. In this 

study, four different wind tunnel models were 

created, all of which produced results very 

close to real-world conditions. The results 

obtained from the models of propellers with 

wind tunnel data are very close to the true 

value of 1, with all four models yielding values 

that are 99.8% close to the actual value. This 

indicates how well the models align with 

reality. These models can accurately predict 

the thrust (Ct) and power (Cp) coefficient 

values of propellers without wind tunnel test 

data. This success is based on the effective use 

of artificial neural networks and machine 

learning methods. The results obtained show 

that these techniques can be successfully 

applied in the process of modeling the 

aerodynamic performance of propellers. 

5. Suggestions and Evaluations 

The artificial neural network models used in 

this study exhibit similarities to those found in 

the literature. However, these models can 

exhibit different behaviors depending on the 

dataset. Upon examining the models and 

datasets in the literature, it is observed that the 

average accuracy rate of the models in this 

study is 99.9%, which surpasses the accuracy 

capabilities of all models previously reported 

in the literature. The findings of this study are 

significant for accelerating the design process 

and reducing costs by decreasing reliance on 

wind tunnel testing. While wind tunnel testing 

can typically take months, the artificial neural 

network models used here can provide high-

accuracy test data in seconds. Additionally, 

accurately predicting the thrust and power 

values of propeller combinations is considered 

a crucial step in UAV design and optimization. 

These results suggest that artificial neural 

networks and machine learning techniques are 

valuable tools for analyzing and optimizing the 

aerodynamic performance of propellers. 

Nomenclature 

UAV : Unmanned Aerial Vehicle  

ANN : Artificial Neural Network 

CFD : Computational Fluid Dynamics 

APC : Propeller Brand 

Cp : Power Coefficient 

Ct : Thrust Coefficient 

BEM : Blade Element Momentum Theory 

UAS : Unmanned Aircraft System 

CQ : Torque Coefficients 

QAR : Quick Access Recorder 

RC : Radio Controlled 

PWM : Pulse Width Modulation 

UIUC : University of Illinois at Urbana-

Champaign 

MSE : Mean Squared Error Loss Function 

MAE : Mean Absolute Error Loss Function 

RMSE : Root Mean Squared Error Loss 

Function 

J : Advance Ratio 
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It is crucial to ensure the longevity of batteries in electric and hybrid 

vehicles in order to solidify their position in the market. Monitoring the 

life, capacity, and health of battery pack has become a major concern for 

users. The proper functioning and long-term durability of electric and 

hybrid vehicle batteries depend on accurately assessing their properties. 

In this study, a 6S battery module was created using NCR18650PF 

3300mAh 3.7 V Li-ion batteries, which are increasingly used in electric 

and hybrid systems. Battery voltage, current, and surface temperature 

data of the battery module were collected during 500 charge-discharge 

cycles. Obtained charge-discharge profile, retainable capacity change 

rates, and the health and charge status of the battery were processed. The 

collected data showed the expected decrease in charge discharge profiles 

as documented in the literature. Upon reaching 500 charging cycles, the 

maintainable capacity of the battery module decreased by 70% compared 

to its initial state, indicating that the battery module had reached the end 

of its life. A program was developed using the Arduino IoT cloud system 

based on the charge-discharge profile and sustainable capacity change 

data obtained from battery characteristics. The predictions for battery 

health and state of charge based on the collected sensor data were 

processed and transferred to the interface in a way that allowed the end 

user to visualize it. The battery SOC, SOH, temperature, charge-

discharge current, and terminal voltage data were displayed in the mobile 

application via the Arduino IOT Cloud platform with the ESP8266 

Arduino card during daily use of the battery module. As a result, a 

successful module that can provide IoT communication on a lithium-ion 

battery pack was obtained. Thanks to the developed module, the expected 

life of the lithium-ion battery pack can be monitored even remotely, as 

long as it is connected to the internet. 

Keywords: Battery State of Health, Battery State of Charge, Electric Vehicle, IoT Cloud, 

ESP8266. 
 

1. Introduction 

Over the years, the use of fuel-fueled vehicles 

has been a major factor in increasing air 

pollution on the planet. The emissions released 
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by fuel vehicles increase the formation of 

greenhouse gases, causing the hole in the 

ozone layer to deteriorate. Climate change on 

the planet due to the conditions of the hole in 

the layer is one of the obvious consequences 

seen today [1]. Vehicles have a place in most 

of our daily lives in terms of transportation and 

comfort, and their use is a necessity. The 

electric vehicle project has reemerged because 

diesel and gasoline cycle processes do not 

pollute the environment and reduce oil 

reserves.   

Electric vehicles are environmentally friendly 

because they have less carbon emissions 

compared to fossil fuel vehicles. Additionally, 

electric vehicles are a sustainable option due to 

their energy efficiency and low operating costs 

[1]. In electric vehicles, the DC motor 

transmits the drive to all four wheels using the 

stored electricity needed by the DC motor from 

the battery pack. They do not harm nature with 

their zero emission values during operation, 

but also provide a quiet and comfortable 

driving opportunity. However, for the 

development and use of the electric vehicle 

market to increase, users' concerns about 

range, rechargeability and battery life should 

be eliminated [2, 3]. Today, the most suitable 

battery type for storing the electrical energy 

needed by an electric vehicle is Li-ion 

batteries. Although Li-ion batteries are the 

most efficient, they need improvement. For the 

use of Li-ion batteries, the cost must decrease, 

and it is of great importance to be able to 

estimate batteries [4, 5]. It is difficult to predict 

battery life in this process because the life of 

Li-ion batteries can vary depending on the 

driver's driving style, charge-discharge cycles 

and the driver's charging habits [6,7].  

In order to make a comment about the 

remaining healthy life of the batteries, 

instantaneous state of health (SOH) data must 

be known. Data measurements are made on the 

battery pack for battery SOH predictions [8]. 

Applications with real-time measurements are 

known as direct measurement techniques in 

literature. Direct measurement techniques 

include specific measurement techniques such 

as Ah counting, capacity testing, internal 

resistance measurement and electrochemical 

impedance spectroscopy [9 - 11]. Ah counting 

method can also be seen as Coulomb counting 

method in some sources. It is one of the most 

used experimental techniques today when the 

health status of a battery or batteries is desired 

to be estimated experimentally. In the Ah 

counting method, the current supplied to the 

battery during charging and the current drawn 

from the battery during discharge are checked 

[9]. Thus, the instantaneous capacity of the 

battery can be estimated. In the Ah counting 

method, it is important for the consistency of 

the method that the battery enters the charge-

discharge cycle in an environment close to 

room temperature and is charged and 

discharged with currents that are not very 

variable. Measurements made and data 

collected in electric vehicle battery systems are 

generally used to control system operation. 

With the measurements performed, SOH and 

instantaneous state of charge (SOC) 

calculations of the batteries are made [8]. This 

information obtained can also be used to 

examine the system’s efficiency within a 

certain period of time and to increase the future 

performance of the system. Real-time 

measurement and analysis become important 

in terms of timely intervention to malfunctions 

that may occur in electric vehicle systems. It is 

also clear that real-time measurement and 

monitoring systems are needed in hybrid 

vehicle systems with multiple sources [12 - 

14]. 

In the literature, the regulation and evaluation 

of the electric vehicle battery system [6, 15], 

tracking of battery charge amounts [16 - 18] 

and plug-in battery systems are mentioned in 

the literature. Data collection systems are 

known to measure stress and oxidation in 

systems such as hybrid and electric vehicles 

[19, 20]. The common features of these records 

are the use of data records to obtain 

measurement data and the analysis of these 

records by transmitting them to computers at 

certain periods. In this way, different battery 

characteristic data and counting methods were 

obtained from the abundances found in the 

literature, and 500 cycles of real-time charge-

discharge expression were carried out during 

the current count. Data regarding battery 

current, battery voltage, battery properties and 

environmental temperature were measured 

with relevant sensors. With the operating data 

measurement system, fault errors, battery 
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charge, health and charge state change and 

battery characteristics have been obtained, and 

an infrastructure of the cells is available for life 

estimation programming.  

Arduino IoT Cloud is a cloud-based platform 

developed by Arduino. This platform, which 

supports various hardware such as Arduino 

MKR family boards, Arduino Nano family 

boards, ESP32 and ESP8266 based boards, 

facilitates the development of IoT projects. It 

is also possible to remotely update the project 

with Arduino IOT Cloud, which is a very easy-

to-use platform where devices can be 

connected, data can be visualized, and the 

project can be controlled from anywhere. It 

also offers the opportunity to use the control 

panel created for the project on either a 

computer or mobile devices [21].   

The Internet of Things (IoT) has 

revolutionized various domains, including 

agriculture, energy management, and 

infrastructure digitalization. Arduino, a 

popular microcontroller platform, has been 

extensively used in IoT applications due to its 

versatility and ease of programming [22]. The 

integration of Arduino with IoT cloud 

platforms has enabled real-time data tracking 

and monitoring in diverse applications [23, 

24]. Additionally, the combination of Arduino 

with cloud computing has expanded the scope 

of IoT applications, enhancing its capabilities 

and enabling secure self-configuration of 

embedded devices [25, 26].  

In the context of smart agriculture, Arduino-

based IoT systems have been employed for 

automatic plant watering and environmental 

monitoring [27, 28]. These systems utilize 

Arduino microcontrollers to collect data from 

sensors and transmit it to the cloud for further 

analysis and decision-making. Furthermore, in 

the domain of energy management, IoT 

solutions based on Arduino have been 

developed for monitoring and controlling 

electrical energy consumption [29]. These 

systems enable users to track power 

consumption in real-time and take measures to 

conserve energy.  

Moreover, the use of Arduino in IoT 

applications extends to infrastructure 

digitalization, where it has been integrated 

with cloud platforms for real-time monitoring 

of production processes and supply chain 

maintenance [30]. This integration facilitates 

the analysis of product life cycles and enhances 

business models through efficient provisioning 

and marketing strategies.  

The seamless integration of Arduino with IoT 

cloud platforms has also been leveraged in 

environmental monitoring systems, such as 

pollution detection and pressure monitoring 

[31, 32]. These systems utilize Arduino 

devices to collect environmental data and 

transfer it to cloud databases for analysis and 

visualization. Additionally, the combination of 

Arduino with cloud computing has 

significantly enhanced the growth of IoT by 

ensuring and supporting the quality of service 

for IoT applications [33]. Many studies in the 

literature collectively emphasize the potential 

of Arduino-based IoT systems in monitoring 

and managing battery-related parameters, such 

as performance, usage, and environmental 

conditions, through cloud integration. The 

utilization of IoT for battery monitoring 

systems holds significant promise in enhancing 

the efficiency and reliability of various 

applications, including electric vehicles, 

energy management, and environmental 

monitoring.  

The integration of Arduino with IoT cloud 

platforms has been widely explored in the 

context of battery monitoring systems 

Astutiningtyas et al. demonstrated the use of 

Arduino and cloud for real-time data tracking 

from a crop field, showcasing the potential for 

monitoring and controlling environmental 

parameters, including battery status [22]. 

Furthermore, the work by focused specifically 

on an IoT-based battery monitoring system for 

electric vehicles, emphasizing the relevance of 

IoT in battery management and maintenance 

[34]. Additionally, Kezhiyur et al. presented a 

system for monitoring and controlling 

electrical energy consumption using IoT, 

highlighting the applicability of IoT in 

managing power resources, including battery 

usage [24]. Moreover, Rusimamto et al. 

implemented an Arduino-based temperature 

monitoring system, which can be extended to 

include battery temperature and performance 

monitoring in IoT applications [35].  

In summary, the integration of Arduino with 

IoT cloud platforms has facilitated the 

development of diverse IoT applications, 
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ranging from smart agriculture and energy 

management to infrastructure digitalization 

and environmental monitoring. This 

integration has not only expanded the 

capabilities of IoT systems but has also 

contributed to the efficient and secure 

deployment of IoT solutions. The integration 

of Arduino with IoT cloud platforms offers a 

robust foundation for developing advanced 

battery monitoring systems, enabling real-time 

data tracking, analysis, and decision-making to 

ensure optimal battery performance and 

longevity. 

2. Materials and Methods 

2.1. Charging and discharging 

characteristics of the battery pack 

During the creation of the battery pack for the 

analysis of battery characteristics, 18650 NCR 

3300 mAh 3.7 V Li-ion battery cells of the 

Panasonic brand and 2 pieces of 3-slot plastic 

Liion battery beds were used to create a 6-

series battery pack from Li-ion battery cells. 

The capacity of the created battery model is 

3300 mAh and the terminal voltage is 25.2 V. 

HX-6S12A brand battery management system 

(BMS) was used to protect the battery pack and 

ensure balance between cells. This 

NCR18650PF type battery produced by 

Panasonic can typically provide efficiency for 

500 charge-discharge cycles. Panasonic 

NCR18650PF is a cylindrical battery based on 

Li-ion battery technology. These Li-ion 

batteries are generally available at a nominal 

voltage of 3.7 V. While the maximum voltage 

of the battery is 4.2 V, the cut-off voltage 

during the discharge process is 2.5 V. In 

addition, the maximum continuous discharge 

current of the battery is 3.5 A [37]. 

A battery charging voltage of 25.2 V was 

obtained by using a 36 V DC power supply and 

XL4015 current adjustable DC/DC converter 

circuit in the charging circuit setup from the 

charge discharge current counting and 

temperature measurement data reading 

circuits. The maximum current on the XL4015 

was set to 1.65 A to charge the created battery 

pack at a rate of 0.5 C. The output voltage of 

the XL4015 module can also be increased to 

25.2 V by fixing it at 25.2 V which is the 

charging voltage of the battery pack. The 

battery pack is charged to the full charge 

voltage of 25.2 V in the charging cycle. The 

probe of the temperature sensor is fixed on the 

surface of the battery pack. The ACS712 

current sensor is connected to the Arduino Uno 

board to read the temperature sensor and 

current data. In order to discharge the battery 

pack with 4 A, a load bank consisting of 6 12 

V 21 W bulbs was created. While creating the 

load bank, 3 parallel circuits were established 

with 2 serial bulb connections to obtain 24 V 

voltage, and it was observed that the created 

load bank drew 4 A current from the battery, 

corresponding to a discharge rate of 6/5 C. In 

the discharge cycle, the battery pack was 

discharged to the cut-off voltage of 19.2 V, and 

when the cut-off voltage was reached, the 

discharge cycle was terminated by the battery 

management system (BMS). The surface 

temperature of the battery and the current 

drawn during discharge were transferred to the 

computer environment.  

Battery surface temperature data taken from 

the temperature sensor and charge-discharge 

current data taken from the current sensor were 

transferred to the computer and converted into 

a txt file. Figure 1 shows the charge-discharge 

current counting circuits, and Figure 2 shows 

the txt file where the battery data is recorded. 

 
Figure 1. (a) Charging, (b) discharging current 

counting circuit. 

After the initial SOC value was determined, 
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the battery was subjected to successive 

charging and discharging cycles, and the 

instantaneous SOC status was monitored 

according to the measured current, voltage and 

temperature values in these cycles, and the 

capacity value of the battery at the end of each 

charge-discharge cycle was calculated. The 

algorithm for the charge discharge cycle life is 

given in Figure 3. 

After completing 500 charge-discharge cycles, 

the data for each cycle was transferred to 

Excel. Capacity calculations were then 

performed for each cycle, and two separate 

graphs were created to show the capacity 

change during charging and discharging using 

the calculated capacity data. The capacity data 

were used to calculate the capacity change 

using Equation 1, and the change in capacity 

was expressed as a percentage. 

 
Figure 2. txt file of (a) discharge current, (b) charging 

current and surface temperature data 

 
Figure 3. Flowchart of battery charge-discharge cycle 

𝑆𝑂𝐻(%) =
𝐻𝑜𝑙𝑑𝑎𝑏𝑙𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑥100            (1) 

The temperature sensor installed on MAX 

6675 was utilized to continuously measure the 

battery surface temperatures over 500 cycles. 

The temperature data was recorded and 

transferred to an Excel spreadsheet, enabling 

analysis of both current temperature readings 

and temperature changes during each cycle. 

2.2. Determination of the battery pack 

characteristics 

Ensuring the estimated decrease in the 

charging and carrying capacity of the battery at 

the end of 500 cycles. It was observed that the 

initial charging capacity of 3367.21 mAh 

decreased to 2513.94 mAh when the 500th 

cycle was reached. On the other hand, the 

results of 1972.93 mAh achieved in the last 

cycle of this battery model with an initial 

performance of 2954.05 mAh were revealed. It 

has been observed that charging and power 

capacities decrease after the 150th cycle. In 

Figure 4, the changing of the charging capacity 

and in Figure 5, the change graphs of the 

discharging capacity were shown. 

 
Figure 4. Change of charging capacity depending on 

the cycle 

 
Figure 5. Change of discharging capacity depending on 

the cycle 

As a result of all cycles, rechargeable capacity 
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decreased to 74.66% and early discharge 

capacity decreased to 66.70%. According to 

the information given in the literature, it is 

accepted that the battery pack reaches EoL 

(end of life) at 70% capacity, that is, when its 

capacity decreases [38], and this situation is 

observed at a certain level. 66.70% with 500 

cycles of the battery model used effectively. 

Table 1 shows the percentage changes of 

charging and power capacities according to 

certain cycles. 

Table 1. Percentage changes of capacities depending on 

the cycle 

Cycle  Charge (%)  Discharge (%)  

0 100.00  100.00  

50  99.90  99.87  

100  99.61  99.37  

150  98.90  98.03  

200  97.52  95.43  

250  95.21  91.29  

300  91.94  85.90  

350  87,98  80.38  

400  83.67  75.44  

450  79.19  70.93  

500  74.66  66.70  

Battery efficiency is obtained by dividing the 

discharge capacity by the charging capacity in 

the relevant charge-discharge cycle, as seen in 

Equation 2. The battery pack, which had an 

efficiency of 87.73% in the first cycle, reached 

the end of its life with an efficiency of 78.48% 

when it reached the last cycle, the 500th cycle. 

Figure 6 shows the change graph of battery 

efficiency depending on the number of cycles. 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐻𝑜𝑙𝑑𝑎𝑏𝑙𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑥100(2) 

 
Figure 6. Battery efficiency depending on the number 

of cycles 

It was observed that the battery surface 

temperature started the discharging phase at 

25°C and rose to 45°C during discharging. At 

the end of the discharge process, the battery 

pack reached 45°C and were recharged at the 

same temperature, and when reached within 

the charging period, the surface temperature 

reduced to room temperature. Although the 

charging and discharging times were reduced, 

the battery surface temperature increased to 

45°C during discharge process. It was also 

observed that, following the completion of the 

300th charging phase, the battery was charged 

to capacity before the battery surface 

temperature had reached room temperature. 

In addition to obtaining the current data and 

capacity values of each cycle transferred to the 

Excel environment, the charge curve profile of 

the relevant cycle was obtained. In the first 

charging phase of the battery, the CC (constant 

current) period continued for 2100 s, and then 

the charging was completed with the CV 

(constant voltage) period for 1600 s. It was 

observed that the CC period, which was 2100 

seconds in the first charge, decreased to 1515 

seconds when the last cycle was reached, while 

it reached 2500 seconds in the CV period. As 

expected, the duration of the discharge phase 

decreased, but no change was observed in the 

currents. Figure 7 shows the charge profile 

curves of 3 different cycles. 

 
Figure 7. Charge profile graphs based on cycles; a: 1st 

cycle, b: 250th cycle, c: 500th cycle 

2.3. Monitoring of the battery operating 

parameters on mobile interface 

Battery monitoring circuit update has been 

properly communicated with Arduino IoT 

Cloud. Battery pack terminal voltage, charging 

and current currents, battery temperatures and 
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battery SOH and SOC values were calculated 

remotely based on these data are also kept in 

the charging or discharging mode of the 

battery. The electronic circuit diagram of the 

battery monitoring system created with 

ESP8266 is shown in Figure 8. The electronic 

circuit hardware implementation of the system 

is shown in Figure 9. The data received from 

the battery during the charge-discharge cycle is 

transferred and visualized on the mobile 

interface through IoT, as depicted in Figure 10. 

Table 2 provides a comparison of the total cost, 

the developed low-cost battery monitoring 

system and the average price of an equivalent 

device available on the market. The developed 

low-cost battery monitoring system, as 

presented in this study, is capable of 

monitoring battery parameters such as the 

battery SOC, SOH, temperature, charge-

discharge current, and terminal voltage data. 

All related data were displayed in the mobile 

application via the Arduino IOT Cloud 

platform with the ESP8266 Arduino card 

during daily use of the battery module. 

3. Conclusion 

In the study, it is carried out, one of the biggest 

questions of electric and hybrid vehicle users 

was monitored Li-ion battery data with a 

mobile interface via Arduino IOT Cloud. The 

study is based on obtaining characteristic data 

of the battery module in an electric and hybrid 

vehicle battery pack and determining the 

battery health status for each cycle with the 

obtained data. The extraction process of 

battery characteristic data lasted for 500 

charge-discharge cycles at room temperature. 

The battery pack completed its charging 

periods at 25℃ room temperature throughout 

its healthy life and it was observed to warm up 

to 45℃ at the end of the discharge processes. 

When the collected data were examined, it was 

observed that the instantaneous charge state, 

instantaneous health state and battery 

efficiency values decreased as expected, with 

the obtained charge-discharge profiles and 

cycle-related capacity loss, as in the literature. 

It was observed that when 500 charge-

discharge cycles were reached, the retainable 

capacity of the battery module dropped below 

70% compared to the initial capacity, reaching 

the end of its usable life. Battery efficiency was 

obtained by dividing the discharge capacity 

obtained for each cycle by the charging 

capacity. It was observed that the efficiency of 

the battery pack, which was 87.73% in the first 

cycle, decreased to 78.48% when the last cycle 

was reached. 

As a result, a cost-effective module has been 

developed that enables IoT communication 

with lithium-ion battery packs. With this 

innovative module, it is now possible to predict 

the lifetime of the lithium-ion battery pack, 

even when it is located remotely, as long as it 

is connected to the internet. 

 
Figure 8. Electronic circuit diagram of battery tracking 

system functioning with IoT Cloud platform. 

 

Figure 9. Hardware implemention of system design 

 

Figure 10. Arduino IoT Cloud mobile interface; a) 

Charging time, b) Discharging time. 
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Table 2. The total cost of the battery monitoring system and market price comparison 

Component Description Number Price (₺) Total (₺) 

ESP8266 To communicate with the Arduino Cloud 1 100 100 

DHT22 
To obtain working environment humidity and 

temperature information 
1 80 80 

ADS1115 
To obtain working environment humidity and 

temperature information 
1 90 90 

ACS712 To read battery pack charge/discharge currents 1 50 50 

LM2596 
To convert the 36VDC voltage at the power 

supply output to 5VDC 
1 40 40 

15kΩ/100kΩ Res. 

To divide the battery terminal voltage to the 

appropriate voltage level for the ADS1115 

input 

1 0.30 0.30 

MAX6675 

Thermocouple 
To monitor battery pack surface temperature 1 95 95 

36VDC 5A Power 

Supply 

For power supply of battery pack and 

electronic circuit 
1 200 200 

    655.30 ₺ 

Average price of equivalent device commercially available in the market [39]. 10985 ₺ 

 

This study has provided valuable insights for 

predicting the life and health of Li-ion battery 

packs used in electric and hybrid vehicles. The 

results obtained enhance our understanding of 

Li-ion battery performance over time, which 

supports the advancement of battery 

technology and efforts to improve the overall 

performance of electric and hybrid vehicles. 
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Integrating autonomous vehicles (AVs) into urban traffic systems 

presents both opportunities and challenges, especially at signalized 

intersections. This study offers a comparative conflict analysis of 

human-driven vehicles and AVs at a busy four-legged signalized 

intersection in Balgat, Ankara, Turkey. Using PTV VISSIM for 

detailed traffic simulation, the research assesses the effects of 

various AV driving styles - cautious, normal, aggressive, and a mix 

of all three - at different penetration rates (25% to 100%), alongside 

standard human-driven vehicle scenarios. The Surrogate Safety 

Assessment Model (SSAM) is employed to analyze safety 

implications both before and after intersection design calibration. 

The findings demonstrate notable differences in conflict points 

between human-driven and AV scenarios. Before calibration, 

cautious AV behaviors result in higher conflict points due to 

increased queuing, while aggressive behaviors reduce conflicts 

through more efficient traffic flow. Human-driven vehicles exhibit 

varied conflict levels based on driver behavior. After calibration, 

significant improvements are observed across all scenarios, with 

aggressive AVs achieving the greatest reduction in conflict points. 

This study highlights the potential for AVs to improve intersection 

safety and efficiency when appropriate design calibration measures 

are implemented. 

Keywords: Autonomous Vehicles, Signalized Intersections, Traffic Simulation, Conflict 

Analysis, Intersection Design Calibration 
 

1. Introduction 

Autonomous vehicles (AVs) are rapidly 

transforming urban transportation, offering 

both promising advancements and significant 

challenges, particularly at signalized 

intersections (1,2). These intersections are 

critical nodes in urban traffic management, 

where the integration of AVs can significantly 

impact traffic flow and safety (3). 
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Understanding the dynamics of AVs at these 

intersections is crucial for developing 

strategies to optimize their performance and 

mitigate potential conflicts (4). 

As AVs are integrated into existing traffic 

systems, they introduce complexities that stem 

from the interaction of both AVs and human-

driven vehicles. Signalized intersections, 

where vehicles from multiple directions 

converge, are uniquely challenging for AVs 

(5). Managing this complexity involves 

interpreting traffic signals, navigating human 

drivers’ unpredictability, and adhering to right-

of-way rules. 

Moreover, the varied driving behaviors of AVs 

- ranging from cautious to aggressive - further 

complicate their interaction with human 

drivers and other AVs (6). Cautious AVs may 

prioritize safety and adhere strictly to traffic 

laws, which can lead to increased queuing and 

potential delays (7). Conversely, aggressive 

AVs aim to minimize travel time by taking 

advantage of gaps in traffic, which may 

improve flow but also increase the risk of 

conflicts (8). 

The presence of mixed traffic conditions, 

where human-driven vehicles and AVs share 

the road, adds another layer of complexity. 

Human drivers exhibit a wide range of 

behaviors and decision-making processes that 

can be unpredictable, making it challenging for 

AVs to accurately anticipate and react to their 

actions. This unpredictability can lead to 

conflicts, such as sudden braking or swerving 

to avoid collisions. Additionally, AV 

penetration rates, defined as the proportion of 

AVs in the overall traffic mix, vary across 

scenarios, impacting traffic dynamics and the 

effectiveness of management strategies (9). 

Understanding the interaction between AVs 

and human-driven vehicles at signalized 

intersections is not only essential for 

improving traffic efficiency but also for 

ensuring safety. Studies have indicated that 

while AVs have the potential to reduce traffic 

accidents, the transitional phase where both 

AVs and human-driven vehicles coexist 

presents significant safety challenges. This 

study aims to address these challenges by 

conducting a comprehensive conflict analysis, 

which will provide insights into how different 

AV behaviors and penetration rates impact 

safety and efficiency at signalized 

intersections. By doing so, it seeks to inform 

the development of strategies and policies that 

can facilitate the seamless integration of AVs 

into urban traffic systems, ultimately leading to 

safer and more efficient intersections. 

The primary problem addressed in this study is 

the analysis of conflict points associated with 

the interaction between AVs and human-

driven vehicles at signalized intersections. 

Conflicts, such as near-crashes or sudden 

braking incidents, can provide valuable 

insights into the safety and efficiency of traffic 

systems incorporating AVs. This study seeks 

to fill the gap in existing research by focusing 

on conflict analysis, which is a less explored 

but vital aspect of AV integration in urban 

traffic. 

The objectives of this study are threefold: first, 

to evaluate the impact of different AV driving 

behaviors (cautious, normal, aggressive, and a 

mix of these) on conflict points at a busy four-

legged signalized intersection; second, to 

compare these scenarios with those involving 

human-driven vehicles; and third, to assess the 

effects of intersection design calibration on 

reducing conflict points. By addressing these 

objectives, the study aims to provide practical 

recommendations for enhancing traffic safety 

and efficiency in mixed traffic environments. 

2. Literature Review 

The integration of autonomous vehicles (AVs) 

into urban traffic systems has sparked 

considerable research interest, particularly in 

understanding how these vehicles interact at 

signalized intersections. One major area of 

focus has been the conflict analysis between 

AVs and human-driven vehicles at these 

critical junctions. Signalized intersections are 

complex environments where vehicles from 

multiple directions converge, necessitating 

advanced control strategies to ensure smooth 

and safe traffic flow. 

The integration of Connected and Automated 

Vehicles (CAVs) significantly enhances safety 

at intersections. (10) examined the impact of 

CAVs on signalized and unsignalized 

intersections using the SUMO simulator. Their 

findings indicate that CAVs reduce conflicts 

and rear-end collisions, particularly at higher 

penetration rates, by minimizing human error. 
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The study utilized car-following models such 

as Krauss, IDM, and CACC, with CACC 

notably decreasing rear-end conflicts. These 

results highlight CAVs' potential to improve 

road safety and traffic efficiency through 

advanced driving systems and V2V 

communication. 

(11) Investigated the safety benefits of 

Automated Speed Advisory Systems (SAS) at 

signalized intersections. Their study 

demonstrated that SAS vehicles reduce 

collision risks and improve driving behaviors 

by enhancing time to collision and deceleration 

rates. The simulations showed that SAS 

vehicles, especially at higher market 

penetration rates, significantly lower rear-end 

collision risks. The research also explored 

various scenarios, including different ranks of 

SAS vehicles and lane-changing possibilities, 

confirming SAS's positive impact on 

intersection safety. 

The study by (12) proposed a safety-aware and 

data-driven predictive control framework for 

CAVs at signalized intersections in mixed 

traffic environments. Their approach 

prioritizes collision avoidance with human-

driven vehicles during signal phases, using a 

recursive least squares algorithm to 

approximate driving behavior. The 

effectiveness of the safety-aware control 

framework was validated through numerical 

simulations and robust analysis, demonstrating 

its potential to enhance intersection safety by 

deriving optimal trajectories for CAVs. 

Hashmatullah and Antoniou (13) conducted a 

simulation-based impact assessment of AVs in 

urban networks using microscopic traffic 

models. Their study utilized a particle swarm 

optimization algorithm to calibrate the model 

and assess the influence of AV penetration on 

both safety and traffic efficiency. The results 

indicated that higher AV penetration rates 

significantly enhance safety; however, the 

impact on traffic efficiency was inconsistent. 

While AVs may slightly increase the average 

network travel time, the overall safety 

improvements make their integration 

beneficial. 

A study by Kim, Cho, and Lee (14) explored a 

novel method using traffic accident data to 

identify pilot zones for AV safety testing. The 

approach utilizes a CNN + BiGRU model for 

accident classification, achieving remarkable 

accuracy with 100% recall and 99.5% 

classification accuracy. By employing outlier 

detection and DBSCAN clustering, the study 

successfully identified 562 AV-like accident 

cases from a total of 798. This method provides 

an efficient solution for selecting pilot zones, 

enabling effective AV safety validation while 

potentially reducing testing costs. The findings 

underscore the importance of using real-world 

data to enhance AV deployment safety. 

However, these studies highlight the broad 

safety benefits of automation but do not delve 

into how different AV driving behaviors—

such as cautious, normal, and aggressive—

may impact these outcomes differently. This 

study aims to fill this gap by focusing on the 

distinct driving behaviors of AVs—cautious, 

normal, and aggressive—and analyzing their 

respective impacts on traffic conflicts at 

signalized intersections. By investigating how 

each of these behaviors affects traffic 

dynamics and safety outcomes, this research 

provides a more detailed and behavior-specific 

understanding of AV integration, offering 

insights that can inform both traffic 

management strategies and AV policy 

development. This focus on behavioral 

differentiation is what distinguishes our 

approach from prior studies, offering new 

insights into the complexities of AV behavior 

in urban traffic systems. 

 
Figure 1 Geographical Layout of the Signalized 

Intersection in Balgat, Ankara. 

3. Methods 

3.1. Study location 

The research was conducted at a busy four-

legged signalized intersection located in 

Balgat, Ankara, Turkey, which is shown in 

Figure 1. This intersection, situated at the 

crossroads of Kızılırmak and Ufuk Ünv. Cd 

No:18, 06520 Çankaya/Ankara, features four 

lanes for both northbound and southbound 
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traffic, and three lanes for both eastbound and 

westbound traffic. The selected site provides 

an excellent real-world scenario with high 

traffic density, making it ideal for evaluating 

the effects of Autonomous Vehicles (AVs) on 

traffic flow and behavior. 

3.2. Research methodology overview 

To enhance clarity and provide a 

comprehensive understanding of the research 

process, the methodology is summarized in the 

flowchart as shown in Figure 2. The research 

begins with Data Collection, where the focus is 

on gathering Traffic Volume Data and Speed 

Distributions. These datasets are essential for 

building accurate simulation models. 

 
Figure 2 Flowchart of research methodology. 

In the Model Building and Calibration phase, 

the collected data are used to construct a 

realistic simulation environment and ensure 

the model reflects real-world conditions 

accurately. After calibration, simulations are 

run, and trajectory (trj) files are extracted for 

analysis. 

The Safety Analysis is then conducted using 

the Surrogate Safety Assessment Model 

(SSAM) tool, which processes the trajectory 

files to evaluate potential conflicts and safety 

metrics. Finally, the results from the safety 

analysis are interpreted and discussed in the 

Results and Discussion section, leading to the 

study's Conclusion. 

This systematic approach ensures that the 

research is both rigorous and transparent, 

facilitating reproducibility and validation. 

3.3. Traffic volume 

The traffic volume data was collected through 

video analysis conducted during peak morning 

hours from 7:00 to 8:00 AM, as shown in Table 

1. The total recorded traffic volume during this 

period was 5386 vehicles. 

Table 1. Traffic movements recorded at the signalized 

intersection 

Direction 
Total 

Vehicles 

Right 

Turn 
Straight 

Left 

Turn 

N 1793 225 679 889 

E 1033 814 157 62 

S 1508 244 1228 36 

W 1052 28 132 892 

3.4. Signal program timing 

In the context of signal timing at the studied 

intersection, Figure 3 illustrates the sequence 

of green, red, and amber light durations for 

each traffic direction. Detailed observations 

were made using video recordings to extract 

these traffic control parameters. The cycle 

time, set at 204 seconds, governed the signal 

sequence. As shown in Figure 3, the green light 

durations were observed to be 65 seconds for 

the northbound direction, 46 seconds for the 

eastbound direction, 50 seconds for the 

southbound direction, and 19 seconds for the 

westbound direction. The red and amber light 

durations were uniformly maintained at 3 

seconds each across all directions. These signal 

timings were meticulously documented to 

reflect the actual conditions recorded during 

the video analysis. 

 
Figure 3 Signal Program Timing of the Signalized 

Intersection in Balgat, Ankara. 

3.5. Desired speed distributions 

In assessing the speed distribution for human-

driven vehicles at the specified intersection, 

Figure 4 illustrates the results of the speed 

observations conducted. This analysis focuses 

on vehicles traveling north and south during 

green signals, where the speeds of 20 vehicles 

were measured over a 150-meter distance 

using a stopwatch. As depicted in Figure 4, the 

results show that 40% of the vehicles traveled 
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at speeds between 20 km/h and 27 km/h, 

42.5% between 28 km/h and 36 km/h, and 

17.5% between 36 km/h and 39 km/h. 

 
Figure 4 Speed Distribution of Human-Driven 

Vehicles. 

Figure 5 illustrates the speed characteristics of 

autonomous vehicles (AVs) in the simulations 

conducted. Whether operating independently 

or in mixed traffic with human-driven vehicles, 

AVs consistently maintained speeds between 

27 km/h and 31 km/h. 

 
Figure 5 Speed Distribution of Autonomous Vehicles. 

3.6. Car-following and lane change models 

Table 2 presents the specific driving 

parameters defining three distinct AV driving 

behaviors analyzed in this study:  

• Cautious AVs: Emphasized safety 

with a 1.50-meter standstill distance and a 1.5-

second gap time, promoting conservative 

driving. 

• Normal AVs: Balanced safety and 

efficiency, maintaining a 1.50-meter standstill 

distance but reducing the gap time to 0.9 

seconds, with acceleration from standstill set at 

3.50 m/s². 

• Aggressive AVs: Adopted a closer 

1.00-meter standstill distance, a 0.6-second 

gap time, and higher acceleration of 4.00 m/s², 

indicating more assertive driving. 

Human driving behavior was simulated using 

the Wiedemann 74 model, which included an 

average standstill distance of 2.00 meters, an 

additive safety distance of 2.00 meters, and a 

multiplicative safety distance of 3.00 meters to 

reflect realistic driver responses and 

variability. 

Table 2. Parameters for av car following models. 

Parameter Cautious Normal Aggressive 

Standstill 

distance 
1.50 m 1.50 m 1.00 m 

Gap time 

distribution 
1.5 s 0.9 s 0.6 s 

‘Following’ 

distance 

oscillation 
0.00 m 0.00 m 0.00 m 

Threshold for 

entering 

‘Following’ 
-10.00 -8.00 -6.00 

Negative 

speed 

difference 
-0.10 -0.10 -0.10 

Positive speed 

difference 
0.10 0.10 0.10 

Distance 

dependency of 

oscillation 
0.00 0.00 0.00 

Oscillation 

acceleration 
0.10 m/s2 0.10 m/s2 0.10 m/s2 

Acceleration 

from standstill 
3.00 m/s2 3.50 m/s2 4.00 m/s2 

Acceleration 

at 80 km/h 
1.20 m/s2 1.50 m/s2 2.00 m/s2 

The lane change model parameters were 

adjusted for different AV driving behaviors 

and human drivers to simulate realistic driving 

scenarios. Advanced merging was enabled for 

all vehicle categories, while cooperative lane 

change was activated only for AVs. The safety 

distance reduction factor varied, with AV 

cautious at 1.00 meters, AV normal at 0.60 

meters, AV aggressive at 0.75 meters, and 

human drivers at 0.60 meters. Minimum 

clearance was set at 1.00 meters for AV 

cautious and 0.50 meters for the other modes. 

The maximum deceleration for cooperative 

braking was -2.50 m/s² for AV cautious, -3.00 

m/s² for AV normal, -6.00 m/s² for AV 

aggressive, and -3.00 m/s² for human drivers. 

(17) 

The lane change model parameters were 

adjusted for different AV driving behaviors 

and human drivers to simulate realistic driving 

scenarios. Advanced merging was enabled for 

all vehicle categories, while cooperative lane 

change was activated only for AVs. The safety 

distance reduction factor varied, with AV 

cautious at 1.00 meters, AV normal at 0.60 

meters, AV aggressive at 0.75 meters, and 
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human drivers at 0.60 meters. Minimum 

clearance was set at 1.00 meters for AV 

cautious and 0.50 meters for the other modes. 

The maximum deceleration for cooperative 

braking was -2.50 m/s² for AV cautious, -3.00 

m/s² for AV normal, -6.00 m/s² for AV 

aggressive, and -3.00 m/s² for human drivers. 

3.7. Intersection design calibration 

Figure 6 illustrates the real-world queuing 

behavior observed for the east and westbound 

lanes during the calibration process. Initially 

designed with two lanes, the observed traffic 

volumes required an adjustment to three lanes 

in the simulation model to better reflect actual 

traffic conditions. 

 
Figure 6 Real-world Vehicle Queuing Scenario in East 

and West Bound Lanes. (18) 

Additionally, given the high traffic volume, it 

was determined that lane changes should be 

restricted but still allowed at exit links as 

illustrated in figure 7. To achieve this, each 

lane was modeled as a separate link for each 

direction. This approach aligns the simulation 

more closely with observed traffic behaviors, 

enhancing the accuracy of the model. 

 
Figure 7 Intersection design calibrated for no lane 

changes: each lane as a separate link. 

3.8. Conflict points analysis 

Figure 8 illustrates the conflict analysis 

process used in this study, highlighting the 

identification and recording of conflict points 

using VISSIM's built-in conflict analysis and 

the Surrogate Safety Assessment Model 

(SSAM) tools. The primary data obtained from 

the simulation included the number of crossing 

conflicts, rear-end conflicts, and lane-change 

conflicts. These conflict points were 

meticulously analyzed to assess traffic safety. 

Additionally, the mean time-to-collision 

(TTC) was calculated to provide further 

insights into the severity of potential conflicts. 

The data was analyzed to compare the total 

number of conflicts and the mean TTC across 

different scenarios, allowing for an assessment 

of how various AV behaviors and penetration 

rates affect traffic safety at intersections. This 

comparison provided valuable insights into the 

influence of AVs on intersection safety. 

 
Figure 8 SSAM Angles Used for Analysis. (13) 

3.9. Scenarios overview 

Table 3 presents the 21 scenarios examined in 

this study, which investigate the interactions 

between human-driven and automated vehicles 

at intersections. These scenarios explore 

various AV behaviors, including aggressive, 

normal, and cautious, to capture the diverse 

dynamics of real-world traffic. This 

comprehensive approach ensures that the full 

range of potential AV impacts on traffic flow 

and safety are thoroughly evaluated. 

Table 3. Overview of Autonomous Vehicle Scenarios 

Scenarios Cautious Normal Aggressive Human 

1 0% 0% 0% 100% 
2 25% 0% 0% 75% 
3 0% 25% 0% 75% 
4 0% 0% 25% 75% 
5 0% 0% 0% 75% 
… … … … … 
21 25% 25% 25% 25% 

4. Results and Discussion 

4.1. Impact of AV on conflicts point before 

calibration 

The impact of AVs on conflict points was 

evaluated by comparing different AV 

behaviors and penetration rates before and 

after calibrating the intersection design. 
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Various types of conflicts, such as crossing 

conflicts, rear-end conflicts, lane-change 

conflicts, total conflicts, and Mean Time to 

Collision (TTC), were analyzed to determine 

how the integration of AVs influences safety at 

signalized intersections. 

Figure 9 illustrates the number of crossing 

conflicts observed before and after calibration 

at the intersection. Initially, the intersection 

design resulted in higher crossing conflicts, 

particularly with cautious AV behavior. With 

100% human-driven vehicles, there were 31 

crossing conflicts. When cautious AVs were 

introduced at penetration rates of 25%, 50%, 

75%, and 100%, the crossing conflicts 

decreased to 27, 7, 12, and 1, respectively. 

Normal AV behavior exhibited crossing 

conflicts of 15, 18, 8, and 1 at the same 

penetration rates. In contrast, aggressive AV 

behavior recorded 21, 10, 7, and 0 crossing 

conflicts. These results indicate that cautious 

and normal AVs can significantly reduce 

crossing conflicts, particularly at higher 

penetration rates. 

 
Figure 9 Crossing Conflicts for Different AV 

Behaviors and Penetration Rates Before Calibration. 

Figure 10 illustrates the variation in rear-end 

conflicts across different AV behaviors. With 

100% human-driven vehicles, there were 49 

rear-end conflicts recorded. When cautious 

AVs were introduced at penetration rates of 

25%, 50%, 75%, and 100%, the number of 

rear-end conflicts increased to 41, 57, 66, and 

80, respectively. Normal AV behavior 

exhibited rear-end conflicts of 36, 52, 54, and 

50 at the same penetration rates. In contrast, 

aggressive AV behavior recorded 50, 70, 97, 

and 96 rear-end conflicts. These findings 

suggest that cautious AVs tend to increase 

rear-end conflicts, while normal and 

aggressive AVs show mixed impacts 

depending on the penetration rate. 

 
Figure 10 Rear-End Conflicts for Different AV 

Behaviors and Penetration Rates Before Calibration. 

Figure 11 illustrates the influence of AV 

behavior on lane-change conflicts. With 100% 

human-driven vehicles, the number of lane-

change conflicts recorded was 27. When 

cautious AVs were introduced at penetration 

rates of 25%, 50%, 75%, and 100%, the lane-

change conflicts increased to 34, 32, 52, and 

42, respectively. Normal AV behavior resulted 

in 23, 22, 26, and 35 lane-change conflicts at 

the same penetration rates. Conversely, 

aggressive AV behavior showed counts of 24, 

21, 14, and 29 lane-change conflicts. These 

results indicate that normal AV behavior tends 

to reduce lane-change conflicts, while cautious 

and aggressive behaviors can lead to higher 

lane-change conflicts at certain penetration 

rates. 

 
Figure 11 Lane-Change Conflicts for Different AV 

Behaviors and Penetration Rates Before Calibration. 

Figure 12 presents the total number of conflicts 

across all types, highlighting the significant 

impact of AV behaviors and penetration rates. 

In the scenario with 100% human-driven 

vehicles, a total of 107 conflicts were recorded. 

The introduction of cautious AVs resulted in 

total conflicts of 102, 96, 130, and 123 at 

penetration rates of 25%, 50%, 75%, and 

100%, respectively. In contrast, normal AV 

behavior recorded 74, 92, 88, and 86 total 

conflicts across the same penetration rates. 
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Aggressive AV behavior led to totals of 95, 

101, 118, and 125 conflicts. Notably, the 

mixed AV behavior scenario demonstrated a 

moderate reduction in total conflicts, with 

counts of 93, 83, 96, and 96 as the penetration 

rates increased. 

 
Figure 12 Total Conflicts for Different AV Behaviors 

and Penetration Rates Before Calibration. 

Figure 13 illustrates the Mean Time to 

Collision (TTC) values, which provide insights 

into the severity of potential conflicts at the 

intersection. In the human-driven vehicle 

scenario, Mean TTC was recorded at 0.21 

seconds. For cautious AVs, the Mean TTC 

values were 0.3, 0.68, 0.47, and 0.54 seconds 

at penetration rates of 25%, 50%, 75%, and 

100%, respectively. Normal AV behavior 

exhibited Mean TTC values of 0.24, 0.37, 0.31, 

and 0.31 seconds, while aggressive AV 

behavior recorded values of 0.27, 0.57, 0.54, 

and 0.51 seconds. These findings suggest that 

cautious AVs lead to an increase in Mean TTC, 

indicating less severe but more frequent 

conflicts, while normal and aggressive AV 

behaviors maintain a relatively consistent 

Mean TTC. 

4.2. Impact of AV on conflicts point after 

calibration 

Figure 14 presents the results after calibration, 

showing a significant reduction in conflict 

points. In the scenario with human-driven 

vehicles, there were 14 crossing conflicts. 

Cautious AVs exhibited 18, 4, 0, and 0 

conflicts at penetration rates of 25%, 50%, 

75%, and 100%, respectively. Normal AVs 

recorded 16, 7, 3, and 0 conflicts, while 

aggressive AVs showed 11, 3, 2, and 0 

conflicts. These results indicate a marked 

improvement in traffic safety following the 

calibration adjustments. 

 
Figure 13 Mean Time to Collision (TTC) for Different 

AV Behaviors and Penetration Rates Before 

Calibration. 

 
Figure 14 Crossing Conflicts for Different AV 

Behaviors and Penetration Rates After Calibration. 

Figure 15 illustrates the results for rear-end 

conflicts following the calibration. In the 

scenario with human-driven vehicles, there 

were 15 rear-end conflicts recorded. Cautious 

AVs exhibited 9, 8, 7, and 5 conflicts at 

increasing penetration rates. Normal AVs 

showed 8, 8, 11, and 7 conflicts, while 

aggressive AVs recorded 9, 11, 14, and 12 

conflicts. These findings highlight the varying 

impact of different AV behaviors on rear-end 

conflict occurrences. 

 
Figure 15 Rear-End Conflicts for Different AV 

Behaviors and Penetration Rates After Calibration. 

Figure 16 shows the results for lane-change 

conflicts following the calibration. Lane-

change conflicts were minimal post-
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calibration, with human-driven vehicles 

recording 0 conflicts. Cautious AVs exhibited 

1, 1, 1, and 3 conflicts at increasing penetration 

rates. Normal AVs had 0, 4, 2, and 2 conflicts, 

while aggressive AVs recorded 1, 2, 4, and 7 

conflicts. 

 
Figure 16 Lane-Change Conflicts for Different AV 

Behaviors and Penetration Rates After Calibration. 

Figure 17 illustrates the total conflicts 

observed during the study. Human-driven 

vehicles recorded 29 total conflicts. Cautious 

AVs showed a decrease in conflicts, with totals 

of 28, 13, 8, and 8 at increasing penetration 

rates. Normal AVs had 24, 19, 16, and 10 

conflicts, while aggressive AVs recorded 21, 

16, 19, and 20 conflicts. These findings 

suggest that cautious AV behavior is 

associated with a significant reduction in total 

conflicts, particularly at higher penetration 

rates. 

 
Figure 17 Total Conflicts for Different AV Behaviors 

and Penetration Rates After Calibration. 

Figure 18 illustrates the Mean Time to 

Collision (TTC) observed in the study. Mean 

TTC increased post-calibration, indicating less 

severe conflicts. Human-driven vehicles had a 

Mean TTC of 0.48 seconds. Cautious AVs 

recorded Mean TTC values of 0.3, 0.42, 0.55, 

and 0.35 seconds. Normal AVs exhibited 

Mean TTC values of 0.32, 0.23, 0.57, and 0.43 

seconds, while aggressive AVs showed values 

of 0.37, 0.58, 0.79, and 0.72 seconds. These 

results suggest that the post-calibration 

adjustments contributed to a reduction in 

conflict severity across all vehicle types. 

 
Figure 18 Mean Time to Collision (TTC) for Different 

AV Behaviors and Penetration Rates After Calibration. 

5. Conclusion 

After calibration, normal AV behavior 

balanced safety and efficiency, cautious AVs 

increased Mean Time to Collision (TTC), 

aggressive AVs reduced crossing conflicts but 

increased rear-end conflicts, and mixed AV 

improved overall safety. These findings 

underscore the need for tailored intersection 

designs to optimize AV integration and 

enhance traffic safety and efficiency. 

These findings underscore the importance of 

designing intersection controls tailored to 

specific AV behaviors, with the aim of 

optimizing both traffic safety and efficiency. 

Future research should focus on real-world AV 

deployments to validate these simulation-

based insights. Additionally, investigating the 

impact of varying AV penetration rates, 

vehicle-to-infrastructure (V2I) 

communication, and human-AV interaction in 

more complex traffic scenarios will be crucial 

for advancing the safe integration of AVs into 

urban networks. The development of dynamic 

signal control systems that can adapt to 

different AV driving behaviors and changing 

traffic conditions will also be essential for 

enhancing overall traffic management. 

CRediT authorship contribution statement 

Mustafa Albdairi: Conceptualization, 

Methodology, Software, Writing - Original 

Draft. Ali Almusawi: Supervision, Validation, 

Resources, Writing - Review & Editing. Syed 

Shah Sultan Mohiuddin Qadri: Data Curation, 

Investigation, Formal Analysis, Review & 



189           International Journal of Automotive Engineering and Technologies, IJAET 13 (4) 180-190 

 

 

Editing. 

Declaration of Competing Interest 

The authors declare that they have no known 

competing financial interests or personal 

relationships that could have appeared to 

influence the work reported in this paper. 

Data availability 

The datasets generated during and/or analyzed 

during the current study are available from the 

corresponding author on reasonable request. 

Acknowledgement 

The authors would like to thank Çankaya 

University for providing the necessary 

resources and tools to carry out this research. 

Special thanks to the Department of Civil 

Engineering and the Department of Industrial 

Engineering for their support and guidance 

throughout the study. 

6. References 

1. A. Karbasi and S. O’Hern, 

“Investigating the impact of connected and 

automated vehicles on signalized and 

unsignalized intersections safety in mixed 

traffic,” Future Transportation, vol. 2, no. 1, 

pp. 24-40, 2022. 

2. Albdairi, Mustafa, Ali Almusawi, and 

Syed Shah Sultan Mohiuddin Qadri, “Impact 

of Autonomous Vehicle Driving Behaviors on 

Signalized Intersection Performance: A 

Review,” Usak University Journal of 

Engineering Sciences, vol. 7, no. 1, pp. 14-26, 

June 2024. 

3. W. Do, N. Saunier, and L. Miranda-

Moreno, “Safety benefits of automated speed 

advisory systems at signalized intersections,” 

Transportation Research Record, vol. 2677, 

no. 3, pp. 551-564, 2023. 

4. A. I. Mahbub, V.-A. Le, and A. A. 

Malikopoulos, “Safety-Aware and Data-

Driven Predictive Control for Connected 

Automated Vehicles at a Mixed Traffic 

Signalized Intersection,” IFAC-Papers online, 

vol. 55, no. 24, pp. 51-56, 2022. 

5. G. Bathla et al., “Autonomous vehicles 

and intelligent automation: Applications, 

challenges, and opportunities,” Mobile 

Information Systems, vol. 2022, no. 1, p. 

7632892, 2022. 

6. M. Khayatian et al., “A survey on 

intersection management of connected 

autonomous vehicles,” ACM Transactions on 

Cyber-Physical Systems, vol. 4, no. 4, pp. 1-

27, 2020. 

7. E. Namazi, J. Li, and C. Lu, “Intelligent 

intersection management systems considering 

autonomous vehicles: A systematic literature 

review,” IEEE Access, vol. 7, pp. 91946-

91965, 2019. 

8. E. F. Ozioko, J. Kunkel, and F. Stahl, 

“Road intersection coordination scheme for 

mixed traffic (human-driven and driverless 

vehicles): A systematic review,” in Science 

and Information Conference, Springer, pp. 67-

94, 2022. 

9. S. K. Jayaraman et al., “Pedestrian trust 

in automated vehicles: Role of traffic signal 

and AV driving behavior,” Frontiers in 

Robotics and AI, vol. 6, p. 117, 2019. 

10. I. R. Khan, Interaction Between 

Autonomous Vehicles and Other Road 

Users—A Simulation Study. The University of 

Alabama in Huntsville, 2023. 

11. M. Martínez‐Díaz, F. Soriguera, and I. 

Pérez, “Autonomous driving: a bird's eye 

view,” IET Intelligent Transport Systems, vol. 

13, no. 4, pp. 563-579, 2019. 

12. J. Wang, Y. V. Pant, L. Zhao, M. 

Antkiewicz, and K. Czarnecki, “Enhancing 

safety in mixed traffic: Learning-based 

modeling and efficient control of autonomous 

and human-driven vehicles,” IEEE 

Transactions on Intelligent Transportation 

Systems, 2024. 

13. H. Sadid and C. Antoniou, "A 

simulation-based impact assessment of 

autonomous vehicles in urban networks," IET 

Intelligent Transport Systems, 2024. doi: 

10.1049/itr2.12537. 

14. S. Kim, M.-J. Cho, and Y. Lee, 

“Exploration of traffic accident-based pilot 

zones for autonomous vehicle safety 

validation,” Electronics, 2024. doi: 

10.3390/electronics13173390. 

15. Federal Highway Administration, 

“Surrogate Safety Assessment Model (SSAM) 

User Manual,” U.S. Department of 

Transportation, Publication No. FHWA-HRT-

08-050, 2008. Available at: 

https://highways.dot.gov/sites/fhwa.dot.gov/fi

les/FHWA-HRT-08-050.pdf. 



International Journal of Automotive Engineering and Technologies, IJAET 13 (4) 180-190         190 

 

 

16. A. Osman, “Evaluation of the Impact of 

Automated Driven Vehicles on Traffic 

Performance at Four-leg Signalized 

Intersections,” Linköping University, 

Department of Science and Technology, 

Communications and Transport Systems, 

Linköping University, Faculty of Science & 

Engineering, 2023. 

17. Almusawi, A., & Albdairi, M. “The 

Impact of Increasing Traffic Volume on 

Autonomous Vehicles in Roundabout,” Akıllı 

Ulaşım Sistemleri Ve Uygulamaları Dergisi, 

2024. 

18. A. Almusawi, M. Albdairi, and 

S.S.S.M. Qadri, "Integrating Autonomous 

Vehicles (AVs) into Urban Traffic: Simulating 

Driving and Signal Control," Applied 

Sciences, vol. 14, no. 19, pp. 8851, Oct. 2024. 

doi: https://doi.org/10.3390/app14198851. 



 

 

 

 

 

e-ISSN: 2146 - 9067 

 

International Journal of Automotive 

Engineering and Technologies 

 

journal homepage: 

https://dergipark.org.tr/en/pub/ijaet 
 

Original Research Article 

 

Condition monitoring of internal combustion engines with 

vibration signals and fault detection by using machine learning 

techniques 
 

Yunus Emre Karabacak1* 

1, *

Karadeniz Technical University, Trabzon, Türkiye. 

 

ARTICLE INFO  ABSTRACT 

Orcid Numbers 
 

1. 0000-0002-0268-3656 

 

Doi: 10.18245/ijaet.1251886 

 

* Corresponding author 

karabacak@ktu.edu.tr 
 

Received: Jul 28, 2024 

Accepted: Oct 16, 2024 

 

Published: 31 Dec 2024 

Published by Editorial Board Members of 

IJAET 

© This article is distributed by Turk Journal 
Park System under the CC 4.0 terms and 

conditions. 

 

 

Internal combustion engines are frequently used in transportation, power 

plants, and in many other applications for industrial purposes. For this 

reason, it is very important that the maintenance is done systematically 

and that the faults are detected correctly. In this study, two different 

methods were used for the detection of the healthy internal combustion 

engine (H) and faulty internal combustion engines (single-cylinder 

misfire-F1, two-cylinder misfire-F2). In the first method, classical signal 

features were extracted from engine vibration measurements and used in 

the training of artificial neural networks (ANNs) and support vector 

machine (SVM). In the second method, convolutional neural networks 

(CNNs), a deep learning method in which features are extracted 

automatically, are used. Spectrograms of engine vibration signals were 

used to train pre-trained CNNs with different structures. Spectrograms 

were obtained by applying short-time Fourier transform (STFT) to 

vibration signals. The results of GoogleNet and ResNet-50 models 

trained with spectrograms were compared with the results obtained from 

models based on ANNs and SVM. 

Keywords: Fault detection, Internal Combustion Engines, Neural Networks, 

Deep Learning, Condition Monitoring, Vibration Signals 
 

1. Introduction 

Internal combustion engines are used in many 

vehicles such as cars, trucks, ships, 

submarines, and aircraft. They are also 

preferred in applications such as agriculture, 

transportation, and electricity generation 

facilities. For this reason, the maintenance of 

internal combustion engines and the exact 

detection of their faults are extremely critical 

issues for performance, safety, and reliability. 

The processes that take place inside the 

internal combustion engine are extremely 

complicated and hard to model analytically. 

Therefore, modern techniques of machine 

learning (supervised learning, unsupervised 

learning, reinforcement learning, and deep 

learning) are used in combustion control and 

optimization, estimation of emission values, 

and design or optimization of engine elements 

in internal combustion engines [1]. 

2. Literature Review 

In the literature, there are a limited number of 
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studies on the detection of faults such as 

knocking, misfiring, or deterioration of engine 

elements in the internal combustion engine 

with machine learning techniques. In their 

study, Jafarian et al. [2] placed four vibration 

sensors in different positions of an automobile 

engine and investigated various faults, 

including misfire and valve clearance, using 

the data obtained by the sensors under various 

operating conditions. They also classified the 

engine state using various machine learning 

techniques with the signal features obtained 

using fast Fourier transform (FFT). Li et al. [3] 

developed an intelligent diagnostic method for 

marine diesel engines using instantaneous 

angular velocity information. In their work, 

they performed the implementation and 

evaluation of a technique based on the 

combination of empirical mode 

decomposition, independent component 

analysis, and support vector machine (SVM). 

Moosavian et al. [4] developed an intelligent 

diagnostic approach based on acoustic and 

vibration signals using a combination of sensor 

fusion and classifier and used artificial neural 

networks (ANN) and SVM techniques to 

diagnose spark plug faults in an internal 

combustion engine. Saharma et al. [5] 

performed the detection of misfire faults in an 

internal combustion engine using the features 

extracted from the vibration signals and the 

decision tree algorithm.  Devasenapati et al. [6] 

used decision trees for feature selection and 

classification to identify misfire faults in a 

four-stroke four-cylinder internal combustion 

gasoline engine. Castresana et al. [7] utilized a 

multi-output ANN model to obtain a complete 

performance map of a ship’s diesel engine. 

Wang et al. [8] proposed a new diagnostic 

method through hybrid algorithm-based 

multidimensional feature extraction for the 

detection of undiagnosed engine faults that 

affect the normal operation of vehicles. Cai et 

al. [9] presented a new method for diagnosing 

diesel engines by combining back propagation 

neural networks, known as Bayesian networks, 

with a rule-based algorithm. Kowalski et al. 

[10] used the extracted features by monitoring 

various signals produced by the engine as 

inputs for a feedforward neural network-based 

classification algorithm. Karatuğ and 

Arslanoğlu [11] developed a condition-based 

maintenance system for fault diagnosis in ship 

engine systems using ANN and illustrated 

three scenarios. Flett and Bone [12] used 

machine learning methods to detect valve 

spring and valve clearance faults in diesel 

engines and compared their methods with each 

other in terms of performance. Wang et al. [13] 

diagnosed the faults of a diesel engine based on 

adaptive wavelet packets and empirical mode 

decomposition and used fractal dimension 

features for this purpose. Basurkoa and 

Uriondo [14] developed a condition-based 

maintenance strategy for medium-speed diesel 

engines used on ships. They trained a feed-

forward neural network to build the engine 

performance model and detected the engine's 

fuel consumption and fault condition. In the 

study by Küçüksarıyıldız et al. [15], specific 

fuel consumption for a 60 HP tractor was 

evaluated under different conditions of axle 

load, tire pressure, and drawbar force. The 

results were also predicted using ANN, with 

the best model demonstrating high accuracy in 

its predictions. Togun and Baysec [16] 

developed an ANN model to predict torque and 

brake specific fuel consumption of a gasoline 

engine using spark advance, throttle position, 

and engine speed. Based on experimental data, 

the model was trained and tested, showing 

satisfactory accuracy. The ANN model is also 

presented as an explicit mathematical function. 

Çay et al. [17] developed an ANN model to 

predict brake specific fuel consumption, 

effective power, average effective pressure, 

and exhaust gas temperature of a methanol 

engine. Based on experimental data from a 

four-cylinder engine, the model achieved 

regression values close to 1, RMS values 

below 0.015, and mean errors under 3.8%, 

demonstrating its effectiveness in predicting 

engine performance. Parlak et al. [18] studied 

an ANN model using a back propagation 

algorithm to predict specific fuel consumption 

and exhaust temperature of a Diesel engine at 

different injection timings. The model 

achieved a mean absolute relative error of less 

than 2% compared to experimental results, 

indicating strong consistency and making it a 

useful tool for preliminary thermal engineering 

analyses. 

Looking at the studies in the literature, it can 

be seen that vibration analysis is the prominent 
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approach in diagnosing the faults of internal 

combustion engines. In addition, studies using 

modern machine learning techniques in the 

detection of engine faults are also extremely 

limited. With the effective use of modern 

machine learning techniques, engine faults can 

be diagnosed. Therefore, in this study, two 

methods based on machine learning and 

vibration analysis are utilized for the detection 

of internal combustion engine faults. 

Accordingly, vibration signals were classified 

using two different machine-learning methods. 

In the first method, ANN and SVM models are 

trained with classical features extracted from 

their signals. In the second method, 

spectrograms were obtained from vibration 

signals and CNN models were used to detect 

engine faults. Engine vibration data shared by 

Randall in his Vibration-based Condition 

Monitoring book [19] were utilized to validate 

the two methods presented. Finally, the results 

obtained from the methods were compared in 

terms of performance. 

3. Materials and Methods 

3.1 General information 

In a diesel engine, the thermodynamic energy 

obtained by the ignition of the air-fuel mixture 

in the cylinder is converted into mechanical 

energy via the slider-crank mechanism. Fig. 1 

shows an inline 6-cylinder internal combustion 

engine with a 1-5-3-6-2-4 ignition pattern. 

 
Fig. 1 6-cylinder internal combustion engine 

Significant vibrations occur in engines due to 

factors such as oscillating and rotating parts, 

cyclical changing of gas pressure due to 

combustion, and inertia forces of moving parts. 

These vibrations usually occur as torsional 

vibration, longitudinal vibration, and mixed 

vibrations. Torsional vibrations are mainly 

caused by the cyclic gas pressure in the 

cylinder as a result of combustion and the mass 

forces of the moving parts. That is, changing 

the crankshaft rotational speed causes velocity 

fluctuations, hence torsional vibrations 

[19,20]. Therefore, torsional vibrations can 

contain information about engine malfunctions 

that affect gas pressure, such as misfires and 

valve clearance. Fig. 2 shows angular velocity 

fluctuations for a misfire in a cylinder of an 

inline 6-cylinder engine with a 1-5-3-6-2-4 

ignition pattern. There are six uniform 

fluctuations in normal operation. As shown in 

the figure, if one of the cylinders misfires, the 

speed drops significantly and must be 

gradually rebuilt by the following cylinders 

[19]. 

 
Fig. 2 The misfire in one cylinder and angular velocity 

fluctuates [19]. 

3.2 Experimental data 

In this study, vibration signals obtained from 3 

different cases of a 6-cylinder internal 

combustion engine were used [19]. Vibration 

signals were obtained from the engine block 

with an accelerometer located near the 6th 

cylinder. In the first case, the engine runs 

normally. In the second case, there is a misfire 

fault in one cylinder. In the third case, there are 

misfire faults in two cylinders. Misfire faults 

were achieved by removing the ignition cables. 

The firing order is 1–5–3–6–2–4. The 

sampling frequency for measurements in all 

cases is 24 000 Hz. Since the engine speed 

fluctuates, especially for faulty conditions, the 

signals containing the cycles are divided into 

shorter segments (32x1024). The average 

engine speed is nominally 1500 rpm. More 

detailed information can be found in the 

relevant reference [19]. 

3.3. Methodology 

In this study, we applied two different methods 

for the detection of a healthy internal 

combustion engine (H) and faulty internal 
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combustion engines (single-cylinder misfire-

F1, two-cylinder misfire-F2). In the first 

method, we extracted classical features from 

engine vibration signals and used them in 

training ANN and SVM. These features are 

mean ( M ), root mean square ( RMS ), standard 

deviation ( SD ), variance (VAR ), kurtosis ( K

), and skewness ( S ). In the second method, we 

used CNNs, a deep learning method, to detect 

engine faults. We utilized spectrograms of 

engine vibration signals to train pre-trained 

CNNs with different structures. We used the 

short-time Fourier transform (STFT) to obtain 

the spectrograms. 

3.3.1. The first method based on classical 

machine learning algorithms 

The main purpose of feature extraction is to 

determine a set of quantitative coefficients to 

describe the distinctive abilities of the 

vibration signal characteristics in order to 

diagnose internal combustion engine faults. 

The features extracted from the signals are 

shown in Table 1. 

Table 1 Features of the engine vibration signals 

Property Name Formula 

Mean ( M ) 
1

1 N

i

i

M x
N =

=   

Root mean square (

RMS ) 

2

1

1 N

i

i

RMS x
N =

=   

Standard deviation (

 , SD ) 

2

1

1
( )

N

i

i

SD x x
N


=

= = −
 

Variance (
2 ,VAR ) 

2 2

1

1
( )

N

i

i

VAR x x
N


=

= = −  

Skewness ( S ) 

3

1

3

( )

( 1)

N

i

i

x x

S
N 

=

−

=
−


 

Kurtosis (K) 

4

1

4

( )

( 1)

N

i

i

x x

K
N 

=

−

=
−


 

ANN and SVM, which are used to detect 

engine faults using features in the first method, 

are among the most well-known modern 

machine-learning algorithms. ANN was 

developed with inspiration from the human 

brain and nervous system. In the ANN 

algorithm, artificial neurons process the 

features determined as input in the hidden layer 

and produce output about the engine faults. A 

two-layer feedforward neural network is used 

for the detection of engine faults. The number 

of hidden neurons was determined as 10 and 

the network was trained with the Levenberg-

Marquardt backpropagation algorithm. SVM 

is also applied to classification and fault 

detection problems. This study, it is aimed to 

minimize the loss function while classifying 

the engine faults with SVM and to obtain the 

optimal hyperplane separating the classes in 

the best way. Since there is a lot of work in the 

literature on the mathematical details of SVM 

and ANN [21], no further information is given 

here. Input and target data for both ANN and 

SVM were randomly divided into three 

partitions. 70% of the data was used for 

training and 15% for validation. Finally, 15% 

of the data was used for a completely separate 

test. 

3.3.2. The second method based on deep 

learning 

Traditional machine learning methods rely on 

predefined features, while deep learning 

techniques, especially Convolutional Neural 

Networks (CNNs), excel at automatically 

learning complex data structures. CNNs 

effectively extract hierarchical features from 

raw data without extensive manual feature 

engineering, enhancing accuracy and reducing 

processing time. Their capability to handle 

large datasets makes them ideal for 

applications like fault detection, leading to 

more accurate and reliable results. 

Consequently, CNNs are increasingly favored 

for engine fault detection tasks over classical 

approaches. 

The second method applied in this study is 

based on the STFT, which is one of the time-

frequency analysis methods. We obtained the 

spectrograms from the motor vibration signals 

with STFT and used them to generate the 

dataset for the deep learning algorithm. 

STFT is a Fourier-based transform used to 

determine the frequency and phase of local 

parts of the signal that change over time. With 

STFT, a long-time signal is split into short 

segments and the Fourier transform is 

implemented for each short segment separately 

to obtain the spectrogram. Finally, 

spectrograms are plotted as a function of time. 

In Eq. 1, x(t) represents the time signal,   is 

the time axis, and   is the frequency [22]. 
2

, ( , ) ( , )Spektrogram x xP STFT   =            (1) 
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We used the spectrograms obtained with STFT 

to train pre-trained CNNs with different 

structures to detect engine faults. CNNs are a 

special subclass of ANNs, and classification 

with CNN is mostly performed on images. 

CNNs are a specially developed version of 

multilayer perceptrons. In multilayer 

perceptrons, each neuron in one layer is 

connected to all neurons in the next layer. CNN 

consists of convolutional and subsampling 

layers. Each of these layers has a specific 

topographic structure, and each layer contains 

different clusters of neurons. Each neuron is 

also linked to neurons in previous layers [22]. 

In Fig. 3, a typical CNN architecture is given. 

The input layer in the figure represents the 

spectrograms in our problem, and the output 

layer is the engine fault. The mathematical 

details of CNNs will not be given here as they 

have been extensively discussed in the 

literature [22]. 

 
Fig. 3 Typical CNN architecture 

Pre-trained CNNs are modified and applied to 

new classification problems. In this way, the 

time and effort required to train a network is 

much less than to train a network from scratch 

[23]. Detailed features of the pre-trained CNNs 

used in this study are given in Table 2. Also, 

Table 3 shows the training parameters. 

Spectrograms of vibration signals for an 

healthy internal combustion engine (H) and 

faulty internal combustion engines (single-

cylinder misfire-F1, two-cylinder misfire-F2) 

were obtained separately. The spectrograms 

obtained for each engine were divided into 

three groups as training (50%), test (25%), and 

validation (25%). CNN outputs are modified 

and changed to classify healthy and faulty 

engines. Using training and validation data, 

CNNs were trained on deep features, and faults 

were classified. Finally, the trained network 

was tested, and faults were diagnosed based on 

data labels. 

4. Results and Discussion 

4.1. Signal analysis 

The representations of vibration signals 

obtained from H, F1, and F2 engines in the 

time and frequency domain can be seen in Fig. 

4. Since the signal data is divided into 32 

segments, these representations contain 1 out 

of 32 of the measurements used in the 

calculations. Accordingly, the frequency 

amplitudes of the vibration signals of the H 

engine are lower than the faulty engines. 

However, a more detailed examination can be 

made to extract the features of the signals. 

Table 2 Features of the pre-trained CNNs 

 GoogleNet ResNet-50 

Layer depth 22 50 

Layer Number 144 177 

Connection 

Number 
170 192 

Type of Input Spectrogram Spectrogram 

Size of Input 224x224x3 224x224x3 

Type of Output Classification Classification 

Size of Output 3 3 

Weight 

learning rate 

factor 

10 10 

Bias learning 

rate factor 
10 10 

The Loss 

Function 
Cross-entropy Cross-entropy 

Table 3. Training parameters of pre-trained CNNs 

 GoogleNet  ResNet-50 

Frequency of 

Validation 
5 Hz 

Rate of Learning 0.001 

Maximum Epoch 5 

Size of Mini Batch 10 

Input Data Resolution 483 x 430 pixel  

4.2. The Results of the First Method 

Fig. 5 shows the different features of vibration 

signals of healthy and faulty internal 

combustion engines. Accordingly, looking at 

the M values, it can be seen that the F2 engine 

produces the highest features. The H engine 

produced the lowest M values. Looking at the 

RMS  values, it can be seen that the H engine 

produces the highest features. The F1 engine 

produced the lowest RMS  values. There is a 

similar trend for SD  and VAR  features. 

Looking at the S  values, it can be seen that the 

F2 engine produces the highest features. The 

F1 engine produced the lowest S  values. K  

features were close to each other for all three 

engines. 

All these features are used to create the dataset 

that is organized to detect motor failure with 

ANN and SVM. 
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Fig. 4 Time and frequency domain representations and spectrograms of internal combustion engines vibration signals 

 

Fig. 5 Different features of vibration signals of healthy and faulty internal combustion engines 
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Fig. 6 shows the training, validation, and test 

performances of the ANN model. Accordingly, 

the best validation performance is 0.043846 at 

epoch 11. Fig. 7 shows the training, validation, 

and test confusion matrices of the ANN model. 

Looking at the all confusion matrix, it can be 

seen that the overall success rate of the model 

is 97.9%. 

In this study, features extracted from the 

vibration signals of engines are also used in 

training SVM models. In order to avoid figure 

redundancy, the results of the SVM models are 

given directly. As can be seen from Table 4, all 

SVM models achieved a validation success of 

95.8%. 

4.3. The results of the second method 

The CNNs used in this study were adapted to 

the problem of engine diagnostics and trained 

with spectrograms obtained from vibration 

signals. At the end of the training, validation 

success, loss, and gradient values were 

calculated. Finally, the successes of the tested 

CNNs with the data set reserved for the test 

were compared with each other. For CNN 

models, the goal is to identify healthy and 

faulty engines. Table 5 shows the class labels 

of the engines and the number of samples 

utilized for the training, validation, and test of 

different CNN models. 

Table 4. Results of training of SVM models 

SVM Models 
Validation 

Accuracy (%) 

Linear 95.8 

Quadratic 95.8 

Cubic 95.8 

Gaussian 95.8 

Table 5. Class labels and sample numbers 

Class Label H F1 F2 

Training 

Samples 
22 22 22 

Validation 

Samples 
10 10 10 

Test Samples 10 10 10 

Fig. 8 demonstrates the accuracy rates for two 

different CNN models. Accordingly, 

GoogleNet and ResNet-50 models reached a 

100% validation rate at the end of the training 

process. Since the number of layers and 

connections of the ResNet-50 model is higher, 

the training time is longer. With all other 

conditions remaining the same, the increase in 

complexity in the CNN architecture positively 

affects the accuracy rate and increases the 

training time. 

 
Fig. 6 Training, validation, and test performances of 

the ANN model 

 
Fig. 7 Training, validation, and test confusion matrices 

of the ANN model 

 
Fig. 8 Accuracies for different CNN models 

The losses in training and validation processes 
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for different CNN models can be seen in Fig. 

9. Losses are a measure of the difference 

between the estimated output and the actual 

output. Losses decrease with the number of 

iterations. The loss values of the models 

decreased over time due to the variation in the 

validation rates during the training period. 

 
Fig. 9 Losses for different CNN approaches 

The success rates of CNN models trained and 

tested with different numbers of samples can 

be seen in Table 6. Accordingly, as the number 

of samples increases, the validation and test 

successes, and training times of the two CNN 

models increase. It can be seen from the table 

that the training time of CNNs with more 

complex architecture such as Resnet-50 will be 

longer. 

The performance of the CNN models, as 

shown in the table, indicates that both 

GoogleNet-CNN and ResNet-CNN achieve 

100% validation success with an increase in 

training samples, which is a promising result. 

However, strong correlations between input 

and output data can sometimes lead to success 

without overfitting, especially with smaller 

datasets—this raises concerns about the 

models' generalization ability. The tendency of 

the models to memorize training data may limit 

their performance on different engine types or 

fault conditions. Therefore, it is crucial to 

consider strategies that enhance robustness and 

generalizability, such as adding more data or 

employing regularization techniques, to ensure 

reliable performance across diverse scenarios 

and validate results against various datasets. 

In this context, the study contributes to the 

diagnosis of internal combustion engine faults 

by utilizing both classical machine learning 

methods (SVM and ANN) and deep learning 

techniques (CNN). It was observed that ANN 

achieved a success rate of 97%, outperforming 

SVM, while the ResNet-50 architecture also 

achieved a diagnostic performance of 100%. 

This underscores the potential of deep learning 

methods in this field. In contrast to most 

existing literature, such as Jafarian et al. [2] 

and Moosavian et al. [4], which primarily 

focus on classical machine learning 

approaches, this study suggests that integrating 

both classical and modern methods may 

enhance fault detection capabilities. 

5. Conclusions 

In this study, classical machine learning 

methods and CNNs were used for the diagnosis 

of internal combustion engines with different 

faults. While SVM and ANN are applied for 

fault diagnosis, classical features obtained 

from vibration signals are used for training 

purposes. Spectrograms were preferred when 

applying CNN models. The results obtained 

from the ANN and SVM models were 

compared. Accordingly, ANN performed 

better than SVM (97%). Two CNN models 

with different architectures showed similar 

diagnostic performance (100%). However, 

higher test success was achieved with the more 

complex Resnet-50. This model, which has a 

more complex architecture, has a longer 

training duration. As a result, it is seen that 

classical machine learning and deep learning 

algorithms can effectively classify the misfire 

faults of internal combustion engines. 

Table 6 Sample number effect on CNN performance 

CNNs 

Number of 

Training 

Samples 

Validation 

Success 

(%)  

Test 

Success 

(%) 

Training 

Duration 

(s) 

GoogleNet-CNN 11 85 80 40 

GoogleNet-CNN 22 100 95 81 

GoogleNet-CNN 44 100 100 160 

ResNet-50-CNN 11 90 90 90 

ResNet-50-CNN 22 100 100 180 

ResNet-50-CNN 44 100 100 160 
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Methane diesel dual-fuel engines are gaining increasing interest because 

they offer lower emissions and higher efficiency compared to 

conventional single-diesel fuel engines. However, due to the low 

combustion efficiency and combustion stability of the methane-diesel 

dual-fuel application, there are still unresolved issues that need to be 

addressed. In this study, the effects of methane gas injection timing and 

pressure on engine performance and exhaust emissions are investigated 

in order to overcome problems related to the application of methane gas 

in dual-fuel engines. Additionally, the environmental and economic 

impacts of the exhaust emissions resulting from combustion are analyzed. 

The study is conducted with 5 different methane gas injection timings 

(25, 35, 45, 55, and 65 degrees after TDC) and 4 different methane gas 

injection pressures (1 bar, 1.5 bar, 2 bar, and 2.5 bar). In the experiments, 

the engine torque (5 Nm) and operating speed (1850 1/min) are kept 

constant. The results show that increasing the methane gas injection 

pressure (GIP) from 1 bar to 2.5 bar and delaying the methane gas 

injection timing (GIT) from 25° aTDC to 65° aTDC leads to an average 

reduction of 8.5% in SFC values and a 4% increase in thermal efficiency 

compared to diesel operation. Similarly, increasing GIP and delaying GIT 

results in an average reduction of 46% in NO emissions and an average 

reduction of 48% in soot emissions. 

Keywords: Diesel-methane dual fuel, Engine performance, Emissions, Gas injection 

timing and pressure, environmental impacts 
 

1. Introduction 

The use of internal combustion engines (ICE) 

in transportation, agriculture, maritime sector, 

and industrial areas significantly contributes to 

the formation of greenhouse gas emissions 

(especially carbon dioxide) and air pollution 

[1-3]. The primary cause of this situation is the 

use of fossil-derived fuels in ICE [4]. Today, 

in many countries, stringent emission 

standards are enforced to reduce the release of 

harmful gases resulting from the use of fossil-

derived fuels. This situation compels motor 

manufacturers and researchers to make various 

improvements in both pre-combustion and 

post-combustion in ICE [5, 6]. At the forefront 

of these improvements is the use of alternative 
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fuels that do not involve significant structural 

changes for the engine [7]. Among the 

alternative fuels, gaseous fuels like methane 

[8, 9], H2 [10, 11], and liquid fuels like 

biodiesel [12-15], alcohols [16-18], and wastes 

[19] are prominent.  

Due to the potential for methane gas to be 

produced from biomass such as municipal 

waste, sludge, and trash, it is becoming 

increasingly important for both electricity 

generation and use in ICEs in the coming years 

[20]. Consequently, various studies are being 

conducted to increase the use of methane in 

both gasoline and diesel engines. Methane can 

be used directly in gasoline engines because it 

can be ignited by an external ignition source. 

However, in diesel engines, methane can either 

be used directly through a special injection 

system or, alternatively, in a dual-fuel mode 

without significant modifications to the engine 

[21]. In diesel engines, the use of methane is 

primarily implemented in dual-fuel mode due 

to its economic advantages and minimal 

modification requirements. In dual-fuel mode, 

methane is introduced into the combustion 

chamber during the intake phase and is injected 

onto the gas-air mixture at the end of the 

compression phase to create the diesel ignition 

source [22, 23]. 

In literature, it is possible to find various 

studies on the use of methane gas in diesel 

engines. Some of these studies are summarized 

as follows: Krishnan and colleagues [24] 

investigated the effects of different natural gas 

additions on performance in a diesel engine. 

They reported that as the natural gas ratio 

increased from 0% to 90% in the dual-fuel 

application, the engine efficiency tended to 

decrease. However, it was also noted that the 

increase in natural gas ratio led to a reduction 

in NOx and smoke emissions. Papagiannakis 

and Hountalas [25] conducted an experimental 

study on the effects of natural gas ratio on 

performance and emissions in a natural gas-

diesel dual-fuel engine. The experiments were 

carried out under different load conditions and 

natural gas energy ratios. The results showed 

that increasing the percentage of natural gas 

reduced NO and smoke emissions but 

significantly increased HC and CO emissions. 

Additionally, it was reported that the BSFC 

values tended to increase with a higher natural 

gas percentage. Di Blasio and colleagues [26] 

reported that increasing the methane energy 

ratio from 0% to 50% in a methane-diesel dual-

fuel application resulted in a threefold increase 

in HC emissions and a tenfold increase in CO 

emissions. The study also highlighted those 

changes in the compression ratio that had a 

significant impact on HC and CO emissions. 

Chen and colleagues [27] investigated the 

effects of water injection on the performance 

and emissions of an engine operating on a 

diesel-methane fuel mix. The methane energy 

ratio in the study varied from 0% to 50% in five 

different configurations. The results indicated 

that an increase in the methane content of the 

mixture significantly reduced NOx emissions, 

but HC and CO emissions increased. It was 

also emphasized that water port injections did 

not significantly affect HC and CO emissions. 

Ouchikh and colleagues [28] investigated the 

effects of diesel injection parameters on the 

performance and emissions of a diesel engine 

operating with a methane-diesel dual-fuel 

system. The results indicated that while 

thermal efficiency decreased with the diesel 

injection timing in dual-fuel operation, thermal 

efficiency increased with the split injection 

strategy. Additionally, it was noted that the 

split injection strategy resulted in a 20% 

reduction in brake specific fuel consumption 

(BSFC). However, HC and CO emissions 

showed significant increases compared to 

baseline diesel fuel. Tripathi and colleagues 

[29] found that in a diesel engine, increasing 

the methane energy ratio from 0% to 75% 

resulted in a gradual decrease in thermal 

efficiency. Additionally, it was observed that 

HC emissions increased by approximately 10 

times and CO emissions by about 5 times with 

the rise in methane energy ratio. On the other 

hand, a maximum reduction of around 50% in 

NOx emissions was also reported. Ahmad and 

colleagues [30] focused on the effects of using 

different proportions of ethane gas on the 

performance and emissions in a methane-

diesel dual-fuel application. Ethane gas was 

used at 10% and 20% concentrations in the 

dual-fuel system. The results showed that the 

addition of ethane gas improved thermal 

efficiency, which had decreased with the use of 

methane gas. While the addition of ethane 

contributed to a reduction in HC emissions, it 
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also led to an increase in NOx emissions. Liu 

and colleagues [31] reported that increasing 

the diesel fuel ratio in a methane-diesel dual-

fuel application would be beneficial for 

methane oxidation by raising the high-

temperature regions within the cylinder. Di 

lorio et al. [32] reported in their study on 

methane-diesel dual fuel application that 

methane gas uses significantly reduced NOx 

and smoke emissions compared to diesel-only 

operation. Khedkar et al. [33] focused on the 

effects of control parameters such as diesel 

injection timing, EGR control, and intake 

throttling on the low thermal and combustion 

efficiency of a methane-diesel engine. The 

results showed that with 55% EGR, 50% 

premix, and advanced diesel injection timing, 

thermal efficiency (TE) improved by 

approximately 10%, and combustion 

efficiency also increased. Additionally, it was 

emphasized that HC and NOx emissions were 

significantly reduced. Zarrinkolah and 

Hosseini [34] utilized both the traditional 

methane-diesel dual-fuel mode and early and 

late injection RCCI modes to reduce methane 

emissions. The results indicated a reduction in 

methane emissions ranging from 12% to 33% 

in early and late RCCI modes compared to 

traditional operation. However, it was also 

found that the early and late RCCI modes 

produced soot particulate emissions 

approximately 417% and 67% higher, 

respectively. Cameretti and colleagues [35] 

conducted a numerical analysis of a hydrogen-

methane mixture in a marine diesel engine. 

The results indicated that using hydrogen 

instead of methane reduces CO2 emissions by 

54%, while increasing NOx emissions by 76%. 

Yin and colleagues [36] conducted 

experimental and numerical studies on a 

diesel/methane/hydrogen fueled engine. They 

reported that an increase in the hydrogen 

fraction within the triple mixture enhances the 

combustion process, reducing both ignition 

delay and combustion duration. It was also 

noted that this leads to an increase in NOx 

emissions while resulting in a decrease in CO 

and CH4 emissions. Zhang and colleagues [37] 

studied the diesel injection timing in a natural 

gas-diesel engine. They reported that 

advancing the diesel injection timing resulted 

in improved performance and enhanced flame 

development. However, it was also noted that 

this condition increased CH4 emissions by 

approximately 4% and NOx emissions by 

about 6%. 

Based on the summaries of the studies 

presented in the literature, it is evident that the 

use of methane in diesel engines significantly 

reduces NOx and smoke emissions, while 

increasing HC and CO emissions. 

Additionally, some studies report a 

deterioration in thermal efficiency and fuel 

consumption with methane gas usage. This 

indicates that engines utilizing methane-diesel 

fuel are still open to improvements and have 

unresolved issues that need to be addressed. 

Also, while some studies contribute to the 

reduction of HC emissions, this 

simultaneously leads to an increase in NO 

emissions. Therefore, it appears that research 

will continue to improve the operational 

efficiency of methane in diesel engines. In the 

current study, the effects of varying gas 

injection timing and pressure on engine 

performance, exhaust emissions, and 

environmental impact are investigated to 

enhance the usability of methane gas in diesel 

engines. When reviewing other studies, it is 

observed that very few focus on gas injection 

timing, and most of these studies primarily 

emphasize performance. However, the 

significant reduction of NO emissions 

resulting from the use of methane in diesel 

engines necessitates an examination from the 

perspective of environmental and economic 

impact analysis to enhance environmental 

sustainability and raise awareness. 

Additionally, there is a significant gap in 

literature regarding this area. The aim of this 

study is to examine performance, emissions, 

and environmental impact parameters under 

various conditions of methane gas injection 

timing and pressure in diesel engines. 

2. Experimental Setup and Method 

2.1. Experimental setup 

The methane-diesel dual-fuel application 

conducted at different gas injection timings 

and pressures is carried out on a single-

cylinder, air-cooled, 4-stroke diesel engine. 

The single-cylinder, 315 cc volume diesel 

engine used in the study is selected based on 

contemporary 4-cylinder diesel engines. When 
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the total volume of the 4-cylinder diesel engine 

(1248 cc/4 cylinders = 312 cc) is divided by the 

number of cylinders, the resulting volume is 

nearly equivalent to the volume of the single-

cylinder engine used in the study. 

Additionally, due to the CRDI systems present 

in modern diesel engines, the fuel system on 

the existing engine is similarly modified. This 

adaptation ensures that the findings are more 

realistic, as the current single-cylinder engine 

has been tailored to align with more modern 

diesel engines. Therefore, the air-cooled 

AD320 Anadolu engine was chosen for 

experimentation as the most suitable single-

cylinder engine for both modification and the 

dual-fuel concept. A summary of the engine's 

technical specifications is presented in Table 1. 

Additionally, the experimental equipment and 

engine installation view are presented in Fig. 1. 

In the air-cooled engine, a common rail fuel 

system and an ECU are used to control the 

amount, pressure, and injection timing of the 

diesel fuel. The gas fuel system injected fuel 

into the combustion chamber through port 

injection. The gas pressure is adjusted to the 

desired level using a two-stage pressure 

regulator on the methane gas cylinder. 

Additionally, the gas injection timing was 

controlled by the gas ECU. Detailed stages of 

both the diesel fuel system and the gas fuel 

system have been presented in previous studies 

[6, 8]. For the performance and emission tests 

of the engine used in the experiments, the 

engine is first mounted on an ABB brand DC 

dynamometer capable of measuring up to 50 

kW of power and 6000 1/min. Methane gas 

consumption is measured instantaneously and 

cumulatively using a gas flow meter. 

Similarly, air consumption is also measured 

instantaneously and cumulatively with an air 

flow meter. Diesel fuel consumption is 

calculated based on the rate set through the 

ECU in mg/cycle. Details of the measurement 

equipment used in the experiments are 

presented in Table 2. 

Table1. Technical details of the dual-fuel engine used 

at variable gas injection timing and pressure variations 

[38]. 

Technical details 
Value/AD320 diesel 

engine 

Cylinder number 1-cylinder 

Displacement 0.315 lt 

Bore diameter 78 mm 

Stroke diameter 66 mm 

Compression ratio 17.3 

Peak engine torque (at 

speed) 
11 Nm (at 1850 1/min) 

Diesel fuel system 

Common rail 

Injection timing: 11o 

bTDC 

Injection pressure: 400 

bar 

Gas supply system 

Port injection 

Injection timing: 25°, 

35°, 45°, 55°, and 65° 

aTDC 

Injection pressure: 1, 1.5, 

2, and 2.5 bar 

Emission data measurements are conducted 

using a Bosch-branded emission system.  

 
Fig. 1. View of test equipment and engine installation 

Table 2. Details of the measurement equipment. 

Test Instruments Measurement Measure range Sensibility 

ABB DC Dynamometer  Load/speed 0..50 kW/0..6000 rpm ± 0.01 rpm 

Sierra SmartTrak 100 Methane flow meter 0..50 slpm ± 1.0% 

Pietro Fiorentini series-c Air flow meter 0..4.4 liter/s ± 1.0% 

K type thermocouple Temperature 0..850 °C ± 1.0 °C 
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Table 3. Technical specifications of the Bosch brand emission device utilized in the experiments [6]. 

Data type(method) Measure range Sensibility 

CO (Non-dispersive infrared) 0..10% volume ±0.001% 

HC (Flame ionization detector) 0..9999 ppm ±1 ppm 

NO (Chemiluminescence detector) 0..5000 ppm ±1 ppm 

Soot (Optical meter) 0..9.99 1/m ±0.01 1/m 

Table 4. The physicochemical details of diesel and methane fuels [6]. 

Physicochemical details Euro diesel Methane (purity 99.5%) 

Density, g/cm3 0.83–0.84 0.000678  

Lower calorific value, kJ/kg 42500 50000 

Octane number - <120 

Cetane number 50-55 - 

Air/fuel (Stoichiometric) 14.6 17.4 

Table 5. The detailed test matrix for the study. 

Case Fuel Torque/Speed 
Gas injection timing 

(GIT) 

Gas injection pressure 

(GIP) 

1 Euro Diesel 5 Nm/1850 rpm - - 

2 Dual fuel 5 Nm/1850 rpm 25o aTDC 1, 1.5, 2, and 2.5 bar 

3 Dual fuel 5 Nm/1850 rpm 35o aTDC 1, 1.5, 2, and 2.5 bar 

4 Dual fuel 5 Nm/1850 rpm 45o aTDC 1, 1.5, 2, and 2.5 bar 

5 Dual fuel 5 Nm/1850 rpm 55o aTDC 1, 1.5, 2, and 2.5 bar 

6 Dual fuel 5 Nm/1850 rpm 65o aTDC 1, 1.5, 2, and 2.5 bar 

 

The Bosch Bea060 model is used to quantify 

HC, CO, and NO emissions, while the Bea070 

model measures soot opacity levels. Detailed 

specifications and sensitivities of these devices 

are thoroughly presented in Table 3. 

For the experimental study, diesel fuel and 

pure methane gas are sourced from local 

suppliers. The physicochemical details of these 

fuels are presented in Table 4. 

2.2. Method 

Before conducting experiments on methane 

injection timing and pressure, the engine is run 

on baseline diesel fuel at idle condition until it 

reaches a stable combustion. Subsequently, the 

load and speed for the engine tests are set using 

a computer-controlled dynamometer, and the 

experiments commence. Additionally, during 

the experiment process, careful attention is 

given to managing the engine's surface 

temperature, considering the possibility of 

excessive temperature (>200oC) increases that 

could affect the reliability of the test results. 

Before the experiments, the calibration of the 

Bosch emission device, ABB DC 

dynamometer, and other measurement 

equipment is prepared and ensured to be ready. 

The experiments are initially conducted using 

EURO diesel fuel at 5 Nm and a constant speed 

of 1850 1/min. The engine speed determined in 

the study is also the speed at which maximum 

engine torque is achieved. Additionally, a 

vehicle equipped with a diesel engine (either 

passenger or light commercial) generally 

operates in the range of 1500 to 2200 rpm 

under daily traffic conditions. Considering this 

speed range, an engine speed of 1850 rpm 

aligns with the movement speed of a vehicle in 

daily traffic. The engine torque is defined as 

medium load, as most vehicles operate under 

low to medium loads in traffic conditions. 

Subsequently, methane-diesel dual-fuel 

experiments are carried out. In these 

experiments, methane gas injection timing 

(GIT) occurs 25o aTDC through port injection 

at a pressure of 1 bar. Following this, 

experiments for GIT25 are completed at gas 

injection pressures (GIP) of 1.5 bar, 2 bar, and 

2.5 bar. The same procedures are then followed 

for the experiments at GIT35, GIT45, GIT55, 

and GIT65, respectively. Previous studies [6, 

8] have identified that early injection of 

methane causes various problems such as low 

volumetric efficiency and combustion 

temperatures. Therefore, it was decided to 

delay the GIT from 25o aTDC to 65o aTDC, 

considering that later injection could address 

the low volumetric efficiency issue. The flow 

diagram of the experimental process is 

presented in Fig. 2. Also, the detailed test 

matrix for the study is presented in Table 5. 

In the methane-diesel dual-fuel combination, 
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Fig. 2. The flow diagram of the experimental process 

the percentage of methane gas sent to the 

combustion chamber, referred to as gas energy 

percentage (GEP), can be calculated using Eq. 

(1) [39]. Fig. 3 presents the contribution to 

total fuel energy of methane and diesel fuel 

corresponding to different GIT and the 

associated GIP. 

𝐺𝐸𝑃 = [
𝑚̇𝑔𝑎𝑠𝐿𝐶𝑉𝑔𝑎𝑠

𝑚̇𝑔𝑎𝑠𝐿𝐶𝑉𝑔𝑎𝑠+𝑚̇𝑑𝑖𝑒𝑠𝑒𝑙𝐿𝐶𝑉𝑑𝑖𝑒𝑠𝑒𝑙
] 𝑥100     (1) 

 
Fig. 3. The contribution to total fuel energy of methane 

and diesel fuel. 

2.3. Environmental and economic impact 

analysis 

A significant issue with diesel engines is the 

high levels of NOx emissions they release into 

the environment. However, the use of methane 

gas as a dual fuel in diesel engines contributes 

to minimizing this problem. Evaluating such 

an important development from both 

environmental and economic perspectives is 

crucial for understanding its impacts. The 

analysis of these environmental and economic 

impacts is crucial for enhancing environmental 

awareness and sustainability. This study 

evaluates the environmental and economic 

effects of NOx emissions generated from both 

diesel and methane-diesel combustion. To 

determine the environmental impact of NOx 

emissions (𝐸𝑁𝑁𝑂𝑥), Eq. (2) [40] can be used. 

Here, 𝑚̇𝑒𝑥ℎ represents the exhaust mass flow 

(kg/s) and 𝑒𝑛𝑁𝑜𝑥 denotes the environmental 

impact coefficient. 

𝐸𝑁𝑁𝑂𝑥 = 𝑚̇𝑒𝑥ℎ 𝑥 𝑒𝑛𝑁𝑜𝑥             (2) 

In addition, the economic impact of NOx 

emissions (𝐸𝐶𝑁𝑂𝑥) can be calculated using Eq. 

(3) [41], where eco represents the 

environmental-economic impact coefficient of 

NOx emissions (𝑒𝑐𝑜𝑁𝑜𝑥). 

𝐸𝐶𝑁𝑂𝑥 = 𝑚̇𝑒𝑥ℎ 𝑥 𝑒𝑐𝑜𝑁𝑜𝑥             (3) 

The 𝑒𝑛𝑁𝑜𝑥 and 𝑒𝑐𝑜𝑁𝑜𝑥 coefficients given in 

Eq. (2) and Eq. (3) are used in the calculations 

as 2.749 mPts/g and 693.7 €/g, respectively 

[42]. 

3. Results and discussion 

3.1. Impact of GIT and GIP on performance 

Fig. 4 shows the variation of specific fuel 

consumption (SFC) corresponding to different 

GIT and GIP. Both methane gas injection 

timing (GIT) and methane gas injection 

pressure (GIP) positively affect SFC. The 

lowest SFC values are obtained in dual-fuel 

mode with GIP 2.5 bar operation, while the 

highest SFC outputs are obtained with diesel 

fuel. For instance, under GIP 1 bar conditions, 

GIT 25 reduces SFC by 1% compared to diesel 

fuel, while delaying GIT to 65o aTDC 

contributes to a 3.5% reduction in SFC. 

Similarly, under GIP 2.5 bar conditions, GIT 

25o reduces SFC by 6% compared to diesel 

fuel, and delaying GIT to 65o aTDC increases 

the SFC reduction to 12%. The main reasons 

for the reduction in SFC with methane use in 

the dual-fuel concept are the combined energy 

utilization of diesel and methane gas, as well 

as methane’s higher lower heating value 

compared to diesel. Overall, when GIT 

changes from 25o to 65o, SFC decreases by an 

average of 2.5%, 6%, 7%, and 8.5% compared 

to diesel combustion for GIP 1 bar, GIP 1.5 
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bar, GIP 2 bar, and GIP 2.5 bar operations, 

respectively. 

 
Fig. 4. The variation of SFC at different GIT versus 

GIP. 

Fig. 5 shows the variation of thermal efficiency 

(TE) corresponding to different GIT and GIP. 

The use of methane in diesel engines 

contributes to an increase in TE. Additionally, 

the gradual delay of GIT also supports the 

increase in TE. The highest TE is obtained 

under GIP 2.5 bar conditions, and the TE 

outputs of GIP 2.5 bar and GIP 2 bar operations 

are quite similar. The lowest TE is observed 

under GIP 1 bar conditions (except for GIT 

65). The implementation of the methane-diesel 

dual-fuel system based on energy ratio 

contributes to the reduction of SFC values. 

This also affects the reduction in TE. The 

reason for the lower TE in the GIP 1 bar 

operation between GIT 25 and GIT 55 

compared to diesel fuel is that the fuel 

consumption amounts are quite similar. As the 

reduction rate in fuel consumption increases, 

TE gradually improves. Additionally, 

advancing the GIT causes the methane gas to 

block the incoming air into the cylinder, 

resulting in less air entering the combustion 

zone for the reaction. This is one of the factors 

that lowers TE. Delaying GIT from 25o aTDC 

to 65o aTDC allows more air to enter the 

combustion zone, leading to higher 

combustion efficiency and increased TE. 

Yuvenda and colleagues [43] reported that 

delaying gas injection timing in dual-fuel 

mode increases volumetric efficiency due to 

more air intake into the cylinder, resulting in 

lower fuel consumption and higher TE 

achieved. Overall, when GIT changes from 25o 

to 65o, TE increases by an average of 2%, 3%, 

and 4% compared to diesel combustion for GIP 

1.5 bar, GIP 2 bar, and GIP 2.5 bar operations, 

respectively. The TE output of the GIP 1 bar 

operation decreases by an average of 1% 

compared to diesel fuel. 

 
Fig. 5. The variation of thermal efficiency at different 

GIT versus GIP. 

3.2. Impact of GIT and GIP on emissions 

Fig. 6 shows the variation of HC emission 

corresponding to different GIT and GIP. 

Although the gradual increase of GIP from 1 

bar to 2.5 bar significantly causes an increase 

in HC emissions, the gradual increase of GIT 

from 25o aTDC to 65o aTDC contributes to a 

decreasing trend in HC emissions. In 

experiments conducted under constant load 

and speed conditions, the lowest HC emissions 

are obtained with diesel fuel (25 ppm). Under 

GIP25 and GIP 1 bar conditions, HC emissions 

increase by 456% compared to diesel 

combustion, while this increase rate drops to 

340% when the gas injection timing is delayed 

to 65° aTDC. Early injection of methane gas 

interrupts the mass flow rate of air taken into 

the cylinder and occupies some of the air 

volume inside the cylinder. This reduces the 

amount of air available for combustion and 

leads to the direct release of unburned CH4 

gas. Overall, when GIT changes from 25o to 

65o, HC emissions increase by an average of 

414%, 455%, 522%, and 562% compared to 

diesel combustion for GIP 1 bar, GIP 1.5 bar, 

GIP 2 bar, and GIP 2.5 bar operations, 

respectively. Tripathi et al. [29] reported that 

as the amount of methane supplied to the 

cylinder increases, the oxygen concentration 
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decreases, thereby slowing down the 

combustion reaction and increasing HC 

emissions by up to 1000 times. However, in the 

current study, despite the increase in HC owing 

to increase in methane energy ratio, it is 

observed that the transition from 25o aTDC to 

65o aTDC contributes to a decrease in HC 

emissions according to MIT. 

 
Fig. 6. The variation of HC emission at different GIT 

versus GIP. 

Fig. 7 shows the variation of CO emission 

corresponding to different GIT and GIP.  

Similar to the results of HC emissions, CO 

emissions show an increasing trend with the 

rise in GIP. However, the rate of this increase 

slows down as GIT changes from 25o aTDC to 

65o aTDC. The lowest CO emissions are 

obtained with diesel fuel (0.067%), while the 

highest CO emissions occur with early gas 

injection timing (GIT25) and high methane 

energy ratio (GIP 2.5 bar). The increase in 

methane energy ratio in dual-fuel mode raises 

the mass of methane entering the cylinder, 

causing the air inside the cylinder to cool down 

(due to methane’s physicochemical 

properties). This chain reaction lowers 

combustion temperatures, stopping the 

oxidation of CO into CO2, leading to higher 

CO emissions. Additionally, the increase in 

methane mass reduces the available O2 in the 

combustion zone, which also contributes to the 

rise in CO emissions. Compared to diesel fuel, 

the highest increase in CO emissions is 137% 

under GIT 25 and GIP 2.5 bar conditions, 

while the lowest increase is 51% under GIT 65 

and GIP 1 bar conditions. Overall, when GIT 

changes from 25o to 65o, CO emissions 

increase by an average of 64%, 78%, 94%, and 

111% compared to diesel combustion for GIP 

1 bar, GIP 1.5 bar, GIP 2 bar, and GIP 2.5 bar 

operations, respectively. Bora and colleagues 

[44] reported that methane gas reduces 

volumetric efficiency, leading to increased CO 

emissions in dual-fuel mode, which is 

consistent with the findings obtained in this 

article. 

 
Fig. 7. The variation of CO emission at different GIT 

versus GIP. 

Fig. 8 shows the variation of CO2 emission 

corresponding to different GIT and GIP. The 

use of methane gas in diesel engines 

contributes to a reduction in CO2 emissions. 

The lowest CO2 emissions are obtained in the 

GIP 2.5 bar operation, while the highest CO2 

emissions are observed in diesel operation. For 

instance, at GIP 2.5 bar, where the lowest CO2 

emissions are recorded, the GIT 25 operation 

shows approximately a 13% reduction in CO2 

emissions compared to diesel operation, with 

an average reduction of 11.5% between GIT25 

and GIT65 operation conditions. In the GIP 1 

bar operation, which has a low methane energy 

ratio, GIT25 reduces CO2 emissions by about 

7% compared to diesel fuel, while the change 

in GIT from 25o aTDC to 65o aTDC results in 

a 3.5% reduction in CO2 emissions compared 

to diesel combustion. As seen, an increase in 

the methane energy ratio contributes to a 

reduction in CO2 emissions, while delaying 

methane injection timing tends to increase CO2 

emissions. Nevertheless, all CO2 outputs 

obtained in the dual-fuel concept are lower 

than those produced by diesel combustion. The 

main reason for this is that with the increase in 

methane energy ratio, the carbon content of the 

mixture decreases. Additionally, the decrease 
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in combustion efficiency (as HC and CO 

emissions rise) also contributes to the 

reduction in CO2 emissions. Another 

significant factor is that as CO emissions 

increase, CO2 emissions decrease. Prabhu and 

colleagues [45] reported that an increase in the 

methane content in biogas reduces CO2 

emissions, and their findings are consistent 

with the results obtained in this article. Overall, 

when GIT changes from 25o to 65o, CO2 

emissions decrease by an average of 5%, 6%, 

10%, and 11.5% compared to diesel 

combustion for GIP 1 bar, GIP 1.5 bar, GIP 2 

bar, and GIP 2.5 bar operations, respectively. 

 
Fig. 8. The variation of CO2 emission at different GIT 

versus GIP. 

Fig. 9 shows the variation of NO emission 

corresponding to different GIT and GIP. One 

of the most significant problems in diesel 

engines is the formation of NO emissions due 

to the high compression ratio and high lambda 

value. However, the use of methane gas in 

diesel engines significantly contributes to the 

reduction of NO emissions. As seen in Fig. 9, 

NO emissions gradually decrease as GIP 

increases from 1 bar to 2.5 bar. The lowest NO 

emissions are obtained in the GIP 2.5 bar 

operation, while the highest NO emissions 

occur in diesel operation. For instance, in the 

GIP 1.5 bar operation, GIT 25 reduces NO 

emissions by 36% compared to diesel, while in 

the GIP 2.5 bar operation, GIT 25 reduces NO 

emissions by 47% compared to diesel. As GIT 

increases from 25o aTDC to 65o aTDC, NO 

emissions tend to increase, but they still remain 

lower than the NO emission outputs from 

diesel combustion. For example, in the GIP 1.5 

bar operation, GIT 65 reduces NO emissions 

by 33% compared to diesel, while in the GIP 

2.5 bar operation, GIT 25 reduces NO 

emissions by 44% compared to diesel. NO 

emissions are formed in conditions of high O2 

availability and high combustion temperatures. 

In the present study, the use of methane gas 

lowers the intake air temperature and also 

reduces the amount of air entering the cylinder. 

This significantly contributes to the reduction 

of NO emissions. Allouis and colleagues [46] 

reported that using methane in a diesel engine 

reduces the air-fuel ratio, thereby contributing 

to the reduction of NOx emissions. In the 

current article, methane quantity increases 

with GIP change. Therefore, the decrease in 

NO emissions with an increase in GIP from 1 

bar to 2.5 bar in this article is consistent. 

Overall, when GIT changes from 25o to 65o, 

NO emissions decrease by an average of 35%, 

37%, 40%, and 46% compared to diesel 

combustion for GIP 1 bar, GIP 1.5 bar, GIP 2 

bar, and GIP 2.5 bar operations, respectively. 

 
Fig. 9. The variation of NO emission at different GIT 

versus GIP. 

Fig. 10 shows the variation of soot emission 

corresponding to different GIT and GIP. Soot 

formation from combustion is another major 

issue in diesel engines. In this study, the use of 

methane as a dual fuel significantly contributes 

to the reduction of soot emissions. For 

instance, in diesel operation, 1.21 1/m soot 

emissions are recorded, while in the dual-fuel 

mode, under GIP 2.5 bar conditions, GIT 65 

reduces soot emissions by approximately 

59.5% compared to diesel combustion. When 

GIT advances from 25o aTDC to 65o aTDC, the 

rate of reduction in soot emissions slows down. 

For example, under GIP 2.5 bar conditions, 
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GIT 25 reduces soot emissions by 

approximately 39% compared to diesel 

combustion. The highest soot emissions in 

dual-fuel operation are observed under GIP 1 

bar conditions. The primary reason for the 

reduction in soot is that methane reduces diesel 

fuel energy (i.e., the amount of fuel injected 

into the combustion chamber). Additionally, 

methane’s low C/H ratio is another important 

factor contributing to the reduction in soot 

formation. Overall, when GIT changes from 

25o to 65o, soot emissions decrease by an 

average of 37%, 39%, 43%, and 48% 

compared to diesel combustion for GIP 1 bar, 

GIP 1.5 bar, GIP 2 bar, and GIP 2.5 bar 

operations, respectively. Liu and colleagues 

[47] reported that in CNG-diesel operation, 

increasing the amount of diesel fuel injected 

into the combustion chamber increases soot 

emissions, but the opposite occurs with an 

increase in CNG energy ratio. They also 

attribute this to the decrease in the amount of 

diesel fuel injected with an increase in CNG 

quantity. Consequently, in the current article, 

the increase in GIP from 1 bar to 2.5 bar results 

in an increase in the CH4 energy ratio and a 

decrease in the amount of diesel fuel injected. 

This contributes to a decrease in soot 

emissions, aligning the results with the 

literature. 

 
Fig. 10. The variation of soot emission at different GIT 

versus GIP. 

3.3. Impact of GIT and GIP on 

environmental and economic of NO 

emissions 

Fig. 11 shows the variation of environmental 

impact of NO (𝐸𝑁𝑁𝑂𝑥) corresponding to 

different GIT and GIP. When evaluating the 

𝐸𝑁𝑁𝑂𝑥 outputs of both diesel and dual-fuel 

operations, the high NO emissions from diesel 

fuel result in higher 𝐸𝑁𝑁𝑂𝑥 compared to the 

dual-fuel application. The lowest 𝐸𝑁𝑁𝑂𝑥 is 

obtained with the GIP 2.5 bar operation. This 

is because the increase in GIP raises the GEP, 

which in turn reduces NO emissions. The 

𝐸𝑁𝑁𝑂𝑥 value for diesel-only operation is 

recorded at 33.77 mPts/kWh. Under the GIP 

2.5 bar conditions, where the lowest 𝐸𝑁𝑁𝑂𝑥 

values are obtained, the 𝐸𝑁𝑁𝑂𝑥 values for GIT 

25, GIT 35, GIT 45, GIT 55, and GIT 65 are 

17.1 mPts/kWh, 17.5 mPts/kWh, 17.8 

mPts/kWh, 17.9 mPts/kWh, and 18.4 

mPts/kWh, respectively. In the dual-fuel 

concept, the highest 𝐸𝑁𝑁𝑂𝑥 values are obtained 

under GIP 1 bar conditions, where the 𝐸𝑁𝑁𝑂𝑥 

values for GIT 25, GIT 35, GIT 45, GIT 55, 

and GIT 65 are 20.7 mPts/kWh, 20.9 

mPts/kWh, 21.4 mPts/kWh, 21.4 mPts/kWh, 

and 21.8 mPts/kWh, respectively. Overall, 

when GIT changes from 25o to 65o, 𝐸𝑁𝑁𝑂𝑥 

decreases by an average of 37%, 39.5%, 

42.5%, and 47.5% compared to diesel 

combustion for GIP 1 bar, GIP 1.5 bar, GIP 2 

bar, and GIP 2.5 bar operations, respectively. 

 
Fig. 11. The variation of environmental impact of NO 

at different GIT versus GIP. 

Fig. 12 shows the variation of economic 

impact of NO (𝐸𝐶𝑁𝑂𝑥) corresponding to 

different GIT and GIP. As seen in the figure, 

the highest 𝐸𝐶𝑁𝑂𝑥 is obtained with diesel 

operation, while increasing GIP from 1 bar to 

2.5 bar contributes to reducing the 𝐸𝐶𝑁𝑂𝑥. The 

primary reason for the reduction in 𝐸𝐶𝑁𝑂𝑥 is 

the decrease in NO pollutants as the methane 
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gas energy ratio increases. The lowest 𝐸𝐶𝑁𝑂𝑥 

values in the GIP 2.5 bar operation for GIT 25, 

GIT 35, GIT 45, GIT 55, and GIT 65 are 43.3 

Euro/kWh, 44.2 Euro/kWh, 44.9 Euro/kWh, 

45.5 Euro/kWh, and 46.4 Euro/kWh, 

respectively. As the results show, changing 

GIT from 25 aTDC to 65 aTDC causes a slight 

increase in 𝐸𝐶𝑁𝑂𝑥. The main reason for this is 

that delaying GIT improves combustion 

stability and efficiency, which increases NO 

emissions and, consequently, the 𝐸𝐶𝑁𝑂𝑥. In the 

dual-fuel concept, the highest 𝐸𝐶𝑁𝑂𝑥 values 

are obtained under GIP 1 bar conditions, where 

the 𝐸𝐶𝑁𝑂𝑥 values for GIT 25, GIT 35, GIT 45, 

GIT 55, and GIT 65 are 52.4 Euro/kWh, 52.9 

Euro/kWh, 53.4 Euro/kWh, 54.2 Euro/kWh, 

and 55.1 Euro/kWh, respectively. 

 
Fig. 12. The variation of economic impact of NO at 

different GIT versus GIP. 

4. Conclusions 

In this experimental study, the effects of GIT 

and GIP variations on performance and 

emissions are examined. Additionally, since 

one of the main problems of diesel engines is 

NO emissions, environmental impact and 

economic analysis are conducted using NO 

emission data from the experimental results. 

The outcomes obtained from both the 

experiments and the analysis are summarized 

below: 

• The use of methane gas in diesel 

engines based on its energy fraction provides 

significant improvements in engine 

performance and exhaust emissions. 

• An increase in GIP from 1 bar to 2.5 

bar, along with a change in GIT from 25 aTDC 

to 65 aTDC, significantly contributes to the 

reduction of SFC. The lowest SFC is obtained 

under GIP 2.5 bar and GIT 65 conditions, with 

a maximum reduction of 12% compared to 

diesel. Under GIP 2.5 bar conditions, the 

average reduction in SFC between GIT 25 and 

GIT 65 is 8.5%. 

• Increasing GIP and delaying GIT 

contribute to an increase in TE. The later 

injection of methane allows for more O2 in the 

combustion zone and results in lower intake 

temperatures, leading to improved combustion 

efficiency and stability. Consequently, TE 

improves. The highest TE is obtained in the 

GIP 2.5 bar and GIT 65 setup, showing a 7.5% 

increase compared to diesel. Additionally, 

operating under the same GIT and GIP 

conditions shows an average increase of 

approximately 4% in TE compared to diesel 

operation. 

• HC and CO emissions increase 

significantly with the rise of GIP from 1 bar to 

2.5 bar. The replacement of some air by 

methane in the combustion zone contributes to 

the increase of both HC and CO. Additionally, 

due to the physicochemical properties of 

methane, its cooling effect on the intake air 

temperature causes the reactions of HC and CO 

to halt. 

• However, delaying the GIT under all 

GIP conditions contributes to a reduction in 

HC and CO emissions. For example, the 

operation at GIP 1 bar and GIT 65 shows an 

approximately 21% reduction in HC emissions 

compared to GIT 25. Similarly, the operation 

at GIP 2.5 bar and GIT 65 demonstrates a 13% 

reduction in HC emissions compared to GIT 

25. 

• Also, the operation at GIP 1 bar and 

GIT 65 shows an approximately 14% 

reduction in CO emissions compared to GIT 

25. Similarly, the operation at GIP 2.5 bar and 

GIT 65 demonstrates a 23% reduction in CO 

emissions compared to GIT 25. 

• The methane-diesel dual-fuel 

combustion applied using the energy fraction 

reduces fuel consumption and decreases the 

C/H ratio as the methane content increases. 

This contributes to a reduction in CO2 

emissions, or in other words, the carbon 

footprint. For example, the lowest CO2 

emissions are achieved under GIP 2.5 bar 

conditions, with an average reduction rate of 
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11% compared to diesel operation. 

• NO and soot emissions decrease 

significantly with the rise of GIP from 1 bar to 

2.5 bar. NO emissions show a reduction of 

47% at earlier GIT and higher GIP conditions. 

Delaying GIT allows more air to enter the 

combustion zone, resulting in a more 

homogeneous mixture. This improves 

combustion development, which in turn 

increases NO emissions. 

• Soot emissions decrease by 59.5% 

under GIT 65 and GIP 2.5 bar conditions 

compared to diesel operation. The increase in 

the share of methane in the energy ratio leads 

to a reduction in the share of diesel, thereby 

decreasing the regions of rich mixtures. 

Additionally, as the gas energy fraction 

increases, the C/H ratio further decreases. 

• The use of methane gas in an energy 

fraction in diesel engines significantly reduces 

the environmental and economic impact of 

NO. Under high GIP and early GIT conditions, 

both the environmental and economic effects 

decrease by approximately 48% compared to 

diesel. 

In methane-diesel studies, while the increase in 

GIP leads to higher HC and CO pollutants, this 

issue can be mitigated by delaying GIT. Under 

high GIP conditions, sending heated gas fuel or 

heated intake air to the combustion chamber 

can overcome the problem of reduced intake 

air temperature due to the physicochemical 

properties of methane. Future studies could 

involve preheating the intake air or gas fuel 

before combustion. Additionally, the reduced 

air quantity in the combustion zone due to 

methane usage can lead to slower combustion 

reactions and a decrease in flame speed. This 

situation may cause the flame to extinguish 

before reaching the cylinder walls, resulting in 

the formation of high amounts of HC and CO. 

To address this issue, future studies could 

utilize nanoparticle additives that increase the 

surface-to-volume ratio and reaction rate 

within the diesel fuel. 
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The new trend in the search for alternative fuels for compression ignition 

engines is the hydrogen-diesel dual fuel (HDDF) mode. In order for dual 

fuel mode to provide maximum benefit in compression ignition engines, 

ECU-controlled fuel systems should be used, and their settings should be 

optimized. In this study, the effects of hydrogen energy ratio and 

hydrogen injection timing on engine performance, exhaust, noise, and 

mechanical vibration emissions in an ECU-controlled HDDF system 

compression ignition engine were investigated. The experiments were 

carried out at constant speed (1850 rpm), constant load (5 Nm), different 

hydrogen ratios (11, 14, 17, 20%), and different hydrogen injection 

timings (20, 30, 40, 50, and 60 °CA aTDC). The specific energy 

consumption decreased by 8.4%, NOx emissions decreased by 68.4%, 

and mechanical vibrations increased by 16.6% at a 14% hydrogen energy 

ratio and a 30°CA aTDC hydrogen injection timing. The main objective 

of the study is to determine the optimum hydrogen energy ratio and 

hydrogen injection timing in a compression ignition engine using HDDF. 

Keywords: H2-diesel dual fuel engine; 𝐻2 ration; 𝐻2 injection timing; Engine 

performance; Emission (exhaust, noise, and mechanical vibration) 
 

1. Introduction 

The transportation sector around the world is 

growing rapidly. This growth increases the 

demand for fuel and leads to rising fuel prices. 

Additionally, the emission standards 

implemented by countries have raised 

questions about the future of internal 

combustion (IC) engines. Consequently, 

several nations have implemented prohibitions 

on the commercialization of automobiles 

equipped with compression ignition (CI) 

engines that rely on diesel fuel. Manufacturers 

and researchers have turned to alternative 

energy sources to overcome these problems [1, 

2]. Electric vehicles are at the forefront of 

vehicles using alternative energy. However, it 

will take some time for these vehicles to 

become widespread due to charging time, 

battery life, and infrastructure problems [3]. 

Because of these things, it is a given that IC 

motors, which have been used by people for 

the past 150 years, will continue to be the most 

common type for a long time [4-6]. Therefore, 

studies to develop IC motors continue at a 

great pace [7-9]. 

CI engines used in most of today's vehicles 
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have many advantages over their equivalent 

spark ignition engines [10]. Almost all of the 

engines used, especially in freight road 

vehicles, railway vehicles, and ships, are CI 

engines. The primary reason for this is because 

these motors have excellent torque and thermal 

efficiency [11, 12]. However, the pressure on 

these engines due to emissions has increased in 

recent years. As a result of printing, some 

automobile companies stopped the production 

of vehicles using CI engines [13]. To solve this 

problem, it is possible to use different fuel 

mixtures in diesel engines. Biodiesel in 

particular has been around for a long time. At 

the same time, the use of bio-based alcohols is 

an ideal way to reduce emissions [12]. In 

recent years, along with the use of biofuel-

diesel, studies on the combined use of liquid 

and gaseous fuels have accelerated [14]. 

Hydrogen fuel is an ideal fuel for this. The use 

of 𝐻2 with diesel fuel will contribute to these 

engines meeting emission standards. Studies 

on the dual fuel mode for 𝐻2-diesel indicate 

that due to 𝐻2's lack of carbon atoms, it can 

reduce carbon dioxide, carbon monoxide, 

particulate matter, and hydrocarbon (CO2, CO, 

PM, and HC) emissions [15-17]. At the same 

time, it is also possible to improve engine 

efficiency [18, 19]. Furthermore, it is 

anticipated that 𝐻2 may be derived from 

sustainable energy sources such as wind, wave, 

solar, and biomass, hence diminishing reliance 

on conventional oil-based fuels [20-22]. Akçay 

et al. [23] conducted experiments on a 

common rail diesel injection (CRDI) engine. 

Researchers discovered a correlation between 

the increase in 𝐻2 rate and engine load and the 

decrease in CO2 emissions. Many studies have 

found that this is due to the fact that the fuel 

used in the burning chamber has less carbon in 

it. [24-26]. Koten [27], looked at the emissions 

in dual-fuel mode and how adding 𝐻2 at 

different loads affected the emissions. 

According to the study's results, CO, HC, and 

PM pollution all went down by a lot, no matter 

how much the load there was. 

Many researchers have examined how HDDF 

mode affects exhaust pollutants. However, 

today, studies on mechanical vibration and 

noise emissions, which have proven to have 

many negative effects on humans, nature, and 

engines, are limited [28, 29]. Nag, Dhar [30] 

discovered that adding 𝐻2 to the HDDF mode 

decreased mechanical vibration and noise at 

low loads while increasing it at high loads. In 

a similar study, Nag, Sharma [31] conducted 

tests with 𝐻2 energy ratios (HER) of 5%, 10%, 

and 20% utilizing the dual fuel method. They 

witnessed an increase in the HER at low loads 

reduced mechanical vibration and noise 

emissions, while it increased them at high 

loads. Barelli, Bidini [32], who examined the 

relationship of in-cylinder pressure with 

mechanical vibration and noise, determined 

that these emissions were related to in-cylinder 

pressure. 

In the HDDF mode, the fuel energy ratio is 

critical. This is mostly due to the fact that the 

energy ratio is the critical factor impacting 

emissions and engine performance. The small 

molecular structure of 𝐻2 causes its volume per 

unit mass to be higher [33, 34]. Because of this 

circumstance, the 𝐻2 that is supplied to the 

cylinder takes up more space and blocks the 

entry of air. Akçay at al. [18] investigated the 

biodiesel-𝐻2 mixture in a CRDI engine. The 

study discovered that increasing the 𝐻2 ratio 

increased the maximum cylinder pressure. 

However, in this study, the 𝐻2 ratio was 

limited to a certain level. In another similar 

study, Yılmaz and Gümüş [35] looked at how 

adding 𝐻2 to the intake air affected CI engine 

combustion performance. According to the 

study, the in-cylinder pressure increased as the 

volume of 𝐻2 in the cylinder increased. In a 

similar study, Sharma and Dhar [36] altered 

the HER in dual fuel mode to 5, 10, and 20% 

and fed it into the intake manifold. At all 

engine conditions, the addition of 𝐻2 was 

found to reduce the thermal efficiency (BTE) 

and increase the in-cylinder pressure. Whereas 

in another research variable 𝐻2 ratios were 

studied experimentally; Qin et al. [37] found 

that raising the amount of H2 energy to 20% 

raised the highest pressure in the cylinder by 

about 8%. The study also discovered that the 

rate of heat (HRR) increases and appears at 

earlier points. In another study where different 

HER were tested, Koten [27] revealed that 

augmenting the levels of 𝐻2 and engine load 

led to a notable enhancement in thermal 

efficiency, while simultaneously causing a 

reduction in specific fuel consumption. The 

fact that the HER can't be raised to high levels 
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is the most important problem with the dual 

fuel system. This causes a reduction in 

volumetric efficacy and a deterioration of 

combustion. In their research, Morais et al. and 

Geo et al. [25, 38], found that increasing the 

HER and engine load had a detrimental effect 

on volumetric efficiency. The 𝐻2 that is packed 

in the cylinder stops air from being drawn into 

it, which is why volumetric efficiency has 

decreased, according to researchers [39]. 

As significant as the impact of fuel energy 

ratios on engine output and emissions is how 

the 𝐻2 is supplied to the cylinder in the HDDF 

mode. Especially with the high diffusion rate 

of 𝐻2, the injection timing time is important. In 

engines with port injection, the timing of 𝐻2 

injection should be adjusted, taking into 

consideration the timings at which the intake 

valves and the exhaust valves open. Otherwise, 

the 𝐻2 will ignite with the exhaust gases and 

cause blowback. Studies on the 𝐻2 injection 

strategy are limited. Focusing on this issue, 

Saravanan, Nagarajan [40], investigated the 

injection approach utilized by a single-cylinder 

CI engine when operating in HDDF mode. In 

addition, diethyl ether was utilized in this 

investigation as a source of ignition. The 

researchers determined the optimum timing for 

𝐻2 injection to be 5° CA bTDC of the gas 

exchange and 40° CA aTDC for diethyl ether 

injection. The same researchers, in another 

study, in their experimental study to optimize 

𝐻2 injection in HDDF mode, stated that the 

optimum timing of port injection is 30° CA 

aTDC and the injection should be during gas 

exchange [41]. 

When research is assessed in aggregate, it is 

shown that the HER in HDDF mode as well as 

the injection methods of 𝐻2 fuel have an 

influence on the overall performance of the 

engine as well as the pollutants it produces [31, 

42, 43]. As a result, the ratio of hydrogen to 

diesel fuel and the time of hydrogen injection 

were the primary focuses of this research. 

Another important point study's conclusion is 

that the 𝐻2 and diesel fuel systems are ECU-

controlled and programmable. In this respect, 

it has a different importance from other 

studies.  

In the course of this investigation, using a CI 

engine with a single cylinder, constant speed 

(1850 rpm), constant load (5 Nm), different 𝐻2 

injection ration (11, 14, 17, 20%), and different 

𝐻2 injection timing (20, 30, 40, 50, and 60 °CA 

aTDC) were performed. Engine performance, 

exhaust, mechanical vibration, and noise 

emissions were investigated as a consequence 

of the studies, and the optimal HER and 

optimum 𝐻2 injection timing was identified. 

The primary objective of the research is to 

develop a suitable replacement for CI engines, 

which are banned in many countries and whose 

production has been stopped by companies. 

With just a few tweaks (𝐻2 fuel system), these 

motors can run on both diesel and hydrogen. 

Thus, performance and emissions can be 

improved, and usage can be continued. 

2. Instrumentation and Methodology 

The system set up to the schematic view of the 

experimental engine test setup is shown in Fig. 

1. In the system, there is an ANTOR AD320 

model single-cylinder CI engine with an ECU-

controlled dual fuel system. To load the 

engine, an ABB brand active dynamometer is 

used, and an AVL brand pressure measurement 

system is employed to measure in-cylinder 

pressure. For measuring emission values, 

Bosch BEA 60-70 emission devices are used. 

To measure mechanical vibrations, a PCE-VD 

3 brand vibration device is utilized, and for 

noise measurements, a Geratech DT 8820 

model noise measuring device is used. 

Additionally, there is a fuel measuring system 

available for precise fuel measurements. 

MOTEC ECUs are used in the control of diesel 

fuel systems, whilst Spark EMS ECU are put 

to use in the management of hydrogen fuel 

systems. Thanks to the interface of this system 

on the computer, the open time of the hydrogen 

injector and the injection timing can be 

changed. In this way, different amounts of 

hydrogen can be sent to the cylinder at any 

time. 

Diesel fuel has been used with the CRDI fuel 

system. Thanks to the ECU and the interface 

loaded onto the computer in the system, 

various parameters such as fuel pressure, fuel 

timing, and pre-injection can be adjusted 

instantly. The 𝐻2 injector is placed behind the 

intake port, enabling the implementation of a 

port injection system. In addition, the 

hydrogen consumption data was recorded 

using a flowmeter from Sierra Instruments that 
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Fig. 1. Schematic view of experimental engine test 

                                  setup. 

was installed in the hydrogen fuel system. In 

the experiments, changes in cylinder pressure 

were measured to assess the combustion in the 

cylinder. In order to get the necessary data, a 

pressure sensor is used alongside an amplifier 

that effectively filters the voltage produced by 

the sensor, converting it into a discernible 

pressure signal. Additionally, an encoder is 

utilized to detect fluctuations in cylinder 

pressure resulting from changes in crank angle. 

Throughout the experimental procedure, data 

points were meticulously documented for 

every 0.1 °CA increment of the crankshaft's 

rotational position. The average of 180 cycles 

was utilized to generate in-cylinder pressure 

readings. 

2.1. Test fuels and methodology 

In Table 1 we can see the chemical and 

physical characteristics of the 𝐻2 and diesel 

fuel that was used in the tests. Diesel fuel meets 

the requirements of 

TS EN 590:2013+A1:2017. At 200 bar 

pressure, 𝐻2 fuel was kept in high purity tubes 

(99.9995%). 

Table 1 - Diesel and 𝐻2 fuel physical and chemical 

properties [44]. 

 

First, experiments with standard diesel were 

conducted in the study, and data were 

collected. The HER is calculated using the fuel 

consumption data from these tests. The 𝐻2 

electronic control unit (ECU) was used to 

adjust the injection duration and timing, while 

a flow meter measured the amount of 𝐻2 

utilized. The observed values and equations 

(1)-(3) were utilized in the computation of 

HERs [26, 35]. 

𝐸𝑆𝐻 = 𝐸𝐻/(𝐸𝐻 + 𝐸𝐷)             (1) 

𝐸𝐻 = 𝐿𝐻𝑉𝐻. 𝑚̇𝐻              (2) 

𝐸𝐷 = 𝐿𝐻𝑉𝐷 . 𝑚̇𝐷              (3) 

In the formulae, 𝐿𝐻𝑉𝐻 represents 𝐻2's lower 

calorific value, and 𝐿𝐻𝑉𝐷 represents diesel 

fuel's lower calorific value (MJ/kg). 𝑚̇𝐻 and 

𝑚̇𝐷  signify 𝐻2 and diesel mass fluxes (kg/h). 

The total energy acquired from 𝐻2 ( 𝐸𝐻 ) and 

diesel ( 𝐸𝐷 ) the initial measurement was 

adjusted to match the energy content of normal 

diesel fuel. The observed values and equations 

(1)-(3) were utilized in the computation of 

HERs formed by calculations are 11%, 14%, 

17% and 20%. 

Eq. (4) was used to calculate the motor's 

thermal efficiency. BP denotes braking power 

(kW) in the equation. 

𝐵𝑇𝐸 = 𝐵𝑃/(𝐸𝐻 + 𝐸𝐷)             (4) 

2.2. Experimental procedure 

Following the necessary changes and 

calibrations, the test engine was then linked to 

the engine test center, as seen in Fig. 2. Before 

commencing the trials, preparatory tests were 

undertaken to ensure that the engine was 

brought to suitable operating conditions. The 

trials were performed three times to limit the 

margin of error in the data, and the averages of 

the values were recorded. Table 2 exhibits the 

technical specifications of the modified engine 

and the test parameters. 

 
Fig. 2. The manner in which all systems attach to the 

engine test system. 

Table 2- Characteristics of the engine and test 
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parameters. 

 

While selecting the test parameters, the 

operating conditions of the engine in the 

market, the results obtained from the 

preliminary tests, and the literature analysis 

were taken into consideration. 1850 rpm is the 

speed at which the maximum torque of the 

engine occurs. 5N load is the half-load 

condition where the engine is operated for a 

long time in operating conditions. The 

hydrogen energy ratio was determined as a 

result of the literature study. The hydrogen 

injection timing was determined according to 

the valve adjustment diagram of the engine. 

3. Results and discussions 

3.1. Volumetric efficiency 

The decrease in volumetric efficiency in 𝐻2-

diesel dual-fuel engines is an important 

problem. Increasing the 𝐻2 ratio reduces 

volumetric efficiency and has a negative 

impact on engine performance. The main 

reason for this problem is that 𝐻2 occupies too 

much room in the cylinder [45-48]. The impact 

of the observed values and equations (1)-(3) 

were utilized in the computation of HER and 

timing of the 𝐻2 injection on volumetric 

efficiency is shown in Fig. 3. 

 
Fig. 3. Volumetric efficiency resulting from 𝐻2 energy 

rate and injection timing. 

A drop in volumetric efficiency was the result, 

as can be shown in Fig. 3, of a rise in the HER. 

The drop in volumetric efficiency, on the other 

hand, was mitigated by postponing the 

beginning of the 𝐻2 injection. The main reason 

for this situation is that 𝐻2 injection occurs 

close to the closing of the intake valve. 

Delaying the hydrogen injection ensures that 

there is enough time for most of the air to be 

taken into the cylinder [6, 49, 50]. 

3.2. Break thermal efficiency (BTE) 

The thermal efficiency of a system is a 

significant measure of how effectively fuel is 

utilized, therefore it is desirable to have greater 

thermal efficiency. Fig. 4 shows how HER and 

injection timing affect thermal efficiency.  

As can be clearly seen in Fig 4, a rise in the 

energy of 𝐻2 ratio up to 14% caused an 

increase in BTE. In 17% and 20%, the rate of 

increase in BTE decreased. However, in 

experiments where the 𝐻2 injection initiation 

was at 30 °CA aTDC, it was determined that 

the maximum rate of increase in BTE was 

achieved. At the same time, increasing the 

hydrogen energy rate prevents air from 

entering the cylinder by occupying too much 

space in the cylinder. This worsens combustion 

and causes the BTE to decrease. 

 
Fig. 4. BTE resulting from 𝐻2 energy rate and injection 

timing. 

3.3. Brake specific energy consumption 

(BSEC) 

BSEC refers to the quantity of energy 

consumed per unit of output by an internal 

combustion engine. The aforementioned data 

source holds significant importance in the 

realm of fuel efficiency [51]. Fig. 5 shows the 

HER and the effect of 𝐻2 injection initiation on 

BSEC. 
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Fig. 5. BSEC resulting from 𝐻2 energy rate and 

injection timing. 

When Fig. 5 is evaluated, an increase in HER 

up to 14% has led to a decrease in BSEC. At 

17% and 20% HER, the effect of 𝐻2 on BSEC 

decreased. Additionally, in experiments where 

the 𝐻2 injection initiation was at 30 °CA 

aTDC, it was determined that the BSEC 

decreased at the maximum rate. Elevating the 

HER to elevated levels has a detrimental 

impact on the BSEC. Volumetric efficiency is 

declining, and combustion is getting poorer, 

which is the major cause of this problem [25, 

38, 52-54]. 

3.4. Peak cylinder pressure and heat release 

rate (HRR) 

Fig. 6 shows how the amount of 𝐻2 energy and 

the timing of 𝐻2 injection affect the pressure 

inside the cylinder and the rate at which heat is 

released. 

The rise in HER  to as high as 14% has resulted 

in an increase in both the maximum pressure 

and the HRR of the cylinder. The maximum 

pressure within the cylinder rose by 9% in the 

experiment when the HER was 14% and the 

𝐻2 injection timing was 30 °CA aTDC. 

However, raising the 𝐻2 ratio over 17% 

resulted in a slower rise in HRR and cylinder 

pressure. These results can be attributed to the 

insufficient air supply caused by injecting 

more 𝐻2 into the cylinder. Inadequate air 

causes a drop in in-cylinder pressure and HRR. 

These findings are congruent with those of 

previous research published in the literature [4, 

38, 45, 48, 55]. By advancing the timing of the 

𝐻2 injection, the maximum cylinder pressure 

as well as the maximum HRR were moved 

closer to the top dead center position. As a 

result, the maximum pressure created 

increased as well. The primary cause of this 

condition is that 𝐻2 injection is made during air 

intake and a more homogeneous mixture is 

provided. 

3.5. Exhaust emissions 

Reducing the carbon atom in the fuel is an ideal 

method to decrease carbon-based emissions. 

However, increasing the 𝐻2 concentration to 

high levels reduces the amount of oxygen 

entering the cylinder and worsens combustion. 

Fig. 7 demonstrates the impact of HER and 𝐻2 

injection timing on CO emissions. 

The increase in the HER  has reduced CO 

emissions. Adjusting the start of 𝐻2 injection 

to 30 °CA aTDC and the HER to 17% resulted 

in a 53% reduction in CO emissions. The 

reduction in the fuel's carbon content is the 

primary cause of the drop in CO emissions.  

By joining the combustion process, the HC 

emissions that come out of the exhaust without 

being burned tell us about the quality of the 

combustion. The increase in these emissions 

worsens the fuel economy as well as 

environmental pollution [56, 57]. Fig. 8 shows 

what happens to HC emissions when the ratio 

of 𝐻2 energy and the start of 𝐻2 input is 

changed.  

Fig. 8 shows that increasing the HER resulted 

in a considerable drop in HC emissions. When 

the hydrogen injection timing was evaluated, 

increasing the time prevented the increase in 

HC emissions to some extent. 

The NO emissions induced by high cylinder 

temperatures rise in tandem with the 

improvement in combustion quality [58-60]. 

The influence of HER and 𝐻2 injection 

commencement on NO emissions is seen in 

Fig. 9. As can be seen in Fig. 9, the addition of 

𝐻2 resulted in an increase in the amount of NO 

emissions. Nevertheless, bringing the HER up 

to 20% mitigated the impact of the rise in NO 

emissions. The primary cause of this condition 

is that the high 𝐻2 ratio decreases volumetric 

efficiency and worsens combustion. The 

maximum rate of increase in NO emissions 

was determined when the 𝐻2 injection was set 

at 30 °CA aTDC. 

Petroleum-derived fuels consist of 𝐻2 and 

carbon. 
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Fig. 6. Cylinder pressure and HRR resulting from 𝐻2 energy rate and injection timing. 
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Fig. 7. CO emissions resulting from 𝐻2 energy rate and 

injection timing. 

 
Fig. 8. HC emissions resulting from 𝐻2 energy rate and 

injection timing. 

 
Fig. 9. NO emissions resulting from 𝐻2 energy rate and 

injection timing. 

The rapid combustion of 𝐻2 with a high 

burning rate causes the carbon atoms to be 

deprived of oxygen, resulting in smoke [26, 61, 

62]. Fig. 10 demonstrates how the ratio of 𝐻2 

energy and the timing of the start of 𝐻2 

injection impact smoke output. 

The effectiveness of the HDDF mode in 

lowering smoke emissions may be noticed 

when Fig. 10 is reviewed. It was discovered 

that when the HER increased, the smoke 

emissions dropped. It was found that when 𝐻2 

injection was set at 30 °CA aTDC, the 

maximum reduction rate in smoke emissions 

was achieved. 

Noise is undesirable in CI engines. The noise 

levels of these engines are quite high due to 

their high compression ratio [63]. Fig. 11 

illustrates the impact of the HER and the 

timing of 𝐻2 injection on noise emissions. 

 
Fig. 10. Smoke emissions resulting from 𝐻2 energy 

rate and injection timing. 

 
Fig. 11. Noise emissions resulting from 𝐻2 energy rate 

and injection timing. 

The introduction of 𝐻2 resulted in an increase 

in the engine's noise levels. The reason for this 

situation can be shown by the increase in 

cylinder pressure [64]. The increments in the 

table are given in dBA. The highest increase 

was observed at 14% 𝐻2 ratio and 30 °CA 

aTDC 𝐻2 injection. In these test parameters, a 

1.6 dBA increase in noise emissions was 

detected compared to D100 fuel. 

The pressure created by the combustion in the 

engine causes vibration. The presence of a 

single-cylinder configuration in the test engine 

results in elevated levels of mechanical 

vibrations. Fig. 12 illustrates the impact of the 

HER and the timing of 𝐻2 injection on 

mechanical vibrations. 

With the addition of 𝐻2, an increase in 

mechanical vibrations in the engine was seen. 

The most significant increase rate was 
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obtained when the 𝐻2 ratio was set at 14% and 

the hydrogen injection timing at 30 °CA 

aTDC. In these test parameters, a 16.6% 

increase in mechanical vibrations was detected 

compared to D100 fuel. The in-cylinder 

pressure levels are the primary cause of these 

outcomes. 

 
Fig. 12- Mechanical vibrations resulting from 𝐻2 

energy rate and injection timing. 

4. Conclusions and recommendations 

The following basic conclusions may be drawn 

from this study's investigation of the effects of 

HER and 𝐻2 injection time on engine 

performance, exhaust, noise, and mechanical 

vibration emissions in an ECU-controlled 

HDDF system CI engine: 

• HDDF mode reduces volumetric 

efficiency. Delaying the start of 𝐻2 injection 

prevents this decrease to a certain extent. 

• The thermal efficiency rose to 9.6% 

when the HER was adjusted to 14%. The 

amount of gain in thermal efficiency was 

reduced when the energy ratio was raised. 

Maximum thermal efficiencies were 

determined in experiments where the injection 

timing was 30 °CA aTDC. 

• The dual fuel mode has positively 

affected BSEC. A decrease of 8.4% in BSEC 

was observed at a 14% 𝐻2 ratio and an 

injection timing of 30 °CA aTDC. 

• HRR and in-cylinder pressure have 

risen due to the usage of 𝐻2. This increase is 

observed to be more effective up to a 𝐻2 ratio 

of 14%. Because of the rise in 𝐻2 ratio and the 

advancement of injection timing, in-cylinder 

pressure has increased and the maximum 

cylinder pressure point has approached TDC. 

• It has been discovered that using 𝐻2 

may significantly lower emissions made up of 

carbon, such as CO, HC, and smoke. It has, 

however, increased noise, mechanical 

vibration, and NO emissions. 

• It has been determined that the 

optimum 𝐻2 injection timing for carbon-based 

emissions is 30 °CA aTDC. 

• In the experiments, it was determined 

that bringing the 𝐻2 injection timing to the 

open time of the exhaust valve causes kickback 

and jeopardizes combustion safety. 

• The fact that the dual fuel system is 

ECU-controlled and can be programmed 

instantly contributed to obtaining high-quality 

test data and ensuring operational safety. 

• In future studies, studies on engine 

modifications in HDDF mode will be 

beneficial. 

• It is known that liquid and gas fuel 

pressures affect engine performance and 

emissions in the hydrogen-diesel dual fuel 

mode. Studies in this direction will contribute 

to the more efficient operation of dual fuel 

mode. 

The operation of the gas fuel system with 

direct injection will help reduce the negative 

effect of hydrogen usage on volumetric 

efficiency. 
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