


 



Journal of Universal Mathematics 

Volume 8  Number 1    2021 
 
 
 
 
 
 
 
 
 
 

 

JUM 
 
 
 
 

 
http://dergipark.gov.tr/jum 

email: gcuvalcioglu@mersin.edu.tr 
 

 

ISSN 2618-5660 

http://dergipark.gov.tr/jum
mailto:gcuvalcioglu@mersin.edu.tr


Dear Scientists, 
 

In this issue, we publish more valuable papers written with pleasure by our authors, 
carefully reviewed by our referees, despite all their busy time. 

 
We thank our authors, reviewers, editors, and editing team for their contribution to this 
Volume. 

 
We expect support from you, valuable researchers and writers, for our journal, which will be 
published in July 2025. 

 

We wish you a successful scientific life. 

Yours truly! 

 
 
 

 
Assoc. Prof. Dr. Gökhan Çuvalcıoğlu 

Editor in-Chief 



This Journal is a peer reviewed journal and is indexed by Index Copernicus, Google Scholar, International Citation 
Index, Rootindexing, ResearchBib, ROAD, Directory of Indexing and Impact Factor, Eurasian Scientific Journal Index, 
DRJI, Journal Factor, World Catalogue of Scientific Journal, General Impact Factor. 

ISSN 2618-5660 

Journal of Universal Mathematics 

http://dergipark.gov.tr/jum 

Volume 8 Number 1 January 2025 

 
Honorary Editors 

Krassimir T. Atanassov (Bulgarian Academy of Science) 

Naime Ekici(Retired Professor) 

 
Editor in Chief 

Gökhan Çuvalcıoğlu (Mersin University) 

 
Area Editors 

Abdullah Alazemi (Kuwait University) 

Bijan Davvaz (Yazd University) 

Bipan Hazarika (Rajiv Gandhi University) 

Ekrem Kadıoğlu (Atatürk University) 

Erol Yaşar (Mersin University) 

Hamza Menken (Mersin University) 

Hanlar Reşidoğlu (Mersin University) 

Ismat Beg (Lahore School of Economics) 

Khaldoun Al-Zoubi (Jordan University of Science and Technology) 

Madhumangal Pal (Vidyasagar University) 

Mehmet Küçükaslan (Mersin University) 

Metin Manouchehr Eskandari (Mersin University) 

Osman Abul (TOBB University) 

Poonam Kumar Sharma (DAV College Jalandhar) 

Said Melliani (Sultan Moulay Slimane University) 

Sotir Sotirov (Prof. Dr Assen Zlatarov University) 

Taekyun Kim (Kongju National University) 

 
Editors 

Vassia Atanassova (Bulgarian Science of Academy ) 

Mehmet Çitil (Kahramanmaras Sutcu Imam University)  

Ümit Deniz (Recep Tayyip Erdogan University) 

Piotr Dworniczak (University of Economics) 

M'hamed Elomari (Sultan MY Sliman University) 

Sukran Konca (Izmir Bakirçay University) 

 
Technical Editor 

Feride Tuğrul (Munzur University) 

 
 
 
 
 
 
 
 

 

http://dergipark.gov.tr/jum


 

ISSN 2618-5660 
 

Journal of Universal Mathematics 
http://dergipark.gov.tr/jum  
Volume 8 Number 1 January 2025 

 
 
 
 

Article Author(s) Pages 

   

ON GENERALIZED CONFORMABLE 
FRACTIONAL OPERATORS 

SÜMEYYE ERMEYDAN ÇİRİŞ, 
HÜSEYİN YILDIRIM  
 

1-19 

RE-VISIT 𝛪𝛪∗ −SEQUENTIAL TOPOLOGY H.S. BEHMANUSH, 
M. KÜÇÜKASLAN 

20-32 

FIXED POINT THEOREMS IN SOME FUZZY METRIC SPACES VIA  
INTERPOLATIVE CONTRACTIONS 

MERYEM BOZDEMİR 
 

33-39 

FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL 
APPLICATION 

ZAFER ÖZTÜRK 
 
 
 

 40-51              

PERFORMANCE COMPARISON OF FIXED-POINT ITERATION METHOD  
AND TEACHING-LEARNING BASED OPTIMISATION: A STUDY ON  
NONLINEAR EQUATION SYSTEMS 

BAHAR DEMİRTÜRK,  
BAYRAM KÖSE, 
ŞÜKRAN KONCA 
 
 

52-69 

 
             
            

http://dergipark.gov.tr/jum


Journal of Universal Mathematics
Vol.8 No.1 pp.1-19 (2025)

ISSN-2618-5660
DOI: 10.33773/jum.1501013

ON GENERALIZED CONFORMABLE FRACTIONAL

OPERATORS
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Abstract. In this paper, we introduce the concepts of left and right general-

ized conformable fractional integrals, alongside the corresponding derivatives.

Additionally, we extend our investigation to derive the generalized conformable
derivatives for functions within specific spaces, elucidating their inherent prop-

erties.

1. Introduction

Fractional calculus, with its roots dating back to 1695, has evolved significantly
over the years and garnered increasing significance, particularly in applied sciences.
Its applications span various fields including physics, mechanics, electronics, chem-
istry, biology, and engineering [2− 7] , [16]. Two commonly used approaches in
fractional calculus are the Caputo and Riemann-Liouville derivatives.

The Riemann-Liouville approach entails iteratively applying the integral opera-
tor n−times, resulting in fractional integrals of non-integer order. This method has
found widespread use due to its versatility across different disciplines. However,
the standard fractional calculus framework may not always be sufficient for certain
applications, necessitating the introduction of specialized kernels for a more unified
approach to fractional derivatives.

The differentiation operator serves as a fundamental starting point for the it-
eration method in fractional calculus. By incorporating the required kernels, re-
searchers aim to achieve a more comprehensive understanding and application of
fractional derivatives across various scientific and engineering contexts [8− 10] ,
[19− 20]. In the present case, Abdeljawad defined as the following the left and
right conformable derivatives, respectively[18],

(1.1)
φT

αf (τ) = (τ − φ)
1−α

f ′ (τ) ,

Tαδ f (τ) = (δ − τ)
1−α

f ′ (τ) .

Date: Received: 2024-06-24; Accepted: 2025-01-28.
Key words and phrases. Conformable derivatives, Conformable integrals, Fractional deriva-

tives, Fractional integrals.
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In this context, assuming f is a differentiable function, we possess left and right
conformable integrals as the following forms, respectively [1]

(1.2) β
φJ

αf (τ) = 1
Γ(β)

∫ τ
φ

(
(τ−φ)α−(θ−φ)α

α

)β−1

f (θ) dθ
(θ−φ)1−α

and

(1.3) βJαδ f (τ) = 1
Γ(β)

∫ δ
τ

(
(δ−τ)α−(δ−θ)α

α

)β−1

f (θ) dθ
(δ−θ)1−α .

In [1], authors introduced novel fractional operators characterized by two pa-
rameters, each with kernels distinct from conventional ones. Our paper closely
examines the findings of [1], focusing on their implications and further develop-
ments. We extend upon their work by deriving new generalized fractional integrals
and derivatives using the newly defined fractional operators.

Moreover, we provide a thorough exposition of basic definitions and tools es-
sential to classical fractional calculus. These foundational concepts serve as the
groundwork for our subsequent discussions and advancements.

Definition 1.1. ([17] , [21]) Let γ (τ) be an increasing and positive monotone func-
tion on [0,∞). Furthermore, we’ll consider γ as a monotonically increasing and
positive function defined on the interval [0,∞), with its derivative γ′ being contin-
uous and γ (0) = 0. The space Xd

γ (0,∞) is the following form for (1 ≤ d <∞) ,

(1.4) ‖f‖Xdγ =
(∫∞

0
|f (θ)|d γ′ (τ) dθ

) 1
d

<∞

and if we choose d =∞,

(1.5) ‖f‖X∞γ = ess sup
1≤θ<∞

[
f (θ) γ

′
(τ)
]
.

Additionally, if we take γ(τ) = τ (1 ≤ d <∞) the space Xd
γ (0,∞), then we

have the Ld[0,∞)−space. Moreover, if we take γ(τ) = τk+1

k+1 (1 ≤ d <∞, k ≥ 0)

the space Xd
γ (0,∞), then we have the Ld,k[0,∞)−space [17].

The authors derived the generalized left and right fractional integrals for β be-
longing to the complex numbers (β ∈ C) with Re (β) > 0 in [8] ,

(1.6)
(
φI
β,αf

)
(θ) = 1

Γ(β)

∫ θ
φ

(
θα−yα
α

)β−1

f (y) dy
y1−α

and

(1.7)
(
Iβ,αδ f

)
(θ) = 1

Γ(β)

∫ δ
θ

(
yα−θα
α

)β−1

f (y) dy
y1−α ,

respectively.
The authors obtained left and right generalized fractional derivatives for β be-

longing to the complex numbers (β ∈ C) with Re (β) ≥ 0 in [9] ,

(1.8)

(
φD

β,αf
)

(θ) = ζn
(
φI
n−β,αf

)
(θ)

= ζn

Γ(n−β)

∫ θ
φ

(
θα−yα
α

)n−β−1

f (y) dy
y1−α

and

(1.9)

(
Dβ,α
δ f

)
(θ) = (−ζ)

n (
φI
n−β,αf

)
(θ)

= (−ζ)n
Γ(n−β)

∫ δ
θ

(
yα−θα
α

)n−β−1

f (y) dy
y1−α
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respectively, where α > 0 and where ζ = θ1−α d
dθ .

The left and right generalized Caputo fractional derivatives, as defined by the
authors in [15] through the utilization of [9], are expressed in the following forms,
respectively,

(1.10)

(
C
φD

β,αf
)

(θ) =
(
φI
n−β,α (ζ)

n
f
)

(θ)

= 1
Γ(n−β)

∫ θ
φ

(
θα−uα
α

)n−β−1 ζnf(y)dy
y1−α

and

(1.11)

(
CDβ,α

δ f
)

(θ) =
(
φI
n−β,α (−ζ)

n
f
)

(θ)

= 1
Γ(n−β)

∫ δ
θ

(
yα−θα
α

)n−β−1
(−ζ)nf(y)dy

y1−α .

After introducing the generalized fractional conformable integral and derivative
operators, we will highlight their significant implications and key characteristics.
Additionally, we will delve into the properties of the defined generalized conformable
derivative and extend our analysis to include the generalized conformable fractional
derivatives within the Caputo framework. As a result, we will consolidate our find-
ings and build upon the previously established consequences for both the generalized
conformable derivatives and integrals.

2. THE GENERALIZED CONFORMABLE OPERATORS

In light of Abdeljawad’s work on conformable integrals, which were extended to
higher orders in reference [10], and Jarad et al.’s definition of fractional integrals
in [1], we aim to establish a generalized conformable derivative. To achieve this,
we’ll consider γ as a monotonically increasing and positive function defined on
the interval [0,∞), with its derivative γ′ being continuous and γ (0) = 0. With
these conditions in mind, our objective is to formulate the generalized conformable
derivative based on the existing definitions of the conformable derivative

(2.1) γ
φT

αf (θ) = limε→0

f

(
θ+ε

(γ(θ)−γ(φ))1−α

γ
′
(θ)

)
−f(θ)

ε .

By taking into account equation (2.1) . In here,

(2.2) ∆t = ε (γ(θ)−γ(φ))1−α

γ′ (θ)
⇒ ε = ∆t.γ

′
(θ)

(γ(θ)−γ(φ))1−α

we select ∆t in the form. Then,

(2.3) γ
φT

αf (θ) = (γ(θ)−γ(φ))1−α

γ′ (θ)
f
′
(θ) .

We can assert formula of generalized conformable derivative, respectively,

(2.4)

γ
φT

αf (θ) = (γ(θ)−γ(φ))1−α

γ′ (θ)
f
′
(θ)

γTαδ f (θ) = (γ(δ)−γ(θ))1−α

γ′ (θ)
f
′
(θ) .

Additionally, we acquire generalized conformable integral operator. For this reason,

(2.5)
∫ τ
φ

γ
′
(θ1)dθ1

(γ(θ1)−γ(φ))1−α

∫ θ1
φ

γ
′
(θ2)dθ2

(γ(θ2)−γ(φ))1−α
...
∫ θn−1

φ
γ
′
(θn)f(θn)dθn

(γ(θn)−γ(φ))1−α
,
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we should take n−times repeated integrals of the forms. Furthermore, If we employ
a method akin to classical fractional integral techniques, then we write the equality

(2.6) γ
φJ

n,αf (τ) = 1
Γ(n)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−1
γ
′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α
.

Furthermore, we can acquire definition of the following for generalized conformable
integrals drawing upon the equality presented in reference [2].

Definition 2.1. Let f ∈ Xγ(0,∞). Moreover, we will consider γ as a monotonically
increasing and positive function defined on the interval [0,∞), with its derivative
γ′ being continuous and γ (0) = 0. The left and right generalized conformable
fractional integrals of order n ∈ C, Re (n) ≥ 0 and α > 0, respectively,

(2.7) γ
φJ

n,αf (τ) = 1
Γ(n)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−1
γ
′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α

and

(2.8) γJn,αδ f (τ) = 1
Γ(n)

∫ δ
τ

[
(γ(δ)−γ(τ))α−(γ(δ)−γ(θ))α

α

]n−1
γ
′
(θ)f(θ)dθ

(γ(δ)−γ(θ))1−α
.

Within this context, we introduce the subsequent definition, leveraging the frame-
work provided by the generalized conformable derivative and integral operators.

Example 2.2. Let’s calculate the result of the generalized conformable fractional
integral γ0J

1
2 ,1f (τ) for f (τ) = 4τ3.

Proof. If we choose γ (x) = x, f (θ) = 4θ3, α = 1, n = 1
2 and φ = 0 in (2.7) , we

have
γ
0J

1
2 ,1f (τ) =

1

Γ
(

1
2

) ∫ τ

0

(τ − θ)−
1
2 4θ3dθ.

Furhermore, by using variable change θ = τu and dθ = τdu, we acquire

γ
0J

1
2 ,1f (τ) = 4

Γ( 1
2 )
θ

7
2

∫ 1

0
(1− u)

− 1
2 u3du

= 4.θ
7
2

Γ( 1
2 )
B
(

1
2 , 4
)

= 4.θ
7
2 Γ(4)

Γ( 9
2 )

.

The proof is done with Beta function and property of Beta function . �

Example 2.3. Let’s calculate the result of the generalized conformable fractional

integral γ0J
1
2 ,1
(
γ
0J

1
2 ,1
(
4τ3
))
.

Proof. If we choose γ (x) = x, f (θ) = 4θ
7
2 Γ(4)

Γ( 9
2 )

, α = 1, n = 1
2 and φ = 0 in (2.7) ,

we get

γ
0J

1
2 ,1
(
γ
0J

1
2 ,1
(
4τ3
))

=
1

Γ
(

1
2

) ∫ τ

0

(τ − θ)−
1
2

4θ
7
2 Γ (4)

Γ
(

9
2

) dθ.

Moreover, by utilizing variable change θ = τu and dθ = τdu, we take

γ
0J

1
2 ,1

(
4θ

7
2 Γ(4)

Γ( 9
2 )

)
= 1

Γ( 1
2 )
. 4Γ(4)

Γ( 9
2 )
θ4
∫ 1

0
(1− u)

− 1
2 u

7
2 du

= 1

Γ( 1
2 )
. 4Γ(4)

Γ( 9
2 )
θ4B

(
9
2 ,

1
2

)
= θ4.

The proof is done with Beta function and property of Beta function . �
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Definition 2.4. Let f ∈ Xγ(0,∞). Furthermore, we will consider γ as a mono-
tonically increasing and positive function defined on the interval [0,∞), with its
derivative γ′ being continuous and γ (0) = 0. The left and right generalized con-
formable fractional derivatives of order β ∈ C and Re (β) ≥ 0,

(2.9)

γ
φD

β,αf (τ) =γ
φ T

n,α
(
γ
φJ

n−β,α
)
f (τ)

=
γ
φT

n,α

Γ(n−β)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−β−1
γ
′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α

and
(2.10)

γDβ,α
δ f (τ) = γTn,αδ

(
γJn−β,αδ

)
f (τ)

=
γTn,αδ (−1)n

Γ(n−β)

∫ δ
τ

[
(γ(δ)−γ(τ))α−(γ(δ)−γ(θ))α

α

]n−β−1
γ
′
(θ)f(θ)dθ

(γ(δ)−γ(θ))1−α
,

where n = [Re (β)] + 1,

(2.11)

γ
φT

n,α = γ
φT

α γ
φT

α...γφT
α︸ ︷︷ ︸,

n−times

γTn,αδ = γTαδ
γTαδ ...

γTαδ︸ ︷︷ ︸
n−times

,

γ
φT

α and γTαδ are the left and right generalized conformable differential operators.

Example 2.5. Let’s calculate the result of the generalized conformable fractional
derivative γ

0D
1
2 ,1f (τ) for f (τ) = τ4.

Proof. If we choose γ (x) = x, f (θ) = θ4, α = 1, n = 1, β = 1
2 and φ = 0 in (2.9) ,

we get

γ
0D

1
2 ,1f (τ) =

γ
0T

1,1

Γ
(

1
2

) ∫ τ

0

(τ − θ)−
1
2 θ4dθ.

Furhermore, by using variable change θ = τu and dθ = τdu, we have

γ
0D

1
2 ,1f (τ) =

d
dθ

Γ( 1
2 )

∫ 1

0
(1− u)

− 1
2 u4θ

9
2 du

= 1

Γ( 1
2 )

d
dθ

(
θ

9
2

) ∫ 1

0
u4 (1− u)

− 1
2 du

= 1

Γ( 1
2 )

9
2θ

7
2

Γ(5)Γ( 1
2 )

Γ( 11
2 )

= Γ(5)θ
7
2

Γ( 9
2 )

.

The proof is done with Beta function and property of Beta function . �

Example 2.6. Let’s calculate the result of the generalized conformable fractional

derivative γ
0D

1
2 ,1
(
γ
0D

1
2 ,1f (τ)

)
for f (τ) = Γ(5)τ

7
2

Γ( 9
2 )

.

Proof. If we choose γ (x) = x, f (θ) = Γ(5)θ
7
2

Γ( 9
2 )

, α = 1, n = 1, β = 1
2 and φ = 0 in

(2.9) , we get

γ
0D

1
2 ,1f (τ) =

γ
0T

1,1

Γ
(

1
2

) ∫ τ

0

(τ − θ)−
1
2

Γ (5) θ
7
2

Γ
(

9
2

) dθ.
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Furhermore, by using variable change θ = τu and dθ = τdu, we have

γ
0D

1
2 ,1

(
Γ(5)τ

7
2

Γ( 9
2 )

)
=

d
dθ

Γ( 1
2 )

Γ(5)

Γ( 9
2 )

∫ 1

0
(1− u)

− 1
2 u

7
2 θ4du

= 1

Γ( 1
2 )

Γ(5)

Γ( 9
2 )

d
dθ

(
θ4
) ∫ 1

0
u

7
2 (1− u)

− 1
2 du

= 1

Γ( 1
2 )

Γ(5)

Γ( 9
2 )

4θ3B
(

9
2 ,

1
2

)
= 1

Γ( 1
2 )

Γ(5)

Γ( 9
2 )

4θ3 Γ( 9
2 )Γ( 1

2 )
Γ(5)

= 4θ3.

The proof is done with Beta function and property of Beta function . �

Theorem 2.7. Let f ∈ Xγ(0,∞). Moreover, we will consider γ as a monotonically
increasing and positive function defined on the interval [0,∞), with its derivative γ′

being continuous and γ (0) = 0. Then, we have fractional integrals for Re (β) > 0
and Re (ς) > 0,

(2.12)

γ
φJ

β,α
(
γ
φJ

ς,α
)
f (τ) =γ

φ J
(β+ς),αf (τ) ,

γJβ,αδ (γJ ς,αδ ) f (τ) = γJ
(β+ς),α
δ f (τ) .

Proof. With the assistance of equation (2.7) , we obtain
(2.13)
γ
φJ

β,α
(
γ
φJ

ς,α
)
f (τ)

= 1
Γ(β)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β−1 (γφJ
ς,α)γ

′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α

= 1
Γ(β)Γ(ς)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β−1

×
(∫ θ

φ

[
(γ(θ)−γ(φ))α−(γ(u)−γ(φ))α

α

]ς−1
γ
′
(u)f(u)du

(γ(u)−γ(φ))1−α

)
γ
′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α

= 1
Γ(β)Γ(ς)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(u)−γ(φ))α

α

]β+ς−1 (∫ 1

0
(1− z)β−1

zς+1dz
)

γ
′
(u)f(u)du

(γ(u)−γ(φ))1−α

= 1
Γ(β+ς)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(u)−γ(φ))α

α

]β+ς−1
γ
′
(u)f(u)du

(γ(u)−γ(φ))1−α

=γ
φ J

(β+ς),αf (τ) .

In here, we employed the change of variable,
(2.14)

(γ (θ)− γ (φ))
α

= (γ (u)− γ (φ))
α

+ z [(γ (τ)− γ (φ))
α − (γ (u)− γ (φ))

α
] .

The proof of the second formula can similarly be illustrated using the similar ap-
proach. �

Lemma 2.8. Let f ∈ Xγ(0,∞). Furthermore, we will consider γ as a mono-
tonically increasing and positive function defined on the interval [0,∞), with its
derivative γ′ being continuous and γ (0) = 0. We possess for Re (r) > 0,

(2.15)

γ
φJ

β,α (γ (θ)− γ (φ))
α(r−1)

(τ) =
Γ (r)

Γ (β + r)

[(γ (τ)− γ (φ))
α

]
β+r−1

αβ
,

γJβ,αδ (γ (δ)− γ (θ))
α(r−1)

(τ) =
Γ (r)

Γ (β + r)

[(γ (δ)− γ (τ))
α

]
β+r−1

αβ
.
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Proof. With the assistance of (2.7), we hold

(2.16)

γ
φJ

β,α (γ (θ)− γ (φ))
α(r−1)

(τ)

= 1
Γ(β)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β−1
[(γ(θ)−γ(φ))α]r−1γ

′
(θ)dθ

(γ(θ)−γ(φ))1−α

= [(γ(τ)−γ(φ))α]β+r−1

Γ(β)αβ−1

∫ 1

0
(1− z)β−1

zr−1dz

= Γ(r)
Γ(β+r)

[(γ(τ)−γ(φ))α]β+r−1

αβ
.

Moreover, we employed the change of variable,

(2.17) (γ (θ)− γ (φ))
α

= z (γ (τ)− γ (φ))
α
.

The proof of the second formula can similarly be illustrated using the similar ap-
proach. �

Lemma 2.9. Let f ∈ Xγ(0,∞). Moreover, we will consider γ as a monotonically
increasing and positive function defined on the interval [0,∞), with its derivative
γ′ being continuous and γ (0) = 0. We possess for Re (n− α) > 0,

(2.18)

[
γ
φD

β,α (γ (θ)− γ (φ))
α(r−1)

]
(τ) = αβΓ(r)

Γ(r−β) [(γ (τ)− γ (φ))
α

]
r−β−1

,[
γDβ,α

δ (γ (δ)− γ (θ))
α(r−1)

]
(τ) = αβΓ(r)

Γ(r−β) [(γ (δ)− γ (τ))
α

]
r−β−1

.

Proof. With the assistance of (2.9) , we hold
(2.19)[

γ
φD

β,α (γ (θ)− γ (φ))
α(r−1)

]
(τ)

=
γ
φT

n,α

Γ(n−β)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−β−1
[(γ(θ)−γ(φ))α]r−1.γ

′
(θ)dθ

(γ(θ)−γ(φ))1−α

=
γ
φT

n,α[(γ(τ)−γ(φ))α]n+r−β−1

Γ(n−β)αn−β

∫ 1

0
(1− z)n−β−1

zr−1dz

= αβΓ(r)
Γ(r−β) [(γ (τ)− γ (φ))

α
]
r−β−1

.

In here, we employed the change of variable,

(2.20) (γ (θ)− γ (φ))
α

= z (γ (τ)− γ (φ))
α
.

The proof of the second formula can similarly be illustrated using the same ap-
proach. �

Remark 2.10. It can be illustrated that

(2.21)

γ
φD

β,αf = γ
φJ

β,−α

γDβ,α
δ f = γJβ,−αδ .

3. GENERALIZED CONFORMABLE FRACTIONAL DERIVATIVES
ON THE SPECIFIC SPACES

In this section, we will introduce several definitions pertaining to lemmas and
theorems. Furthermore, we will showcase the significant outcomes of the generalized
conformable fractional derivatives within the spaces Cnα,φ and Cnα,δ.

Definition 3.1. [18] For 0 < α ≤ 1 and an interval [φ, δ] , we describe

(3.1)
γIα ([φ, δ]) =

{
f : [φ, δ]→ R : f (τ) =

(
γ
φI
β,αϕ

)
(τ) + f (φ)

for some ϕ ∈ γLα (φ)}
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and

(3.2)
γ
αI ([φ, δ]) =

{
g : [φ, δ]→ R : g (τ) =

(
γIβ,αδ ϕ

)
(τ) + g (δ)

for some ϕ ∈ γLα (δ)} .

Where

(3.3) γLα (φ) =
{
ϕ : [φ, δ]→ R,

(
γ
φI
α,βϕ

)
(τ) exists ∀ τ ∈ [φ, δ]

}
and

(3.4) γLα (δ) =
{
ϕ : [φ, δ]→ R,

(
γIα,βδ ϕ

)
(τ) exists ∀ τ ∈ [φ, δ]

}
.

Definition 3.2. We can define for α ∈ (0, 1] and n = 1, 2, 3, ...,

(3.5)
Cnα,φ ([φ, δ]) =

{
f : [φ, δ]→ R such that γφT

n−1,αf ∈ γIα ([φ, δ])
}
,

Cnα,δ ([φ, δ]) =
{
f : [φ, δ]→ R sucγ that γTn−1,α

δ f ∈ γ
αI ([φ, δ])

}
.

Lemma 3.3. Let f ∈ Cnα,φ ([φ, δ]) for α > 0. Moreover, we will consider γ as a

monotonically increasing and positive function defined on the interval [0,∞), with
its derivative γ′ being continuous and γ (0) = 0. Then f is expressed as the following
form,

(3.6)
f (τ) = 1

(n−1)!

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−1
ϕ(θ)γ

′
(θ)dθ

(γ(θ)−γ(φ))1−α

+
∑n−1
s=0

[
(γ(τ)−γ(φ))α

α

]s
1
s!

γ

φ
T s,αf (φ) .

In this place is ϕ (θ) =
(
γ
φT

s,αf
)

(θ) .

Proof. If we take f ∈ Cnα,φ ([φ, δ]), γ
φT

n−1,αf ∈ γIα ([φ, δ]) and ϕ is continuous
function, then we acquire,

(3.7)

γ
φT

n−1,αf (τ) =
∫ τ
φ

ϕ(θ)γ
′
(θ)dθ

(γ(θ)−γ(φ))1−α
+γ
φ T

n−1,αf (φ)

(γ(τ)−γ(φ))1−α

γ′ (τ)
d
dτ

(
γ
φT

n−2,αf (τ)
)

=
∫ τ
φ

ϕ(θ)γ
′
(θ)dθ

(γ(θ)−γ(φ))1−α
+γ
φ T

n−1,αf (φ)

d
dτ

(
γ
φT

n−2,αf (τ)
)

= γ
′
(τ)

(γ(τ)−γ(φ))1−α

[∫ τ
φ

ϕ(θ)γ
′
(θ)dθ

(γ(θ)−γ(φ))1−α

+ γ
′
(τ)

(γ(τ)−γ(φ))1−α
.γφT

n−1,αf (φ)

]
.

If we integrate both of parties (3.7) from φ to τ, substituting τ with θ and θ with
s on the both side of the equation, then we have

(3.8)
γ
φT

n−2,αf (τ) =
∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(s)−γ(φ))α

α

]
ϕ(s)γ

′
(s)ds

(γ(s)−γ(φ))1−α

+ (γ(τ)−γ(φ))α

α .γφT
n−1,αf (φ) +γ

φ T
n−2,αf (φ) .

By applying the equation (3.8) again same method, we get

(3.9)

γ
φT

n−3,αf (τ) =
∫ τ
φ

1
2

[
(γ(τ)−γ(φ))α−(γ(s)−γ(φ))α

α

]2
ϕ(s)γ

′
(s)ds

(γ(s)−γ(φ))1−α

+ 1
2

[
(γ(τ)−γ(φ))α

α

]2
.γφT

n−1,αf (φ)

+ (γ(τ)−γ(φ))α

α .γφT
n−2,αf (φ) +γ

φ T
n−3,αf (φ) .
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By applying the same method iteratively n− 3 times, then we have,

(3.10)
f (τ) = 1

(n−1)!

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−1
ϕ(θ)γ

′
(θ)dθ

(γ(θ)−γ(φ))1−α

+
∑n−1
s=0

[
(γ(τ)−γ(φ))α

α

]s
1
s! .
γ
φT

s,αf (φ) .

For ϕ (θ) =γ
φ Tn,αf (θ) . It is evident that an analogous lemma holds for right

generalized conformable fractional derivatives. �

Lemma 3.4. Let f ∈ Cnα,φ ([φ, δ]) for α > 0. Furthermore, we will consider γ as a

monotonically increasing and positive function defined on the interval [0,∞), with
its derivative γ′ being continuous and γ (0) = 0. Then, f is expressed in form,

(3.11)
f (τ) = 1

(n−1)!

∫ δ
τ

[
(γ(δ)−γ(τ))α−(γ(δ)−γ(θ))α

α

]n−1
ϕ(θ)γ

′
(θ)dθ

(γ(δ)−γ(θ))1−α

+
∑n−1
s=0

[
(γ(δ)−γ(τ))α

α

]s
(−1)s.γT s,αδ f(δ)

s! .

In this place is ϕ (θ) = (γT s,αδ f) (θ) .

Proof. The proof follows a similar structure to lemma 3. �

In the Theorem 2, we will establish the generalized conformable fractional deriva-
tives within the spaces Cnα,φ and Cnα,δ.

Theorem 3.5. Let β ∈ C, Re (β) > 0 and n = [β] + 1. Moreover, we will consider
γ as a monotonically increasing and positive function defined on the interval [0,∞),
with its derivative γ′ being continuous and γ (0) = 0. The left and right generalized
conformable fractional derivative are illustrated in the form for f ∈ Cnα,φ and f ∈
Cnα,δ. Then, we write

(3.12)

γ
φD

β,αf (τ) =
(
γ
φJ

n−β
(
γ
φT

n,αf
))

(τ)

+
∑n−1
m=0

γ
φT

n,αf(φ)

Γ(m−β+1)

[
(γ(τ)−γ(φ))α

α

]m−β
and

(3.13)

γDβ,α
δ f (τ) =

(
γJn−βδ (γTn,αδ f)

)
(τ)

+
∑n−1
m=0

(−1)n.γTn,αδ f(δ)

Γ(m−β+1)

[
(γ(δ)−γ(τ))α

α

]m−β
.

Proof. By using f ∈ Cnα,φ ([φ, δ]), we should select f(τ) in the Lemma 3, substitut-
ing τ with θ and θ with s that is as following form

(3.14)
f (θ) = 1

(n−1)!

∫ θ
φ

[
(γ(θ)−γ(φ))α−(γ(s)−γ(φ))α

α

]n−1 γ
φT

n,αf(s)γ
′
(s)ds

(γ(s)−γ(φ))1−α

+
∑n−1
m=0

[
(γ(θ)−γ(φ))α

α

]m
1
m! .

γ
φT

m,αf (φ) .
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In here, we can state the following equality by using (2.9) for (3.14) ,
(3.15)

γ
φD

β,αf (τ)

=
γ
φT

n,α

Γ(n−β)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−β−1
γ
′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α

=
γ
φT

n,α

Γ(n−β)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−β−1

×
(

1
(n−1)!

∫ θ
φ

[
(γ(θ)−γ(φ))α−(γ(s)−γ(φ))α

α

]n−1 γ
φT

n,αf(s)γ
′
(s)ds

(γ(s)−γ(φ))1−α

)
γ
′
(θ)dθ

(γ(θ)−γ(φ))1−α

+
γ
φT

n,α

Γ(n−β)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−β−1

×
(∑n−1

m=0

[
(γ(θ)−γ(φ))α

α

]m
1
m! .

γ
φT

m,αf (φ)
)

γ
′
(θ)dθ

(γ(θ)−γ(φ))1−α
.

By employing techniques such as changing the order of integration, the gamma
function, and the beta function, along with the utilization of the following equations
(3.16)

(γ (θ)− γ (φ))
α

= (γ (s)− γ (φ))
α

+ z [(γ (τ)− γ (φ))
α − (γ (s)− γ (φ))

α
]

and

(γ (θ)− γ (φ))
α

= u (γ (τ)− γ (φ))
α
.

Then we obtain following form

(3.17)

γ
φD

β,αf (τ)

=
γ
φT

n,α

Γ(n−β)(n−1)!

∫ τ
φ

γ
φT

n,αf(s)γ
′
(s)ds

(γ(s)−γ(φ))1−α

×
(∫ 1

0
(1− z)n−β−1

(z)
n−1

dz
) [

(γ(τ)−γ(φ))α−(γ(s)−γ(φ))α

α

]2n−β−1

+
∑n−1
m=0

γ
φT

n,α.γφT
n,αf(φ)

Γ(n−β).m!

×
(∫ 1

0
(1− u)

n−β−1
(u)

m
du
) [

(γ(τ)−γ(φ))α

α

]n−β+m

.

In here, we obtain by means of the operator γφT
n,α,

(3.18)

γ
φD

β,αf (τ) = 1
Γ(n−β)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(s)−γ(φ))α

α

]n−β−1 γ
′
(s)nφT

αf(s)ds

(γ(s)−γ(φ))1−α

+
∑n−1
m=0

γ
φT

n,αf(φ)

Γ(m−β+1)

[
(γ(τ)−γ(φ))α

α

]m−β
.

We have successfully concluded the proof. The proof of the right generalized con-
formable fractional derivative can be conducted in a similar manner. �

Theorem 3.6. We assume that is Re (β) > m > 0 for m ∈ N. Furthermore, we
will consider γ as a monotonically increasing and positive function defined on the
interval [0,∞), with its derivative γ′ being continuous and γ (0) = 0. Then, we have

(3.19)

γ
φT

m,α
(
γ
φJ

β,αf (τ)
)

= γ
φJ

β−m,αf (τ) ,

γTm,αδ

(
γJβ,αδ f (τ)

)
= γJβ−m,αδ f (τ) .

Proof. We have by using (2.7) ,
(3.20)

γ
φT

m,α
(
γ
φJ

β,αf (τ)
)

= γ
φT

m,α

[
1

Γ(β)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β−1
γ
′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α

]
.
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By utilizing Leibniz rule for integrals, we get

(3.21)

γ
φT

m,α
(
γ
φJ

β,αf (τ)
)

= γ
φT

m−1,α

[
1

Γ(β−1)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β−2
γ
′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α

]
= γ

φT
m−2,α

[
1

Γ(β−2)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β−3
γ
′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α

]
...

=

[
1

Γ(β−m)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β−m−1
γ
′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α

]
= γ

φJ
β−m,αf (τ) .

The poof is successfully completed. The proof of the second formula can be similarly
illustrated. �

Corollary 3.6.1. We will consider γ as a monotonically increasing and positive
function defined on the interval [0,∞), with its derivative γ′ being continuous and
γ (0) = 0. If we take Re (ς) < Re (β) , then we write

(3.22)

γ
φD

ς,α
(
γ
φJ

β,αf (τ)
)

=γ
φ J

β−ς,αf (τ) ,

γDς,α
δ

(
γJβ,αδ f (τ)

)
=γ Jβ−ς,αδ f (τ) .

Proof. By employing Theorem 1 and Theorem 3, we acquire

(3.23)

γ
φD

ς,α
(
γ
φJ

β,αf (τ)
)

= γ
φT

m,α
(
γ
φJ

m−ς,α
(
γ
φJ

β,αf (τ)
))

= γ
φT

m,α
(
γ
φJ

β+m−ς,αf (τ)
)

= γ
φJ

β−ς,αf (τ) .

The poof is successfully completed. The proof of the second formula can be similarly
illustrated. �

Theorem 3.7. Let β > 0 and f ∈ Cnα,φ [φ, δ]
(
f ∈ Cnα,δ [φ, δ]

)
. Moreover, we

will consider γ as a monotonically increasing and positive function defined on the
interval [0,∞), with its derivative γ′ being continuous and γ (0) = 0. Then, we have

(3.24)

γ
φD

β,α
(
γ
φJ

β,αf (τ)
)

= f (τ) ,

γDβ,α
δ

(
γJβ,αδ f (τ)

)
= f (τ) .
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Proof. If we possess by using (2.7) and (2.9) , then we have

(3.25)

γ
φD

β,α
(
γ
φJ

β,αf (τ)
)

=
γ
φT

n,α

Γ(n−β)Γ(β)

∫ τ
φ

∫ θ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−β−1

×
[

(γ(θ)−γ(φ))α−(γ(u)−γ(φ))α

α

]β−1
γ
′
(u)f(u)du

(γ(u)−γ(φ))1−α
γ
′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α

=
γ
φT

n,α

Γ(n−β)Γ(β)[α]n−2

∫ τ
φ

∫ θ
φ

[(γ (τ)− γ (φ))
α − (γ (θ)− γ (φ))

α
]
n−β−1

× [(γ (θ)− γ (φ))
α − (γ (u)− γ (φ))

α
]
β−1 γ

′
(u)f(u)du

(γ(u)−γ(φ))1−α
γ
′
(θ)f(θ)dθ

(γ(θ)−γ(φ))1−α

=
γ
φT

n,α

Γ(n−β)Γ(β)

∫ τ
φ

f(u)γ
′
(u)du

(γ(u)−γ(φ))1−α

×
(∫ 1

0
(1− y)

n−β−1
(y)

β−1
dy
) [

(γ(τ)−γ(φ))α−(γ(u)−γ(φ))α

α

]n−1

=
γ
φT

n,α

Γ(n−β)Γ(β)
Γ(n−β)Γ(β)

Γ(n)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(u)−γ(φ))α

α

]n−1
f(u)γ

′
(u)du

(γ(u)−γ(φ))1−α

= γ
φT

n,α
(
γ
φJ

n,αf
)

(τ)

= f (τ) .

We complete the proof . �

Theorem 3.8. Let Re(β) > 0, n = [Re(β)], f ∈ Xγ and γ
φJ

β,αf ∈ Cnα,φ [φ, δ]
(
γJβ,αδ f ∈ Cnα,δ [φ, δ]

)
.

Furthermore, we will consider γ as a monotonically increasing and positive function
defined on the interval [0,∞), with its derivative γ′ being continuous and γ (0) = 0.
Then, we have

(3.26) γ
φJ

β,α
(
γ
φD

β,αf (τ)
)

= f (τ)−
n∑
j=0

γ
φD

β−j,αf (φ)

Γ (β − j + 1)

[
(γ (τ)− γ (φ))

α

α

]β−j

and
(3.27)

γJβ,αδ

(
γDβ,α

δ f (τ)
)

= f (τ)−
n∑
j=0

(−1)
n−j

.γDβ−j,α
δ f (δ)

Γ (β − j + 1)

[
(γ (δ)− γ (τ))

α

α

]β−j
.

Proof. We can write by using (2.7) and (2.9) ,
(3.28)

γ
φJ

β,α
(
γ
φD

β,αf (τ)
)

= 1
Γ(β)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β−1 γ
φT

n,α(γφJ
n−β,αf(θ))γ

′
(θ)dθ

(γ(θ)−γ(φ))1−α
.

By using the integration by parts once, we get
(3.29)

γ
φJ

β,α
(
γ
φD

β,αf (τ)
)

=
γ
φT

1,α

Γ(β+1)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β γ
φT

n,α(γφJ
n−β,αf(θ))γ

′
(θ)dθ

(γ(θ)−γ(φ))1−α

− 1
Γ(β+1) .

γ
φT

n,α
(
γ
φJ

n−β,αf (θ)
)
.
[

(γ(τ)−γ(φ))α

α

]β
.
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By using the integration by parts n−times, we obtain
(3.30)
γ
φJ

β,α
(
γ
φD

β,αf (τ)
)

=
γ
φT

1,α

Γ(β−n+1)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β−n (γφJ
n−β,αf(θ))γ

′
(θ)dθ

(γ(θ)−γ(φ))1−α

−
∑n
j=1

γ
φT

n−j,α(γφJ
n−β,αf(φ))

Γ(β+2−j)

[
(γ(τ)−γ(φ))α

α

]β−j+1

=γ
φ T

1,α

[
γ
φJ

β−n+1,α
(
γ
φJ

n−β,αf (τ)
)
−
∑n
j=1

γ
φT

n−j,α(γφJ
n−β,αf(φ))

Γ(β+2−j)

[
(γ(τ)−γ(φ))α

α

]β−j+1
]

=γ
φ T

1,α

[(
γ
φJ

1,αf (τ)
)
−
∑n
j=1

γ
φT

n−j,α(γφJ
n−β,αf(φ))

Γ(β+2−j)

[
(γ(τ)−γ(φ))α

α

]β−j+1
]

= f (τ)−
∑n
j=1

γ
φD

β−j,αf(φ)

Γ(β+1−j)

[
(γ(τ)−γ(φ))α

α

]β−j
.

The proof is successfully completed. The proof of the second formula can be illus-
trated in a similar fashion. �

4. GENERALIZED CONFORMABLE FRACTIONAL DERIVATIVES
WITHIN CAPUTO FRAMEWORK

In this section, we will introduce several definitions relevant to the theorem, while
also elucidating some properties of the generalized conformable derivative within
the Caputo setting.

Definition 4.1. Let α > 0, Re (β) ≥ 0 and n = [Re (β)] + 1. Moreover, we
will consider γ as a monotonically increasing and positive function defined on
the interval [0,∞), with its derivative γ′ being continuous and γ (0) = 0. If we

get f ∈ Cnα,φ

(
f ∈ Cnα,δ

)
, then, we acquire the left and right generalized Caputo

conformable fractional derivatives, respectively.
(4.1)(

γ,C
φ Dβ,αf (τ)

)
= γ

φD
β,α

[
f (θ)−

n−1∑
m=0

γ
φT

m,αf (φ)

m!

(
(γ (θ)− γ (φ))

α

α

)m]
(τ)

and
(4.2)(
γ,C
φ Dβ,αf (τ)

)
= γDβ,α

δ

[
f (θ)−

n−1∑
m=0

(−1)
m
.γTm,αδ f (δ)

m!

(
(γ (δ)− γ (θ))

α

α

)m]
(τ) .

Theorem 4.2. Let Re (β) ≥ 0 and n = [Re (β)] + 1. Furthermore, we will con-
sider γ as a monotonically increasing and positive function defined on the in-
terval [0,∞), with its derivative γ′ being continuous and γ (0) = 0. If we take

f ∈ Cnα,φ

(
f ∈ Cnα,δ

)
, then we obtain the left and right generalized Caputo frac-

tional conformable derivatives in Caputo setting, respectively.

(4.3)
(
γ,C
φ Dβ,αf (τ)

)
=γ
φ J

n−β,α
(
γ
φT

n,αf (τ)
)

and

(4.4)
(
γ,CDβ,α

δ f (τ)
)

=γ Jn−β,αδ (γTn,αδ f (τ)) .
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Proof. By considering Definition 5, we possess
(4.5)(

γ,C
φ Dβ,αf (τ)

)
=γ
φ D

β,α
[
f (θ)−

∑n−1
m=0

γ
φT

m,αf(φ)

m!

(
(γ(θ)−γ(φ))α

α

)m]
(τ)

=γ
φ D

β,αf (τ)−
∑n−1
m=0

γ
φT

m,αf(φ)

m!

γ
φT

n,α

Γ(n−β)

[
(γ(τ)−γ(φ))α

α

]n−β+m
Γ(n−β)Γ(m+1)
Γ(n−β+m+1)

=γ
φ D

β,αf (τ)−
∑n−1
m=0

γ
φT

m,αf(φ)

Γ(m−β+1)

[
(γ(τ)−γ(φ))α

α

]m−β
.

The proof is done. �

Lemma 4.3. Let α > 0, Re (β) ≥ 0, n = [Re (β)] + 1 and Re (β) /∈ N. Moreover,
we will consider γ as a monotonically increasing and positive function defined on
the interval [0,∞), with its derivative γ′ being continuous and γ (0) = 0. If f ∈
Cnα,φ ([φ, δ]) (f ∈ Cnα,δ ([φ, δ])) then we have

(4.6)

γ
φJ

β−s,αf (φ) = 0,

γ
φJ

β−s,αf (δ) = 0

 for s = 0, 1, ..., n− 1.

Proof. We hold
(4.7)

γ
φJ

β−s,αf (τ) =γ
φ D

s,α
(
γ
φJ

β,αf (τ)
)

= 1
Γ(β−s)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β−s−1
f(θ)γ

′
(θ)dθ

(γ(θ)−γ(φ))1−α
.

In here, we can express through Hölder’s inequality,
(4.8)∣∣∣γφJβ−s,αf (τ)

∣∣∣
≤ 1

Γ(β−s)

(∫ τ
φ
|f (θ)|p γ′ (θ)

) 1
p

(∫ τ
φ

([
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]β−s−1
f(θ)γ

′
(θ)dθ

(γ(θ)−γ(φ))1−α

)q) 1
q

≤
‖f‖τγ

(re(β)−s)Γ(β−s)

(
(γ(τ)−γ(φ))α

α

)(re(β)−s)
.

For τ = φ, we say that

(4.9)
γ
φJ

β−s,αf (φ) = 0.

The proof is done. �

Lemma 4.4. Let α > 0, Re (β) ≥ 0 and n = [Re (β)] + 1. Furthermore, we
will consider γ as a monotonically increasing and positive function defined on the
interval [0,∞), with its derivative γ′ being continuous and γ (0) = 0. If we get
γ
φT

n,α ∈ Cnα,φ [φ, δ]
(
γTn,αδ ∈ Cnα,δ [φ, δ]

)
, then we obtain

(4.10)

γ,C
φ Dβ,αf (φ) = 0,

γ,CDβ,α
δ f (δ) = 0.

Proof. It is clearly seen that

(4.11)
∣∣∣γ,Cφ Dβ,αf (τ)

∣∣∣ ≤ ‖γφTn,α‖Xγ
(n−re(β))Γ(n−β)

(
(γ(τ)−γ(φ))α

α

)(n−re(β))
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and

(4.12)
∣∣∣γ,CDβ,α

δ f (τ)
∣∣∣ ≤ ‖γTn,αδ ‖

Xγ

(n−re(β))Γ(n−β)

(
(γ(δ)−γ(τ))α

α

)(n−re(β))

.

The proof is done. �

Theorem 4.5. Let Re (β) ≥ 0, n = [Re (β)]+1 and f ∈ Cnα,φ [φ, δ] (f ∈ Cnα,δ [φ, δ]).
Moreover, we will consider γ as a monotonically increasing and positive function
defined on the interval [0,∞), with its derivative γ′ being continuous and γ (0) = 0.
We can say that

(1) If we take Re (β) /∈ N or β ∈ N, then we acquire

(4.13)

γ,C
φ Dβ,α

(
γ
φJ

β,αf (τ)
)

= f (τ) ,

γ,CDβ,α
δ

(
γJβ,αδ f (τ)

)
= f (τ) .

(2) If we take Re (β) 6= 0 or Re (β) ∈ N, then we get

(4.14)

γ,C
φ Dβ,α

(
γ
φJ

β,αf (τ)
)

= f (τ)−
γ
φJ

β−n+1,αf (φ)

Γ (n− β)

[
(γ(τ)−γ(φ))α

α

]n−β
,

γ,CDβ,α
δ

(
γJβ,αδ f (τ)

)
= f (τ)−

γJβ−n+1,α
δ f (φ)

Γ (n− β)

[
(γ(δ)−γ(τ))α

α

]n−β
.

Proof. By using Definition 6, we have,

(4.15)

γ,C
φ Dβ,α

(
γ
φJ

β,αf (τ)
)

= f(τ)−
γ
φT

n,α

Γ(n−β)

∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−β−1

×
(∑n−1

m=0

γ
φJ

m−β,αf(φ)

m!

(
(γ(θ)−γ(φ))α

α

)m)
γ
′
(θ)dθ

(γ(θ)−γ(φ))1−α

= f(τ)−
∑n−1
m=0

γ
φJ

m−β,αf(φ)

m! .
γ
φT

n,α

Γ(n−β)

×
∫ τ
φ

[
(γ(τ)−γ(φ))α−(γ(θ)−γ(φ))α

α

]n−β−1 [
(γ(θ)−γ(φ))α

α

]m
γ
′
(θ)dθ

(γ(θ)−γ(φ))1−α
.

In here, by using the following the change of variable,

(4.16) (γ (θ)− γ (φ))
α

= z (γ (τ)− γ (φ))
α

we can hold
(4.17)

γ,C
φ Dβ,α

(
γ
φJ

β,αf (τ)
)

= f(τ)−
∑n−1
m=0

γ
φJ

m−β,αf(φ)

Γ(m−β+1) .
[

(γ(τ)−γ(φ))α

α

]m−β
.

In here, we establish γ
φJ

β−s,αf (φ) = 0 and γJβ−s,αδ f (δ) = 0 for Re (β) /∈ N by

using Lemma 4. The case β ∈ N is inconsequential. Additionaly, if Re (β) ∈ N,
then we assert that γφJ

β−s,αf (φ) = 0 and γJβ−s,αδ f (δ) = 0 for s = 0, 1, ..., n− 2 by
using Lemma 4. �

Theorem 4.6. Let β ∈ C and f ∈ Cnα,φ [φ, δ]
(
f ∈ Cnα,δ [φ, δ]

)
. Furthermore, we

will consider γ as a monotonically increasing and positive function defined on the
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interval [0,∞), with its derivative γ′ being continuous and γ (0) = 0. We have

(4.18)

γ
φJ

β,α
(
γ,C
φ Dβ,αf(τ)

)
= f (τ)−

∑n−1
m=0

γ
φT

m,αf(φ)

Γ(m+1)

[
(γ(τ)−γ(φ))α

α

]m
,

γJβ,αδ

(
γ,CDβ,α

δ f(τ)
)

= f (τ)−
∑n−1
m=0

γTm,αδ f(δ)

Γ(m+1)

[
(γ(δ)−γ(τ))α

α

]m
.

Proof. In here, we can write the following as,

(4.19)

γ
φJ

β,α
(
γ,C
φ Dβ,αf(τ)

)
=γ
φ J

β,α
(
γ
φJ

n−β,α
(
γ
φT

n,αf (τ)
))

=γ
φ J

n,α
(
γ
φT

n,αf (τ)
)

= f (τ)−
γ
φD

β−j,αf(φ)

Γ(β−j+1)

[
(γ(τ)−γ(φ))α

α

]β−j
= f (τ)−

γ
φT

m,αf(φ)

Γ(m+1)

[
(γ(τ)−γ(φ))α

α

]m
.

The proof is done. �

Theorem 4.7. Let f ∈ Cp+rα,φ [φ, δ]
(
f ∈ Cp+rα,δ [φ, δ]

)
, Re (β) ≥ 0, Re (µ) ≥ 0,

r − 1 < [Re (β)] ≤ r and p − 1 < [Re (β)] ≤ p. Moreover, we will consider γ as a
monotonically increasing and positive function defined on the interval [0,∞), with
its derivative γ′ being continuous and γ (0) = 0. Then, we write

(4.20)

γ,C
φ Dβ,α

(
γ,C
φ Dµ,α (f (τ))

)
= γ,C

φ Dβ+µ,αf (τ) ,

γ,CDβ,α
δ

(
γ,CDµ,α

δ (f (τ))
)

= γ,CDβ+µ,α
δ f (τ) .

Proof. The proof can be successfully completed by using Theorem 1, Theorem 4,
Theorem 6 and Lemma 5. �

5. FRACTIONAL INTEGRALS CLASS

1. Taking γ (τ) = τ in Definition 2,

β
φJ

αf (τ) = 1
Γ(β)

∫ τ
φ

[
(τ−φ)α−(θ−φ)α

α

]β−1
f(θ)dθ

(θ−φ)1−α
.

We acquire the left fractional conformable integrals in [1] .
2. Taking γ(τ) = τ and α = 1 in Definition 2,

γ
φJ

β,αf (τ) = 1
Γ(β)

∫ τ
φ

(τ − θ)β−1
f (θ) dθ.

We obtain the left Riemann-Lioville fractional integrals.
3. Taking γ(τ) = τ, α = 1 and φ = −∞ in Definition 2,

γ
φJ

β,αf (τ) = 1
Γ(β)

∫ τ
−∞ (τ − θ)β−1

f (θ) dθ.

We get the left Liouville fractional integrals.
4. Taking γ(τ) = τ , φ = 0 and α = 1 in Definition 2,

γ
φJ

β,αf (τ) = 1
Γ(β)

∫ τ
0

(τ − θ)β−1
f (θ) dθ.

We have the left Riemann fractional integrals.
5. Taking γ(τ) = lnτ and α = 1 in Definition 2,

γ
φJ

β,αf (τ) = 1
Γ(β)

∫ τ
φ

(
ln τ

θ

)β−1 f(θ)
θ dθ.

We achieve the left Hadamard fractional integrals [11] .
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6. Taking γ(τ) = τm, g (τ) = τmηf (τ) and α = 1 in Definition 2,

τ−m(β+η).γφJ
β,αg (τ) = mτ−m(β+η)

Γ(β)

∫ τ
φ
θmη+m−1 (τm − θm)

β−1
f (θ) dθ.

We acquire the left Erdélyi-Kober fractional integrals.
7. Taking γ(τ) = τm, g (τ) = τmηf (τ) , φ = 0 and α = 1 in Definition 2,

τ−m(β+η).γ0J
β,αg (τ) = mτ−m(β+η)

Γ(β)

∫ τ
o
θmη+m−1 (τm − θm)

β−1
f (θ) dθ.

We obtain the left Erdélyi fractional integrals.
8. Taking γ(τ) = τ, g (τ) = τηf (τ) , φ = 0 and α = 1 in Definition 2,

τ−(β+η).γ0J
β,αg (τ) = τ−(β+η)

Γ(β)

∫ τ
o
θη (τ − θ)β−1

f (θ) dθ.

We get the left Kober fractional integrals.
9. Taking γ(τ) = τm, g (τ) = τmηf (τ) and α = 1 in Definition 2,

τK

mβ
.γφJ

β,αg (τ) = τKm1−β

Γ(β)

∫ τ
φ
θmη+m−1 (τm − θm)

β−1
f (θ) dθ.

We have the left generalized fractional integrals that unify another six fractional
integrals.

10. Taking γ(τ) = τm and α = 1 in Definition 2,

1
mβ
.γφJ

β,αf (τ) = m1−β

Γ(β)

∫ τ
φ
θm−1 (τm − θm)

β−1
f (θ) dθ.

We achieve the left Katugampola fractional integrals.

6. FRACTIONAL DERIVATIVES CLASS

1. Taking φ = 0, α = 1 and γ (τ) = τ in Definition 3, we acquire Riemann-
liouville fractional derivative

γ
0D

β,αf (τ) = γ
0T

n
(γ

0J
n−β,α) f (τ)

=
γ
0T

n

Γ(n−β)

∫ τ
0

[τ − θ]n−β−1
f (θ) dθ.

2. Taking φ = 0 and α = 1 in Definition 3, we obtain the γ−Riemann-liouville
fractional derivative

γ
0D

β,αf (τ) = γ
0T

n
(γ

0J
n−β,α) f (τ)

=
γ
0T

n

Γ(n−β)

∫ τ
0

[γ (τ)− γ (θ)]
n−β−1

γ
′
(θ) f (θ) dθ.

3. Taking γ (τ) = τ and α = 1 in Definition 3, we get the Caputo fractional
derivative

γ
φD

β,αf (τ) = γ
φJ

n−β,α
(
γ
φT

n
)
f (τ)

= 1
Γ(n−β)

∫ τ
φ

[τ − θ]n−β−1
(
γ
φT

n
)
f (θ) dθ.

4. Taking α = 1,inDefinition 3 we have the left γ−Caputo fractional derivatives

γ
φD

β,αf (τ) = γ
φJ

n−β,α
(
γ
φT

n
)
f (τ)

= 1
Γ(n−β)

∫ τ
φ

[γ (τ)− γ (θ)]
n−β−1

γ
′
(θ)

γ
φ T

nf (θ) dθ.

5. Taking γ (τ) = τ in Definition 3, we achieve the left fractional conformable
derivatives in [1] ,

γ
φD

β,αf (τ) = γ
φT

n,α
(
γ
φJ

n−β,α
)
f (τ)

=
γ
φT

n,α

Γ(n−β)

∫ τ
φ

[
(τ−φ)α−(θ−φ)α

α

]n−β−1
f(θ)dθ

(θ−φ)1−α
.
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6. Taking γ (τ) = τρ β = 0 and α = 1,in Definition 3, we acquire the Katugam-
pola fractional derivative

ρβ .γφD
β,αf (τ) = ρβ

(
1

ρτρ−1
d
dτ

)n
.γφJ

n−β,αf (τ) .

7. Taking γ (τ) = τ and α = 1 in Definition 3, we obtain the Riemann-Liouville
fractional derivative

γ
φD

β,αf (τ) =
(
d
dτ

)n 1
Γ(n−β)

∫ τ
φ

[τ − θ]n−β−1
f (θ) dθ.

8. Taking γ (τ) = τρ and α = 1 in definition 3, we get the Caputo−Katugampola
fractional derivative

ρβ .γφD
β,αf (τ) = ρβ .γφJ

n−β,α
(

1
ρτρ−1

d
dτ

)n
f (τ) .

9. Taking γ (τ) = ln τ and α = 1 inDefinition 3, we have the Caputo−Hadamard
fractional derivative in [12− 14]

γ
φD

β,αf (τ) = 1
Γ(n−β)

∫ τ
φ

[
ln τ

θ

]n−β−1 (
θ ddθ
)n
f (θ) dθθ .

10. Taking γ (τ) = ln τ and α = 1 in Definition 3, we achiev the hadamard
fractional derivative

γ
φD

β,αf (τ) =
(
τ d
dτ

)n 1
Γ(n−β)

∫ τ
φ

[
ln τ

θ

]n−β−1
f (θ) dθθ .

7. CONCLUSION

In this study, we introduced the left and right generalized conformable fractional
integrals and derivatives. We explored significant implications and fundamental
properties of these operators. Additionally, we derived the generalized conformable
fractional derivatives within the Caputo framework. Ultimately, we presented clas-
sical consequences in the context of generalized conformable derivatives and inte-
grals.
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Abstract. In this paper, I∗-sequential topology is defined on a topological

space (X, τ) by considering any ideal I which is a family of subset of natural
numbers N. It has been proven that I∗-sequential topology is finer than I-
sequential topology. In connection with this fact, the notions I∗-continuity
and I∗-sequential continuity are shown to be coincided. Additionally, I∗-
sequential compactness and related notions are defined and investigated.

1. Introduction and Preliminaries

Examining convergence of sequences is one of the main and famous problem in
mathematical analysis. Especially, taking into consider different type convergence
methods has led to a better understanding of the geometric and algebraic structure
of the studied space. Statistical convergence, which is the most interesting method
in terms of how it is defined, was introduced by Fast [6] and Steinhouse [23] in the
year 1951, independently. Over the years, many studies on statistical convergence
have been conducted and many application in different field of mathematics like,
summability theory [21], number theory [5], trigonometric series [26], optimization
and approximation theory [8] and etc. were given.

Recall the notion of statistical convergence in a topological space. For any subset
A in N, the asymptotic density of A is defined by

δ(A) := lim
n→∞

1

n
|{k ∈ N : k ≤ n}|

when the limit exists.
A sequence x̃ = (xn) in the topological space (X, τ) is said to be statistically

convergent to a point x ∈ X if

δ({n ∈ N, xn /∈ U}) = 0,

holds for any neighborhood U of x. It is denoted by st− limx→∞ xn = x.
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tially I∗-topology.
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A subset F ⊆ X is called sequentially closed if for each sequence x̃ = (xn) in F
with xn → x ∈ X then x ∈ F holds. A space (X, τ) is called sequential topological
space if each sequentially closed subset of X is closed.

A sequence x̃ = (xn) ⊂ X is said to be eventually in an open subset U of X,
if there exists n0(U) ∈ N such that xn ∈ U for all n > n0. A subset G ⊆ X is
said to be sequentially open if X − G is sequentially closed. Then, it is obvious
that, a subset U ⊆ X is sequentially open if and only if for each sequence x̃ = (xn)
converging to a point x in U , then x̃ = (xn) is eventually in U .

After that in 2000, P. Kostyrko, et al. in [12] introduced the notion of ideal
convergence which is completely different classical convergence but only its par-
ticular case coincides with classical and statistical convergence. Because of the
flexibility of the ideal concept, several results in different spaces were given in
[7, 9, 10, 11, 14, 18, 19, 20, 24]. Between the years 2012-2019, authors of the pa-
pers [2, 3, 4, 13, 16, 25] extended the notion of I-convergence of a sequence to
any topological space and proved several properties of this concept in a topological
space. And very recently, the idea of I-convergent is generalized and I∗-convergent
is defined.

Definition 1. [12] Let S be a set and I be a sub family of P (S). I is called an
ideal on S if (i) For all A,B ∈ I implies A ∪ B ∈ I and (ii) If A ∈ I and B ⊆ A
then B ∈ I hold.

The ideal I is called an admissible ideal if {s} ∈ I holds for all s ∈ S; and it is
called proper ideal if S /∈ I. A proper ideal is called maximal ideal if it is maximal
element ordered by inclusion in the set of all proper ideals defined on S.

An ideal I is called non trivial if I ≠ ϕ and S /∈ I.

Example 1. IFin := {A ⊂ N : A is finite set} and Iδ := {A ⊂ N : δ(A) = 0} are
admissible and proper ideal on the set of natural numbers.

Example 2. [11] Let N =
⋃∞

i=1 ∆i be a decomposition of N such that for all i ∈ N
the set ∆i are infinite subsets of N and ∆i ∩∆j = ϕ holds for all i ̸= j. Let

I := {B ⊂ N : B intersect at most finite number of ∆′
js}.

Then, I is an admissible and nontrivial ideal.

Definition 2. Let I be an ideal and K ⊂ S be any set. The set K is said
(i) I-thin if K ∈ I,
(ii) I-non thin if K /∈ I,
(iii) relatively I-non thin if there exist A ∈ I such that A ∈ K.

The set of I-thin, I-non-thin and relatively I-non-thin sets are denoted by It,
Int and Irnt, respectively.

The dual notion of ideal is called filter and defined as follows:

Definition 3. [19] A family F ⊆ P(S) is said to be filter if (i) A∩B ∈ F for all
A,B ∈ F , and (ii) If A ∈ F ∧A ⊆ B, then B ∈ F hold.

A filter F is called proper if ϕ /∈ F . For every non-trivial ideal I defines a filter
associated by I as F (I) := {A ⊆ S : S −A ∈ I} on the set S.

Remark 1. Let I be an ideal and K ⊂ S be a set. Then, K ∈ Irnt if and only if
there exists a set B ∈ F (I) such that K ⊂ B.
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Proof. It can be obtained from definition. So, it is omitted here. □

Remark 2. If we consider I = Fin, then It = I and Int = Irnt = F(I) holds.

Remark 3. If I is an admissible ideal, then Int ⊂ Irnt.

Proof. Let I be an admissible ideal and A ⊂ N be a an I non-thin subset. Hence,
the set A is not finite set because of ideal I is admissible. From the set theory, it
is well known that A contains a finite subset B which is belongs to I. This implies
that A is in Irnt. □

Lemma 1. Let I be an ideal and A be a relatively I non-thin sub set of N. Then,
there exists a maximal set B ∈ I such that B ⊂ A holds.

Proof. Denote the set

A∗ = {B ∈ I : B ⊂ A}.
A∗ is partial order family with respect to inclusion. If we consider complete order
sub family A of A∗, then ⋃

{B : B ∈ A}
is the upper bound of A. Then, Zorn’s Lemma says that A∗ has a maximal element.
So, proof is ended. □

Thorough the paper, we are going to consider S = N set of natural numbers, I
is an arbitrary ideal and (X, τ) is a topological space. Unless otherwise stated this
triple X, τ and I will be displayed in (X, τ, I) format.

Definition 4. [25] A sequence x̃ = (xn) in a topological space (X, τ, I) is said to be
I-convergent to a point x ∈ X, if {n ∈ N : xn /∈ U} ∈ I holds for any neighborhood
U of x and it is denoted by I − limxn = x.

Remark 4. If we consider Iδ or IFin, then ideal convergence is coincide with
statistical or classical convergence, respectively.

If I is an admissible ideal, then classical convergence implies I-convergence. The
converse statement is not true if X has at least two point, in generally. Let x and
y be two different elements of X and A ∈ I be any set and consider a sequence
x̃ = (xn) ⊂ X with xn = x when n ∈ A and xn = y when n /∈ A. It is clear that
the sequence x̃ is I convergent to y but not usual convergent.

Furthermore, the set of ideal convergent sequences and the set of convergent
sequences are not comparable with respect to set inclusion for non-admissible ideal.
To see this let us consider non-admissible ideal I = P(2N). The real valued sequence
(xn) = ( 1n ) convergent to 0 in R with usual topology τe. Let ε > 0 be an arbitrary

real number such that there exists n0 ∈ N such that 1
n0

< ε < 1
n0−1 holds. Then,

following inclusion {1, 2, ..., n0} ⊂ {n : | 1n − 0| > ε} is satisfied. Since the set

{1, 2, ..., n0} /∈ I, then {n : | 1n − 0| > ε} /∈ I holds. This implies that the sequence

(xn) = ( 1n ) is not I convergent to zero.
Similarly, if we consider a sequence (xn) as follows:

xn =

{
0, n = 22k, k ∈ K,
1, otherwise.

It is clear that this sequence ideal convergent to 1 but it is not convergent to any
point in R.



I∗-SEQUENTIAL TOPOLOGY 23

Definition 5. [1] Let I be an ideal and X be a topological space. Then,
(i) For a subset A ⊆ X, I-closure of A is defined by

ĀI := {x ∈ X : ∃ (xn) ⊂ A : xn
I→ x}.

(ii) A subset F ⊆ X is said to be I-closed if F̄ I = F holds.
(iii) A subset A ⊆ X is said to be I-open if X −A is I-closed.

It is clear that ϕ̄I = ϕ and A ⊆ ĀI hold. Also, it can be easily seen that any
open subset of topological space (X, τ, I) is also I-open.

In the paper [22], I-closure and I∗-closure of a set A was defined by using I
non-thin sequences. Let us recall it: A sequence x̃ = (xn)n∈M is called I-thin if
M ∈ I, otherwise it is called I-non-thin. Then, I-closure of a set A is

ĀI := {x ∈ X : ∃ (xn)n∈M ⊂ A : (xn)n∈M
IM→ x}

where IM := {M ∩A : A ∈ I}.
It is clear that IM is an ideal IM ⊂ I for any subset M ⊂ N.

Remark 5. It is clear that IM is an (admissible) ideal for any (admissible) ideal
and IM ⊂ I holds for any subset M ⊂ N.

Theorem 1. Let (X, τ) be a topological space, I be an ideal and M /∈ I. Then,

(xn)n∈M
IM→ x if and only if (xn)n∈M

I→ x

Proof. From the definitions, proof can be obtained easily. So it is omitted here. □

2. Further properties of I∗- sequential topological space

Through the paper, we consider any ideal unless said otherwise. Let’s remember
the definition of I∗-convergence of sequences for any ideal I.

Definition 6. [13] Let (X, τ, I) be a topological space. A sequence x̃ = (xn) in X
is said to be I∗-convergent to a point x ∈ X if there exist a set M ∈ F (I) where

M = {m1 < m2 < · · · < mk < · · · }

such that for any neighborhood U of x, there exists N(U) ∈ N such that xmk
∈ U

holds for all mk > N(U).

If X has an algebraic structure, then the Definition 6 can be reformulated in the
following form as called decomposition theorem:

Theorem 2. A sequence x̃ = (xn) in (X, τ, I) is I∗-convergent to x ∈ X if and
only if it can be written as xn = tn + sn for all n ∈ N such that t̃ = (tn) ⊂ X is a
IFin-convergent to x and s̃ = (sn) ⊂ X is non zero only in a set of I.

Proof. Assume that xn := tn + sn is satisfied for all n ∈ N where tn→x(IFin)
and (sn) is non zero only in a set from ideal I. Since tn→x(IFin), then for any
neighborhood U of x

{n ∈ N : tn /∈ U} ∈ IFin

holds. Let M := N− {n ∈ N : tn /∈ U}. Then, sn = 0 for all n ∈ M . So, xn = tn
and this implies that for any neighborhood U of x xn ∈ U holds for all n ∈ M .

Hence, xn
I∗

→ x.
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Conversely, let xn
I∗

→ x. Then, there exists M ∈ F (I) such that (xn)n∈M

convergent to x. Take into consider sequences t̃ = (tn) and s̃ = (sn) as follow

tn :=

{
xn, n ∈ M,
x, n /∈ M,

and sn :=

{
0, n ∈ M,

xn − x, n /∈ M.

It is clear that tn→x(IFin) and (sn) is nonzero only on a set from the ideal I
and xn = tn + sn holds for all n ∈ N. □

In [13], it was pointed out that I∗-convergence implies that I-convergence. In
the following example, we will show that the converse statement is not true, in
generally.

Example 3. Let (R, τe) be an Euclidean topological space and let Bn(0) := (− 1
2n ,

1
2n )

for n ∈ N be a monotonically decreasing open base at zero. Define a real valued
sequence x̃ = (xn) such that

xn ∈ Bn(0)−Bn+1(0)

where xn = 2n+1
4n2+4n . It is clear that xn → 0, n → ∞.

Consider the ideal given in Example 2 and let us note that any ∆i is a member
of I.

Let ỹ = (yn) be a sequence defined by yn = xj if n ∈ ∆j. Let U be any open
set containing zero. Choose a positive integer m such that Bn(0) ⊂ U holds for all
n > m. Then,

{n : yn /∈ U} ⊂ ∆1 ∪∆2 ∪∆3... ∪∆m ∈ I

implies that yn
I→ 0 satisfies.

Now, suppose that yn
I∗

→ 0 holds. Hence, there exists a set

M := N−H = {m1 < m2 < ... < mk...} ∈ F (I)

where H ∈ I such that for any neighborhood U of zero there exists N ∈ N such that
xmk

∈ U for all mk > N .
Let l ∈ N be a fixed number and assume that

H ⊂ ∆1 ∪∆2 ∪∆3... ∪∆l

then ∆i ⊂ N − H holds for all i > l + 1. Therefore, for each i > l + 1, there is
infinitely many k’s such that ymk

= xi. But, the limit limynk
doesn’t exists because

of xi ̸= xj for all i ̸= j.

Theorem 3. Let (X, τ) be a topological space, and I be a finite ideal. Then,
I-convergence and I∗-convergence are coincided.

Proof. We already know that if xn
I∗

→ x then xn
I→ x for any ideal. Let a sequence

xn
I→ x, then for any neighborhood U of x, we have A := {n ∈ N : xn /∈ U} ∈ I .
Consider M = N−A ∈ F (I) and arrange M as

M = {m1 < m2 < · · · < mk < · · · }.

Since the set A is finite, then there exists N ∈ N such that xmk
∈ U holds for

all m > N . Therefore, xn
I∗

→ x, hods. □

Theorem 4. Let (X, τ, I) be a topological space. If every sub-sequence (xnk
) of

(xn) ⊆ X is I∗- convergent to a point x0 ∈ X, then (xn) is I∗- convergent to x0.
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Proof. Let us assume that (xn) is not I∗-convergent to point x0. Then, for all
M ∈ F (I) and for all N ∈ N there exists nk > N such that xnk

/∈ U , where U
is any neighborhood of x0. If we take N = 1, then there exists the sub-sequence
(xnk

) /∈ U , for all nk > 1. This means that there exists a sub-sequence of (xn)
which is not converging to the point of x0 which is contradiction. □

Now, let’s see with the following example that the converse of Theorem 4 is not
true, in generally.

Example 4. Let (R, τe) be a topological space, I be any ideal and K ∈ F (I) be an
arbitrary set. Define a sequence as

yn =

{
2n, n /∈ K,
1
n , n ∈ K.

The sequence (yn) is I∗-convergent to zero but its subsequence (ynk
) = (2nk)

for nk /∈ K is not I∗-convergent.

Lemma 2. Let I and J be two ideals of N such that I ⊆ J and x̃ = (xn) be a

sequence in a topological space (X, τ). Then, xn
I∗

→ x implies xn
J ∗

→ x.

Proof. Let (xn)
I∗

→ x holds. That is, there exists M ∈ F (I) as
M = {m1 < m2 < . . . , < mk < . . . }

such that for any neighborhood U of x, there exists N ∈ N such that xmk
∈ U holds

for all mk > N holds. Since N−M ∈ I, then from the assumption N−M ∈ J is

satisfied. So, (xn)
J∗

→ x. □

It is stated in (Lemma 2 in [1]) that every subsequence of I-convergent sequence
in a topological space (X, τ) is also I-convergent. Moreover, Example 4 shows
that this statement is not true for I∗-convergence. Because of this reason, when
defining I∗-closure of a set A, the sequence itself will be considered instead of its
subsequences.

Definition 7. Let (X, τ, I) be a topological space. Then,
(i) I∗-Closure of a set A is defined by

A
I∗

:= {x ∈ X : ∃(xn) ⊂ A such that xn
I∗

→ x}

(ii) A subset F ⊆ X is said to be I∗-closed if F
I∗

= F holds.
(iii) A subset U ⊆ X is said to be I∗-open if X − U is I∗-closed.

Remark 6. It is clear that ϕ
I∗

= ϕ and A ⊂ A
I∗

are true for any A ⊆ X.

Theorem 5. Let (X, τ) be a topological space and I is an admissible ideal. Then,
every I-open subset is I∗- open.

Proof. Let U be an I-open subset of X. Then, X − U is I-closed such that X −
U = X − U

I
holds. To prove X − U = X − U

I∗

it is sufficient to show that

X − U
I∗

⊂ X − U holds. Let x ∈ X − U
I∗

be an arbitrary element. Then, there

exists a sequence x̃ = (xn) ⊂ X − U such that xn
I∗

→ x holds. Therefore, Theorem

1 gives that xn
I→ x holds. This implies that x ∈ X − U

I
= X − U. Hence, the

proof is completed. □
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Corollary 1. Let (X, τ) be a topological space and I be a finite ideal. Then, A ⊂ X
is I-open if and only if A is I∗-open.

Theorem 6. Let I and J be two ideal such that I ⊂ J and X be a topological
space. If U ⊂ X is J ∗- open then it is I∗-open.

Proof. Let U be J ∗-open then X − U is J ∗-closed and X − U = X − U
J ∗

holds.

We must to prove X − U
I∗

⊂ X − U . Let x ∈ X − U
I∗

be an arbitrary point,
then there exists a sequence (xn) ⊂ X − U such that (xn) is I∗-convergent to a
point x ∈ X−U . Then by Theorem 2 the sequence (xn), J ∗ converges to x. Hence,

x ∈ X − U
J

= X − U this implies that x ∈ X − U and U is J ∗-open. □

Definition 8. Let A be a subset of topological space (X, τ, I). Then, I∗ interior
of A is defined as

AoI
∗

:= A− (X −A)
I∗

.

Lemma 3. Let A be a subset of topological space (X, τ, I). Then, the set A is

I∗-open if and only if AoI
∗

= A.

Proof. Let A be I∗-open subset of topological space (X, τ, I). Then, X − A is

I∗-closed and X −A = X −A
I∗

holds. This implies that

AoI
∗

= A− (X −A)
I∗

= A− (X −A) = A.

Conversely assume that A = AoI
∗

holds. Considering the definition, the equality

A = A − (X −A)
I∗

is obtained. This implies that A ∩ (X −A)
I∗

= ϕ holds.

Therefore, (X −A)
I∗

⊂ X − A. Hence, X − A is I∗- closed and the set A is
I∗-open. □

Theorem 7. Let A be a subset of topological space (X, τ, I). Then, the following
statements are equivalent:

(i) A is I∗- closed.
(ii) A =

⋂
{F : F is I∗ − closed and A ⊂ F}.

Proof. From the definitions it is obvious that (i) ⇒ (ii). So, we are going to prove
(ii) ⇒ (i). To show that ĀI∗

= A holds it is sufficient to prove that ĀI∗ ⊆ A
holds. Let x0 ∈ ĀI∗

is an arbitrary point, then there exists a sequence (xn) ⊂ A
such that (xn) is I∗-convergent to x0. Assume that x0 /∈ A. So, (ii) implies that

x0 /∈
⋂

{F : F is I∗ − closed and A ⊂ F}.

Hence, there exists an I∗-closed set F such that A ⊂ F and x0 /∈ F . Since
(xn) ⊂ A ⊂ F , then x0 ∈ F which is a contradiction to assumption. □

Theorem 8. Let A be a subset of topological space (X, τ, I). Then, the following
statements are equivalent:

(i) A is I∗- open.
(ii) A =

⋃
{U : U is I∗ − open and U ⊂ A}.

Proof. From the definitions (i) ⇒ (ii) is obvious. So, we are going to prove inverse
of this case. Let us consider A =

⋃
{U : U is I∗ − open and U ⊂ A}. To prove A

is I∗- open subset of X, we must to show that A = AoI
∗

holds. It is known that

AoI
∗

always subset of A. So, it is sufficient to show that A ⊂ AoI
∗

holds.
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Let x0 ∈ A be an arbitrary point, then there is an open subset U of A such that

x0 ∈ U . Since U ⊂ A then x0 ∈ AoI
∗

and this implies that A ⊂ AoI
∗

holds. □

Definition 9. Let I be an ideal and U be a subset of topological space X. A
sequence x̃ = (xn) ⊂ X is I∗-eventually in U if there exists M ∈ F (I) such that
xm ∈ U holds for all m ∈ M.

In the following a new characterization will be given for the I∗-open set.

Proposition 1. Let I be a maximal ideal and (X, τ) be a topological space. Then,
a subset U ⊆ X is I∗-open if and only if each I∗-convergent sequence to a point
x ∈ U in X is I∗-eventually in U .

Proof. Let us assume that U be an I∗ open subset of (X, τ). Consider an arbitrary
sequence x̃ = (xn) ⊂ X which is I∗-convergent to a point x ∈ U . Since U is
I∗-open, then it is neighborhood of the point x. So, E := {n : xn /∈ U} ∈ I and
M(= N − E) = {n : xn ∈ U} ∈ F (I) holds. Hence, for all m ∈ M such that
xm ∈ U and this implies that x̃ is I∗-eventually in U .

Let us assume each I∗-convergent sequence to a point x0 ∈ U is I∗-eventually
in U . That is, if x̃ is a sequence which is I∗-convergent to x0 ∈ U , then there exists
M ∈ F (I) such that xm ∈ U holds for all m ∈ M . Now, we are going to show that
U is I∗-open. It is enough to prove X−U is I∗-closed. To do this we will focus the

inclusion X − U
I∗

⊆ (X − U) is satisfied. Let x ∈ X − U
I∗

be an arbitrary point.
Then, there exists a sequence (xn) ⊂ (X − U) such that (xn) is I∗-convergent to
x. Assume that x ∈ U . From the assumption there exists M ∈ F (I) such that
xm ∈ U for all m ∈ M , but we have xn ∈ X − U , for all n which is contradiction.
Hence x ∈ X − U and U is I∗-open. □

Lemma 4. Let I be an admissible ideal and (X, τ) be a topological space. If U and
V are I∗-open subsets of X, then U ∩ V is I∗-open.

Proof. Let x̃ = (xn) be an I∗-convergent sequence in X which convergent to a point
x ∈ U ∩ V . Since U and V are I∗-open sets and the sequence x̃ is I∗-converging
to a point x in U also in V . So, by the help of Proposition 1, the sequence x̃ is I∗-
eventually in U and also in V . Then, there exists M1,M2 ∈ F (I) such that xm ∈ U
for all m ∈ M1 and xm ∈ V for all m ∈ M2. If we consider M = M1 ∩M2 ∈ F (I),
then xm ∈ U ∩ V holds for all m ∈ M . This shows that U ∩ V is I∗-open subset of
X. □

Theorem 9. Let I be a maximal ideal and (X, τ) be a topological space. A sequence
x̃ = (xn) ⊂ X is I∗-convergent to an element x ∈ X if and only if for any I∗-open
subset U of X with x ∈ U , there exists M ∈ F (I) such that xm ∈ U , for all
m ∈ M .

Proof. Let I be a maximal ideal and x̃ = (xn) be an I∗-convergent sequence to
x ∈ X. Let U be an I∗-open subset of X with x ∈ U . Then, x̃ will be I∗-eventually
in U . Hence, there exists a set M ∈ F (I) such that xm ∈ U , for all m ∈ M .

The converse statement is clear from the definition of I∗-convergence. So, it is
omitted here. □

Theorem 10. (I∗-sequential topology) Let (X, τ, I) be a topological space. Then,
the family

τI∗ := {U ∈ P (X) : U is I∗ − open set}
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is a topology on X.

Proof. It is obvious that X and ϕ are I∗-open sets. By Lemma 4, we can say that
finite intersection of I∗-open sets is I∗-open.

Let (Uα)α∈Λ be an arbitrary family of elements of τI∗ . We are going to show
that their union belongs to τI∗ . Since

X −
⋃
α∈Λ

Uα =
⋂
α∈Λ

(X − Uα),

then it is sufficient to show that
⋂

α∈Λ(X − Uα) is I∗- closed. That is,⋂
α∈Λ

(X − Uα)
I∗

=
⋂
α∈Λ

(X − Uα).

Let x ∈
⋂

α∈Λ(X − Uα)
I∗

be an arbitrary point. Then, there exists a sequence

(xn) ⊂
⋂

α∈Λ(X − Uα) such that xn
I∗

→ x holds. Therefore, for all α ∈ Λ the

sequence (xn) ⊆ (X − Uα) and xn
I∗

→ x. Since the set X − Uα is I∗- closed for all
α ∈ Λ, then x ∈ X − Uα. Hence, x ∈

⋂
α∈Λ(X − Uα) thus

⋂
α∈Λ X − Uα is I∗-

closed. □

Theorem 11. If I is admissible ideal and the topological space (X, τ) has no limit
point, then every I∗-open set is I-open set.

Proof. Let U be an I∗-open set, i.e. X−U is I∗-closed. To prove U is I-open, it is
enough to show that X−U is I-closed set. It is clear that X−U ⊆ X − U

I
holds.

Let x ∈ X − U
I
be an arbitrary point. Then, there exists a sequence (xn) ⊂ X−U

such that (xn) is I-convergent to x.
Since I is admissible and X has no limit point, then by [13] the sequence (xn)

will be I∗-convergent to x. Therefore, x ∈ X − U
I∗

. This implies that x ∈ X − U
holds. □

Corollary 2. Under the assumption of Theorem 12, I-sequentially and I∗-sequentially
topology are coincide.

Definition 10. [13] Let I be an ideal of N, it is said that the ideal I satisfies
additive property (AP) if for every countable family (Ai)i∈N ⊂ I, there exists a
countable family (Bi)i∈N of sets such that Ai △ Bi ∈ F (I) for all i ∈ N and
B = ∪Bi ∈ I.

Theorem 12. Let I be an admissible ideal which has the (AP)-property, and (X, τ)
is first countable topological space. Then, every I∗-open subset of X is I-open.
Proof. Let U be an arbitrary I∗-open subset of X. Then, X − U is I∗-closed, so

X−U = X − U
I∗

holds. To proof U is I-open, we must show that it’s complement

is I-closed. Let x ∈ X − U
I
be an arbitrary point. Then, there exists a sequence

xn ⊂ X − U such that it is I-converging to the point x. As the ideal I has (AP)-
property and the space X is first countable by [13] it is I∗-converging to x. So

x ∈ X − U
I∗

. So, x ∈ X − U . Hence, this fact implies that X − U is I-closed and
U is I-open. □

Corollary 3. Under the assumption of Theorem 12, it can be say that I-sequential
and I∗-sequential topology are coincide.
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Definition 11. Let (X, τ1, I) and (Y, τ2, I) be two topological space and f : X → Y
be a function. The function f is said to be (i) I∗-continuous if f−1(U) is I∗-open
subset of X for every I∗-open subset U of Y .

(ii) sequentially I∗-continuous if f(xn) is I∗-convergent to f(x) for each se-
quence (xn) in X which (xn) is I∗ convergent to x.

It is well known that the definitions given above are not necessarily equivalent
in classical topological spaces. In the following theorem we will show that they are
equivalent notions for typologies produced with the help of ideals.

Theorem 13. Let (X, τ1, I) and (Y, τ2, I) be two topological space and f : X →
Y be a function. Then, f is sequentially I∗-continuous if and only if f is I∗-
continuous function.

Proof. Let f be a sequentially I∗-continuous function and U be any I∗-open set
in Y . Assume that f−1(U) is not I∗- open in X, equivalently X − f−1(U) is not

I∗- closed. We conclude from the assumption that X − f−1(U)
I∗

is not subset of

X−f−1(U). So, there exists a point x ∈ X − f−1(U)
I∗

such that x /∈ X−f−1(U).
This means that there exists a sequence (xn) ⊂ X − f−1(U) such that it is I∗-
converging to x and x ∈ f−1(U). Since f is sequentially continuous, then the
sequence f(xn) is I∗-converging to f(x). This implies that f(xn) ⊂ Y − U which
is not in case so f−1(U) is I∗-open subset of X.

Let f : X → Y be an I∗-continuous mapping and assume that xn
I∗

→ x. Then,
for any neighborhood U of x, there exists N ∈ N and M ∈ F (I) such that xmk

∈ U
for all mk ∈ M . Let V be any I∗-open neighborhood of f(x), then f−1(V ) ⊂ X
is I∗-open and contain x. Hence, there exists N ∈ N and M ∈ F (I) such that
xmk

∈ f−1(V ). As a result of this discussion, it can easily be seen that f(xmk
) ∈ V

hence f(xn)
I∗

→ f(x). □

3. Sequentially I∗-compactness

The notion of compactness which is one of the most significant topological prop-
erties of the sets was formally introduced by M. Frechet in 1906. There are many
different type of compactness introduced by mathematicians over time. Recently,
using the concept of ideal the concept of I-compactness was defined by Newcomb
in [15] and studied by Rancin in the paper [17]. In this section, we will go one step
further and define the concept of I∗-sequentially compactness and examine some
of its basic properties.

Let’s start with the concept of boundedness in normed space which is directly
related to compactness.

Definition 12. [20] Let (X, ∥.∥) be a normed space and I be an ideal of N. A
sequence x̃ = (xn) in X is called (i) I-bounded if there exist K > 0 such that
{n ∈ N : ∥xn∥ > K} ∈ I holds.

(ii) I∗-bounded if there exists M ∈ F (I) such that (xn)n∈M is bounded.

Remark 7. Let (X, ∥.∥) be a normed space and I be an ideal of N. Then, every
I-bounded sequence is I∗-bounded.

Proof. Assume that (xn) ⊂ X is I-bounded sequence in X. Then, there exists
K > 0 such that {n : ∥xn∥ > K} ∈ I holds. If we denote M := {m : ∥xn∥ < K}.
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Then, M ∈ F (I) and ∥xn∥ < K holds for all n ∈ M . Hence, (xn) is I∗- bounded
sequence. □

Corollary 4. Let X be a normed space and I be an ideal of N. Then, every bounded
sequence is I∗-bounded.

Proof. Let X be a normed space and (xn) ⊂ X be a bounded sequence in X.
Then, the sequence (xn) is I-bounded which is given in [1] and by Remark 7 it is
I∗-bounded. □

Definition 13. Let (X, τ, I) be a topological space. A subset F ⊂ X is said to
sequentially I∗-compact if any sequence (xn) ⊂ F has an I∗-convergent subsequence

(xnk
) such that xnk

I∗

→ x ∈ F .

Theorem 14. Let (X, τ, I) be a topological space and f : X → R be a sequentially
I∗-continuous function. If A is sequentially I∗-compact subset of X, then f(A) is
I∗-bounded.

Proof. On the contrary assume that f(A) is not I∗-bounded. Then, there exists a
sequence (yn) in f(A) such that it is not I∗-bounded. That is

{n ∈ N : |yn| < M} /∈ F (I)

holds for all positive M > 0. Also, there exists a sequence (xn) in A such that
f(xn) =: yn holds for all n ∈ N . Since A is sequentially I∗- compact, then
there exists a subsequence (xnk

) of (xn) which is I∗-convergent to a point x0 in A.
Moreover, f is sequentially I∗-continuous function then f(xn) is I∗-convergent to
f(x0). So, there exists E ∈ F (I) where

E = {m1 < m2 < · · · < mk < · · · }

such that for any neighborhood U of f(x0), there exists N ∈ N such that f(xnmk
) ∈

U holds for all mk > N . As a result of this analysis, it can be say that (yn) =
f(xnk

) is I-convergent to f(x0). Then, {n ∈ N : |f(xn)| > M} ∈ I holds for any
neighborhood U of f(x0). So, we have {n ∈ N : |xn| < M} ∈ F (I) which is not in
case so f(A) is I∗-bounded. □

Lemma 5. Let (X, τ, I) and (Y, τ, I) be topological spaces. If X is sequentially
I∗-compact and f : X → Y is sequentially I∗-continuous function, then f(X) is
sequentially I∗-compact.

Proof. It can be proved easily. So it is omitted. □

4. CONCLUSIONS AND SOME REMARKS

In the paper, we defined the I∗-sequential topology on a topological space (X, τ)
and proved that I∗-sequential topology is finer then I-sequential topology. Also, we
observed that under the conditions of if the space X has no limit point and I be an
admissible ideal then, the I-sequentially topology and the I∗-sequentially topology
are coincide, i.e τI = τI∗ . Also, If I is an admissible ideal with (AP)-property,
and (X, τ) is a first countable topological space, then I-sequentially topology and
I∗-sequentially topology are coincide, i.e τI = τI∗ . Interestingly, it has been proven
that the concepts of I∗-continuity and I∗-sequential continuity of a function are
equivalent. As a continuation of this study, some questions can be asked:
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Q1 : Is there any topology (different from discrete topology) over X that are
finer than the I∗-sequentially topology?

Q2 : Is there any sequential type topology between I-sequential topology and
I∗-sequential topology on topological space X?

Q3 : Can I-sequential topology (or I∗-sequential topology) be metrizable?
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Abstract. In this article, an interpolative contraction existing in the liter-

ature is adapted to different fuzzy metric spaces. Using this contraction, a
fixed point theorem in two fuzzy metric spaces is proven and an example is

presented. Thus, a more general form of some concepts and theorems existing

in the literature has been obtained.

1. Introduction

In our daily lives, situations that are uncertain are often faced. For each scenario
encountered,determining what is ”right” or ”wrong” using the logic-based approach
relied upon by modern computers is difficult. Many events in nature involve uncer-
tainty, and the concept of ”fuzziness” provides the flexibility needed to accurately
describe such situations. This idea was introduced by Lotfi Zadeh [12], allowing
phenomena that were once considered unknowable to be explained.

In recent years, various generalizations of the metric concept, which is key in
fixed point theory, have been developed. One such generalization was initially
introduced in [9] and later modified in [2], leading to the development of the fuzzy
metric space.

Following the work of Stefan Banach [1], who laid the foundation for the fixed
point theorem, adaptations of this theorem to different types of spaces have been
made, contributing to research in many scientific fields. It has become a crucial tool,
not only in functional analysis but also in general topology and other disciplines.

After the contributions of Grabiec [3], significant progress has been made on this
theorem in the context of two spaces ([6], [10]). The type of space being studied and
the contraction mapping used are the two main aspects that need to be considered.

2. Preliminaries

After defining the t−norm, which is considered the basic operator of fuzzy logic,
some concepts to be used in this article will be presented.
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Definition 1. [11] Let ∗ : [0, 1] × [0, 1] → [0, 1] be a binary operation that called
a continuous t-norm if the conditions hold; for all ý, ŭ, ž,ġ ∈ [0, 1] ý ∗ 1 = ý and
ý ∗ ŭ < ž ∗ ġ, whenever ý < ž and ŭ < ġ and in addition associative, commutative
and continuous.

After KM [9] and GV [2], a lot of definitions and theorems were created for fuzzy
metric space (FMS). So these important discoveries attracted the attention of many
writers.

Definition 2. [2] (Ŵ , Ŷ , ∗), Ŵ (6= ∅) , is called a FMS; provided that ∗ is a con-

tinuous t − norm, Ŷ is a fuzzy set on Ŵ 2 × (0,∞) satisfying the conditions ∀
γ, ρ, η ∈ Ŵ and ś, ŕ > 0;

(FM1) Ŷ (γ, ρ, ś) > 0;

(FM2) Ŷ (γ, ρ, ś) = 1 ⇐⇒ γ = ρ;

(FM3) Ŷ (γ, ρ, ś) = Ŷ (ρ, γ, ś);

(FM4) Ŷ (γ, ρ, ś) ∗ Ŷ (ρ, η, ŕ) ≤ Ŷ (γ, η, ś+ ŕ);

(FM5) Ŷ (γ, ρ, ·) : (0,∞)→ [0, 1] is continuous,
When (FM4) is replaced by (NA),

(NA) = Ŷ (γ, ρ, ś) ∗ Ŷ (ρ, η, ŕ) ≤ Ŷ (γ, η,max {ś, ŕ})

or

Ŷ (γ, ρ, ś) ∗ Ŷ (ρ, η, ś) ≤ Ŷ (γ, η, ś)

then (Ŵ , Ŷ , ∗) is named Non-Archimedean (NA) FMS [7] .

Metrics that do not depend on ”t” are called stationary fuzzy metrics. When
examined from this aspect; it is clearly seen that these fuzzy metrics are the most
similar to classical ones.

Definition 3. [5] (Ŵ , Ŷ , ∗), Ŵ ( 6= ∅), is called a stationary FMS (SFMS); If ∗ is

a continuous t-norm, Ŷ is a fuzzy set on Ŵ 2 satisfying the conditions ∀ γ, ρ ∈ Ŵ ;
(SF1) Ŷ (γ, ρ) > 0;

(SF2) Ŷ (γ, ρ) = 1 ⇐⇒ γ = ρ;

(SF3) Ŷ (γ, ρ) = Ŷ (ρ, γ);

(SF4) Ŷ (γ, ρ) ∗ Ŷ (ρ, η) ≤ Ŷ (γ, η).

(γi)i∈N in this space (Ŵ , Ŷ ) is Cauchy if lim
i,j→∞

Ŷ (γi, γj) = 1;

(γi)i∈N → γ ∈ Ŵ if lim
i→∞

Ŷ (γi, γ) = 1.

Now a newly fuzzy metrics defined in [4] is presented below that in the study

” ∧t>0 Ŷ (γ, ρ, t) > 0 on Ŵ” were examined.

Definition 4. [4] (Ŵ , Ŷ 0, ∗), Ŵ (6= ∅) ,is called an extended FMS (EFMS);If ∗ is

a continuous t-norm, Ŷ 0 is a fuzzy set on Ŵ 2× [0,∞) satisfying the conditions ∀
γ, ρ, η ∈ Ŵ and ś, ŕ ≥ 0;

(EF1) Ŷ 0(γ, ρ, ś) > 0;

(EF2) Ŷ 0(γ, ρ, ś) = 1 ⇐⇒ γ = ρ;

(EF3) Ŷ 0(γ, ρ, ś) = Ŷ 0(ρ, γ, ś);

(EF4) Ŷ 0(γ, ρ, ś) ∗ Ŷ 0(ρ, η, ŕ) ≤ Ŷ 0(γ, η, ś+ ŕ);

(EF5) Ŷ 0
γ,ρ : [0,∞)→ (0, 1] is continuous.



FIXED POINT THEOREMS VIA INTERPOLATIVE CONTRACTIONS 35

Similarly replacing (EF4) by (NA)∗ = Ŷ 0(γ, ρ, ś)∗Ŷ 0(ρ, η, ŕ) ≤ Ŷ 0(γ, η,max {ś, ŕ})
or Ŷ 0(γ, ρ, ś) ∗ Ŷ 0(ρ, η, ś) ≤ Ŷ 0(γ, η, ś) for ∀ γ, ρ, η ∈ Ŵ and ś, ŕ ≥ 0; then

(Ŵ , Ŷ 0, ∗) is named NA EFMS.

Theorem 1. [4] Let Ŷ and its extension set Ŷ 0 be defined on Ŵ 2 × (0,∞), and

Ŵ 2× [0,∞) respectively.

Ŷ 0(γ, ρ, ś) = Ŷ (γ, ρ, ś) for all γ, ρ ∈ Ŵ , ś > 0 and

Ŷ 0(γ, ρ, 0) = ∧t>0Ŷ (γ, ρ, ś).

So, (Ŵ , Ŷ 0, ∗) is an EFMS if and only if (Ŵ .Ŷ , ∗) is a FMS satisfying ∀ γ, ρ ∈ Ŵ
the condition ∧ś>0Ŷ (γ, ρ, ś) > 0.

Proposition 1. [4] (Ŵ ,NŶ , ∗) is a SFMS on X if and only if ∧ś>0Ŷ (γ, ρ, ś) > 0

∀ γ, ρ ∈ Ŵ . That is,

Ŷ 0(γ, ρ, 0) = ∧ś>0Ŷ (γ, ρ, ś) = NŶ (γ, ρ) (2.1)

Proposition 2. [4] (Ŵ , Ŷ 0, ∗) is complete if and only if (Ŵ ,NŶ , ∗) is complete.

In the literature, the concepts of completeness and Caucy have been defined in
various ways and used in fuzzy metric spaces ([2], [3]). One of them is adapted to
EFMS in [4]. It is presented below;

Definition 5. [4] {γn} in Ŵ is named Cauchy sequence if given δ ∈ (0, 1), it can

be find nδ ∈ N such that Ŷ 0 (γn, γm, 0) > 1− δ for all n,m ≥ nδ .{γn} is Cauchy

sequence⇐⇒ limm,n Ŷ
0 (γn, γm, 0) = 1.

Since the spaces to which every Cauchy sequence converges are complete, the
same situation is valid in EFMS.

An interpolative type contraction was studied in [8] in partial metric space
(PMS);

Definition 6. [8] Let (Ŵ , p) be a PMS, = : X −→ X is named an interpolative
Reich-Rus-Ciric type contraction, if there exist constants λ ∈ [0, 1) and α, β ∈ (0, 1)
such that

p(=γ,=ρ) ≤ λ [p(γ, ρ)]
β

[p(γ,=ρ)]
α
. [d(ρ,=ρ)]

1−α−β

for all γ, ρ ∈ X/Fix(=).

Theorem 2. [8] In the framework of a PMS (Ŵ , p), if = : Ŵ −→ Ŵ is an

interpolative Reich-Rus-Ciric type contraction, then = posseses a fixed point in Ŵ .

In this article, it is intended to obtain generalized versions inspired the contrac-
tion obtained by interpolative approach and to adapt this contraction first to fuzzy
metrics and then to extended ones.

3. Main Result

Definition 7. Ω : Ŵ −→ Ŵ is called a fuzzy-interpolative Reich-Rus-Ciric type
contraction; If (Ŵ , Ŷ , ∗) is a FMS and there exist constants λ ∈ [0, 1) and α, β ∈
(0, 1) ;[
1− Ŷ (Ωγ,Ωρ, ś)

]
≥ λ

[
1− Ŷ (γ, ρ, ś)

]β [
1− Ŷ (γ,Ωγ, ś)

]α
.
[
1− Ŷ (ρ,Ωρ, ś)

]1−α−β
(3.1)
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for all γ, ρ ∈ Ŵ/F ix(Ω).

Theorem 3. Let (Ŵ , Ŷ , ∗) be a complete NA FMS. Provided that Ω : Ŵ −→ Ŵ
is a fuzzy-interpolative Reich-Rus-Ciric type contraction, then Ω has a fixed point
in Ŵ .

Proof. Let ρ0 ∈ Ŵ . (ρn)n∈N ∈ Ŵ is a sequence with ρn+1 = Ωρn.
Here, by examining the cases where γn+1 = γn and γn 6= γn+1; it will be obtain

that γ∗ is the fixed point in the both cases.
Let be ρn+1 = ρn (for some n ∈ N), γ∗ = γn .
Let be ρn 6= ρn+1 (∀ n ∈ N);
By replacing the values such as γ = ρn−1, ρ = ρn,[

1− Ŷ (Ωρn−1,Ωρn, ś)
]
≥ λ

[
1− Ŷ (ρn−1, ρn, ś)

]β [
1− Ŷ (ρn−1,Ωρn−1, ś)

]α
.
[
1− Ŷ (ρn,Ωρn, ś)

]1−α−β
[
1− Ŷ (ρn,Ωρn, ś)

]α+β

≥ λ
[
1− Ŷ (ρn, ρn−1, ś)

]β
.
[
1− Ŷ (ρn−1,Ωρn−1, ś)

]α
= λ.

[
1− Ŷ (ρn−1,Ωρn−1, ś)

]α+β

and [
1− Ŷ (ρn,Ωρn, ś)

]α+β

≥ λ.
[
1− Ŷ (ρn−1,Ωρn−1, ś)

]α+β

so
{
Ŷ (ρn−1,Ωρn−1, ś)

}
is non-increasing;[

1− Ŷ (ρn,Ωρn, ś)
]
≥ λ.

[
1− Ŷ (ρn−1,Ωρn−1, ś)

]
this implies that, [

1− Ŷ (ρn,Ωρn, ś)
]
≥ λn.

[
1− Ŷ (ρ0, ρ1, ś)

]
as n→∞,

lim
n→∞

[
1− Ŷ (ρn,Ωρn, ś)

]
≥ λn. lim

n→∞

[
1− Ŷ (ρ0, ρ1, ś

]
λn → 0 we obtain,

lim
n→∞

[
1− Ŷ (ρn,Ωρn, ś)

]
= 0 =⇒ Ŷ (ρn,Ωρn, ś) = 1.

Using Def.4 with (NA), for n < m;

Ŷ (ρn, ρm, ś) ≥ Ŷ (ρ
n
, ρ

n+1
, ś) ∗ Ŷ (ρ

n+1
, ρ

n+2
, ś) ∗ ... ∗ Ŷ (ρ

m−1
, ρ

m
, ś)

and as n,m→∞,
lim

n,m→∞
Ŷ (ρn, ρm, ś) ≥ lim

n→∞
Ŷ (ρ

n
, ρ

n+1
, ś) ∗ lim

n→∞
Ŷ (ρ

n+1
, ρ

n+2
, ś) ∗ ... ∗ lim

n→∞
Ŷ (ρ

m−1
, ρ

m
, ś)

≥ 1 ∗ 1 ∗ ... ∗ 1

≥ 1

and
lim
n→∞

Ŷ (ρn, ρm, ś) = 1.

Because Ŷ is complete and {ρ
n
} is a Cauchy, ∃ ρ∗ ∈ Ŷ : as n→∞ and ρ

n
→ ρ∗.

Assuming Ωρ∗ 6= ρ∗and implementing (3.1) with γ = ρn, ρ = ρ∗,[
1− Ŷ (Ωρn,Ωρ

∗, ś)
]
≥ λ

[
1− Ŷ (ρn, ρ

∗, ś)
]β [

1− Ŷ (ρn,Ωρn, ś)
]α
.
[
1− Ŷ (ρ∗,Ωρ∗, ś)

]1−α−β
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and as n→∞,[
1− Ŷ (Ωρ∗,Ωρ∗, ś)

]
≥ λ

[
1− Ŷ (ρ∗, ρ∗, ś)

]β [
1− Ŷ (ρ∗,Ωρ∗, ś)

]α
.
[
1− Ŷ (ρ∗,Ωρ∗, ś)

]1−α−β
so 1− Ŷ (ρ∗,Ωρ∗, ś) = 0 =⇒ Ωρ∗ = ρ∗. It is a contradiction.
That is Ωρ∗ = ρ∗ and ρ∗ is a fixed point of Ω. �

Definition 8. Let (Ŵ , Ŷ 0, ∗) be an EFMS. Ω : Ŵ −→ Ŵ is a fuzzy−Ŷ 0−interpolative
Reich-Rus-Ciric type contraction, provided that (3.1) is satisfied for all ś ≥ 0. Par-
ticularly, Ω is called fuzzy − 0− interpolative Reich-Rus-Ciric type contraction,
provided that (3.1) is satisfied for ś = 0.

Theorem 4. Let (Ŵ , Ŷ 0, ∗) be a complete NA EFMS. Provided that Ω : Ŵ −→ Ŵ

is a fuzzy− Ŷ 0− interpolative Reich-Rus-Ciric type contraction, then Ω has a fixed
point in Ŵ .

Proof. It will be examine two cases.
I. ś > 0;
The situation where Ŷ 0(γ, ρ, ś) = Ŷ (γ, ρ, ś) ∀ γ, ρ ∈ Ŵ is actually the same as

the case proven in Theorem3.1.
II. ś = 0;
Let γ0 ∈ Ŵ . (γn)n∈N ∈ Ŵ is a sequence with γn+1 = Ωγn
Here, by examining the cases where γn+1 = γn and γn 6= γn+1, it will be obtain

that γ∗ is a fixed point of Ω.
Let be γn+1 = γn (for some n ∈ N), γ∗ = γn .
Let be γn 6= γn+1 (∀ n ∈ N)
Using (2.1) and (3.1) with γ = ρn−1, ρ = ρn, ś = 0[

1− Ŷ 0(Ωρn−1,Ωρn, 0)
]
≥ λ

[
1−NŶ (ρn−1, ρn)

]β [
1−NŶ (ρn−1,Ωρn−1)

]α
.
[
1−NŶ (ρn,Ωρn)

]1−α−β
and so [

1−NŶ (ρn,Ωρn)
]
≥ λ.

[
1−NŶ (ρn−1,Ωρn−1)

]{
NŶ (ρn,ρn+1)

}
is non-increasing and by iterating[

1−NŶ (ρn,ρn+1)
]
≥ λn

[
1−NŶ (ρ0, ρ1)

]
.

Since, as n→∞ and λn → 0,

NŶ (ρn,ρn+1)→ 1.

Using (3.1) with γ = ρn, ρ = ρm, ś = 0 (n < m),

lim
n→∞

NŶ (ρn , ρm) ≥ lim
n→∞

NŶ (ρn , ρn+1) ∗ lim
n→∞

NŶ (ρn+1 , ρn+2) ∗ ... ∗ lim
n→∞

NŶ (ρm−1 , ρm)

≥ 1 ∗ 1 ∗ ... ∗ 1 = 1

it is obtained that

lim
n→∞

NŶ (ρn , ρm) = 1.

{ρn} is a Cauchy and Ŵ is complete,then ∃ ρ∗ ∈ Ŵ : as n→∞ and ρn → ρ∗.
Because of Ω is continuous, Ωρn → Ωρ∗ and by using (2.1),

lim
n→∞

NŶ (Ωρn ,Ωρ
∗) = 1.

the limit is unique and so ρ∗ = Ωρ∗.So the proof is completed. �
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Example 1. Let Ŵ = {1, 2, 3, 4} be a set, ∗ is product t− norm, Ŷ 0 is an EFMS

on Ŵ and for ∀ γ, ρ ∈ Ŵ ;

Ŷ 0(γ, ρ, t) = e−
|γ−ρ|
t+1 .

(Ŵ , Ŷ 0, ∗) is a complete Non-Archimedean EFMS and we define a self mapping

Ω =
(

1 2 3 4
3 1 2 4

)
on Ŵ .

Ω is a fuzzy− Ŷ 0− interpolative Reich-Rus-Ciric type contraction for all ζ, ρ ∈
Ŵ and λ = α = β = 1

2 such that;
I.for γ = 1, ρ = 2

1− Ŷ (3, 1.t) = 1− e−
|γ−ρ|
ś+1

= 1− e−
2
ś+1

=
(

1− e−
1
ś+1

)(
1 + e−

1
ś+1

)
>

(
1− e−

1
ś+1

)
=

√
1− e−

1
ś+1

√
1 + e−

1
ś+1

(
1− e−

1
ś+1

)0

>

√
1− e−

1
ś+1

√
1− e−

2
ś+1

(
1− e−

1
ś+1

)0

>
1

2

(
1− e−

1
ś+1

) 1
2
(

1− e−
2
ś+1

) 1
2
(

1− e−
1
ś+1

)0

= λ
[
1− Ŷ (1, 2, t)

]β [
1− Ŷ (1, 3, t)

]α
.
[
1− Ŷ (2, 1, t)

]1−α−β
Similarly, it can be shown to be true for II.(γ = 1, ρ = 3) and for III.(γ = 2,

ρ = 3).
So the conditions of Theo4. are satisfied. ”4”is unique fixed point of Ω.

4. Conclusion

In the literature, many contraction mappings defined in metric spaces have been
adapted to fuzzy metric spaces. However, the contraction used in this study is
hybrid, that is, a contraction obtained by the interpolative approach. The contrac-
tion is first transferred to a fuzzy metric space and then adapted to an extended
fuzzy metric space. In this way, many contraction mappings can be redefined by
the interpolative approach and transferred to different fuzzy metric spaces.
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Abstract. The most complex steady-state behaviour known in dynamical systems is that which
is characterised as "chaos". The three-dimensional Lorenz system, which is linear and non-
periodic, is a chaotic system that is used to study the properties of a two-dimensional liquid layer
that is homogeneously heated from below and cooled from above. In this study, the fractional
order Lorenz Chaos model is considered and mathematically analysed. This model consists of
three compartments: x orbit, y orbit and z orbit. The fractional derivative is used in the sense of
Caputo. The numerical results for the fractional Lorenz Chaos model are obtained with the help
of the Euler method, and graphs are drawn.

1. Introduction

Chaos is science that helps to explain non-linear phenomena, defined, in its shortest definition,
as the order of disorder. It is a complex process, but one with its own internal order. It is important
to note that chaos is not randomness. Chaos is a unique "order" that shows complex behavior. The
most complex steady-state behavior known in dynamical systems is "chaos". The study of chaos is
part of the theory of nonlinear dynamical systems [1].
Chaos and chaotic signals are characterized by irregularity in the time dimension, sensitive depen-
dence on initial conditions, an unlimited number of different periodic oscillations, a wide noise-like
power spectrum, a fractal dimension of the limit set, and signals whose amplitude and frequency
cannot be determined but vary in a limited area [2].
The scientific term "chaos" speaks of an interconnectedness that exists within and underlies seem-
ingly random events. Chaos science focuses on hidden patterns of form, subtle differences, the
"sensitivity" of things and the "rules" of how the unpredictable gives rise to the new. Chaos is a
science that seeks to understand the movements that create the complex patterns of form, from
lightning storms, foaming rivers, hurricanes, jagged mountain peaks, jagged coastlines and river
deltas to the nerves and blood vessels in our bodies. Chaos is a pattern of behavior that reaches a
regular state or repeats itself endlessly. In phase space, the state of all the information of a dynamic
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Derivative.
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system at a given moment in time is reduced to a single point. This point is the dynamical system
itself at that exact moment. In contrast, in the next state following this moment, the system will
change, albeit very slightly, and the point will be displaced. The strange attractor occurs in phase
space, one of the most important discoveries of modern science. Edward Lorenz was a pioneer of
chaos science. In 1963, M.I.T. scientist E. N. Lorenz, while simulating fluid heat-radiation in the
atmosphere to predict the weather, observed a new type of irregular oscillations and proposed a
model. The mathematics used by Lorenz in his model of the atmosphere was widely investigated
in the 1970s, and over time it became known that a fundamental property of a chaotic system is
that the smallest difference in two different sets of initial conditions can lead to large differences in
the state of the system [3].
The existence of chaos in various branches of engineering and other sciences such as nuclear physics,
solid state physics, laser optics, chemistry, biology, medicine, ecology, astronomy, sociology, econom-
ics, international relations, history, hydraulics, atmospherics, electricity, electronics, machinery, etc.,
intensive studies on the subject and the developments in the field have led to the emergence of many
application areas related to chaos and chaotic systems. The application areas related to chaos and
chaotic systems include; chaotic parallel distributed processing, deterministic nonlinear prediction,
identification and modeling of nonlinear systems, nonlinear filtering, biomedical and medical ap-
plications, dynamic information compression and coding, chaotic reliable communication, precise
pattern recognition, use of chaotic dynamics for music and art, artificial generation of chaotic oscil-
lations, realization of chaotic systems electronically, optically and optoelectronically, detection and
control of chaotic vibrations and oscillations, control of lasers, turbulence control, control of crane
and ship oscillations, weather forecasting [4].
For numerical modeling and simulation of a physical system with block diagrams, a mathematical
model including one or more differential equations and initial conditions on the variables is required.
The system can be of linear or nonlinear type. Block diagrams can be modeled and simulated with
electronic circuit programs using analog operational elements. Again, the same simulation results
can be obtained by setting up the real electronic circuit of the electronic circuit that is numerically
modeled and simulated. The system resulting from the implementation of block diagrams as elec-
tronic circuits can also be called an "analog computer". The mathematical model of the analog
computer created to model a specific physical system is identical to the mathematical model of the
system [5, 6].
This paper consists of four parts. In the first part, information about Chaos science and its ap-
plication area is given. In the second part, the formation of the fractional Lorenz Chaos model,
mathematical analysis of the existence, uniqueness and non-negativity of the system and the Gen-
eralized Euler method are presented. In the third section, the fractional Lorenz model is applied
with the Generalised Euler method and numerical results are obtained and graphs are drawn. In
the fourth section, conclusions are given.

2. Fractional Derivation and Fractional Lorenz Chaos Model

The most commonly used definitions of the fractional derivative are Riemann-Liouville, Caputo,
Atangana-Baleanu and the Conformable derivative. In this study, because the classical initial
conditions are easily applicable and provide ease of calculation, the Caputo derivative operator was
preferred and modeling was created. The definition of the Caputo fractional derivative is given
below.

Definition 2.1. ([4]) Let f(t) be a function. It can be continuously differentiable n times. The
value of the function f(t) for the value of α that satisfies the condition n− 1 < α < n. The Caputo
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fractional derivative of α−th order f(t) is defined by Dα
t f(t)=

1
Γ(n−α)

∫ t

a
(t− x)(n−α−1)fn(x)dx.

These comparisons show that the Caputo fractional-order model presented is more representative
of the system than its integer-ordered form. Mathematical modelling based on enhanced models
naturally leads to differential equations of fractional order and to the necessity of the formulation
of initial conditions to such equations. The main advantage of Caputo’s approach is that the initial
conditions for fractional differential equations with Caputo derivatives take on the same form as for
integer-order differential equations, contain the limit values of integer-order derivatives of unknown
functions at the terminal t = α.

Definition 2.2. [4] The Riemann-Liouville (RL) fractional-order integral of a function A(t) ∈ Cn

(n ≥ −1) is given by

(2.1) JγA(t)= 1
Γ(α)

∫ t

0
(t− s)(γ−1)A(s)ds, J0A(t) = A(t).

Definition 2.3. [4] The series expansion of two-parametrized form of Mittag-Leffler function for
a, b > 0 is given by

(2.2) Ea,b(t) =
∑∞

t=0
ti

Γ(ai+b) .

2.1. The Fractional Lorenz Chaos Model. The chaotic Lorenz system is the most famous
chaotic system for two-dimensional fluid behavior. The chaotic Lorenz system is described by the
following system of equations:

(2.3)

dαX

dtα
= δ(X − Y )

dαY

dtα
= X(γ − Z)− Y

dαZ

dtα
= XY − ϵZ.

Here dα

dtα is the Caputo fractional derivative of α-th order with respect. The initial values are
defined as,

X(0)=X0, Y (0) = Y0, Z(0) = Z0

0 < α ≤ 1 time t.
Since fractional order models have a memory feature in time-dependent events, they produce more
realistic and accurate results than integer order models. For this reason, the established model was
created as fractional order. By taking α=1 in system (2.3), the differential equation of fractional
order is reduced to a differential equation of full order.
Here δ, γ and ϵ are system parameters, X, Y and Z are dynamic variables. As can be seen from the
equations, this chaotic system is a 3rd order system where nonlinearity is ensured by linear product
terms. The system is characterized by the generation of non-periodic oscillations whose spectrum
is spread over a wide frequency region. Since these oscillations resemble noise and depend on initial
conditions in an unpredictable way, it has been realized that they can be used in covert communi-
cations [5-23]. Chaotic systems are characterized by "extreme sensitivity to initial conditions". If
two chaotic systems of similar structure start to operate with a small difference in initial values,
they will soon drift apart.
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2.2. Existence, Uniqueness and Non-Negativity of the System. We investigate the exin-
tence and uniqueness of the solutions of the fractional-order system (2.3) in the region B × [t0, T ]
where

(2.4) B = {(X,Y, Z) ∈ R3
+ : max{| X |, | Y | , | Z |} ≤ Ψ,min{| X |, | Y | , | Z | ≥ Ψ0}

and T < +∞.

Theorem 2.4. For each H0 = (X0, Y0, Z0) ∈ B there exists a unique solution H(t) ∈ B of the
fractional-order system (2.3) with intial condition H0, which is defined for all t ≥ 0.

Proof: We denote H = (X,Y, Z) and H̄ = (X̄, Ȳ , Z̄). Consider a mapping
M(H) = (M1(H),M2(H),M3(H))

(2.5)

M1(H) = δ(X − Y )

M2(H) = X(γ − Z)− Y

M3(H) = XY − ϵZ.

For any H, H̄ ∈ B it follows from equation (2.5) that

(2.6) ∥ M(H)−M(H̄) ∥=| M1(H)−M1(H̄) | + | M2(H)−M2(H̄) | + | M3(H)−M3(H̄) |

| M1(H)−M1(H̄) |=| δ(X − Y )− δ(X̄ − Ȳ ) |

=| δ(X − X̄)− δ(Y − Ȳ ) |

≤ δ | X − X̄ | +δ | Y − Ȳ |

| M2(H)−M2(H̄) |=| X(γ − Z)− Y − X̄(γ − Z̄) + Ȳ |

=| γ(X − X̄)− (XZ − X̄Z̄)− (Y − Ȳ ) |

≤ γ | X − X̄ | +Ψ | X − X̄ | +Ψ | Z − Z̄ | + | Y − Ȳ |

| M3(H)−M3(H̄) |=| XY − ϵZ − X̄Ȳ + ϵZ̄ |

=| (XY − X̄Ȳ )− ϵ(Z − Z̄) |

≤ Ψ | X − X̄ | +Ψ | Y − Ȳ | +ϵ | Z − Z̄ |
Then equation (2.6) becomes,

∥ M(H)−M(H̄) ∥≤ δ | X − X̄ | +δ | Y − Ȳ | +γ | X − X̄ | +Ψ | X − X̄ |
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+Ψ | Z − Z̄ | + | Y − Ȳ | +Ψ | X − X̄ | +Ψ | Y − Ȳ | +ϵ | Z − Z̄ |

≤ (δ + γ + 2Ψ) | X − X̄ | +(1 + δ +Ψ) | Y − Ȳ | +(Ψ + ϵ) | Z − Z̄ |

∥ M(H)−M(H̄) ∥≤ L ∥ H − H̄ ∥

where L = max(δ + γ + 2Ψ, 1 + δ +Ψ,Ψ+ ϵ).

Therefore M(H) obeys Lipschitz condition which implies the existence and uniqueness of solution
of the fractional-order system (2.3).

Theorem 2.5. ∀ t ≥ 0, X(0) = X0 ≥ 0, Y (0) = Y0 ≥ 0, Z(0) = Z0 ≥ 0, the solutions of the
system in (2.3) with initial conditions (X(t), Y (t), Z(t)) ∈ R3

+ are not negative.

Proof: (Generalized Mean Value Theorem) Let f(x) ∈ C[a, b] and Dαf(x) ∈ C[a, b] for 0 < α ≤
1. Then we have

(2.7) f(x) = f(α) +
1

Γ(α)
Dαf(ϵ)(x− a)α

with 0 ≤ ϵ ≤ x, ∀x ∈ (a, b].
The existence and uniqueness of the solution (2.3) in (0,∞) can be obtained via Generalized Mean
Value Theorem. We need to show that the domain R3

+ is positively invariant. Since

DαX = δ(X − Y ) ≥ 0

DαY = X(γ − Z)− Y ≥ 0

DαZ = XY − ϵZ ≥ 0

on each hyperplane bounding the nonnegative orthant, the vector field points into R3
+.

2.3. Generalized Euler Method. In this paper, we used the Generalized Euler method to solve
the initial value problem with the Caputo fractional derivative. Many of the mathematical models
consist of nonlinear systems, and finding solutions to these systems can be quite difficult. In most
cases, analytical solutions cannot be found and a numerical approach should be considered for this.
One of these approaches is the Generalized Euler method [15].
Dαy(t) = f(t, y(t)), y(0) = y0, 0 < α ≤ 1, 0 < t < α for the initial value problem, h = a

n impending
[tj , tj+1] is divided into n sub with j = 0, 1, .., n − 1. Suppose that y(t), Dαy(t) and D2αy(t) are
continuous in range [0, a] and using the generalized Taylor’s formula, the following equation is ob-
tained [15].

y(t1) = y(t0) +
hα

Γ(α+ 1)
f(t0, y(t0)).

This process will be repeated to create an array. Let tj = tj+1 + h such that

y(tj+1) = y(tj) +
hα

Γ(α+ 1)
f(tj , y(tj)
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(2.8)

DαX(t) = δ(X(0)− Y (0))

DαY (t) = X(0)(γ − Z(0))− Y (0)

DαZ(t) = X(0)Y (0)− ϵZ(0).

j = 0, 1, .., n − 1 the generalized formula in the form is obtained. For each k = 0, 1, ..., n − 1 with
step size h. For t ∈ [0, h), t

h ∈ [0, 1) we have

(2.9)

DαX(t) = δ(X(0)− Y (0))

DαY (t) = X(0)(γ − Z(0))− Y (0)

DαZ(t) = X(0)Y (0)− ϵZ(0).

The solution of (2.9) reduces to

(2.10)

X(1) = X(0) +
hα

Γ(α+ 1)
(δ(X(0)− Y (0)))

Y (1) = Y (0) +
hα

Γ(α+ 1)
(X(0)(γ − Z(0))− Y (0))

Z(1) = Z(0) +
hα

Γ(α+ 1)
(X(0)Y (0)− ϵZ(0)).

For t ∈ [h, 2h), t
h ∈ [1, 2), we get

(2.11)

X(2) = X(1) +
hα

Γ(α+ 1)
(δ(X(1)− Y (1)))

Y (2) = Y (1) +
hα

Γ(α+ 1)
(X(1)(γ − Z(1))− Y (1))

Z(2) = Z(1) +
hα

Γ(α+ 1)
(X(1)Y (1)− ϵZ(1)).

Repeating the process n times, we obtain

(2.12)

X(n+ 1) = X(n) +
hα

Γ(α+ 1)
(δ(X(n)− Y (n)))

Y (n+ 1) = Y (n) +
hα

Γ(α+ 1)
(X(n)(γ − Z(n))− Y (n))

Z(n+ 1) = Z(n) +
hα

Γ(α+ 1)
(X(n)Y (n)− ϵZ(n)).

3. Numerical Simulation of Fractional Lorenz Chaos Model

In the chaotic Lorenz system, the weather at a given instant is represented by a point in the
three-dimensional phase space and the course of the weather over time is represented by a trajec-
tory passing through these points. This trajectory represents the history of the dynamical system.
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Since chaotic systems are nonlinear, their trajectories are very complex but not random. As time
progresses, trajectories begin to fill the phase space and never close over; they repeat. This kind of
behavior is a sign of chaos. The set of possible weather states obtained by running the system is
called the Lorenz attractor. The Lorenz attractor does not occupy any volume in three-dimensional
space.

Let X = 0, 001, Y = 0, 0, Z = 0, 0, γ = 28, δ = 10, ϵ = 8
3 and let’s take size of step h = 0.1. Hence

we get the following results and tables. Using the Euler method, we obtain the following tables.

Table 1. The values of X, Y and Z at the moment t for α = 1.
t X(t) Y (t) Z(t)
0 0,001 0,00 0,00
1 0,0015 0,0028 0,00
2 0,0028 0,00252 0,00
3 0,0025 0,0101 0,0000007
4 0,0101 0,0161 0,000003
5 0,0161 0,0428 0,0000182
6 0,0428 0,0837 0,0000828
7 0,0837 0,1950 0,000419
8 0,1950 0,4100 0,0019
9 0,4100 0,9160 0,00944

10 0,9160 1,9730 0,0445
11 1,9730 4,3370 0,2130
12 4,3370 9,3870 1,0120
13 9,3870 20,1550 4,8150
14 20,1500 39,9000 22,4500



FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL APPLICATION 47

Table 2. The values of X, Y and Z at the moment t for α = 0.9.
t X(t) Y (t) Z(t)
0 0,001 0,00 0,00
1 0,0020 0,00366 0,00
2 0,00489 0,00205 -0,0000001
3 0,00117 0,0197 0,00000121
4 0,0254 0,0214 0,00000382
5 0,0202 0,1110 0,0000739
6 0,1402 0,1710 0,000344
7 0,1809 0,6620 0,00336
8 0,8110 1,2390 0,01780
9 1,3710 4,0500 0,1430

10 4,8770 8,5190 0,8200
11 9,6440 24,7500 5,9740
12 29,4280 49,3200 35,1500
13 55,4700 15,3100 212,910
14 2,9100 -132,4000 250,00

Table 3. The values of X, Y and Z at the moment t for α = 0.8.
t X(t) Y (t) Z(t)
0 0,001 0,00 0,00
1 -0,0007 0,00476 0,00
2 0,0086 0,00061 0,000000568
3 -0,00499 0,0414 0,000000582
4 0,0740 0,0106 -0,0000349
5 -0,0330 0,3610 0,000114
6 0,6390 0,1380 -0,00212
7 -0,2120 3,1620 0,0139
8 5,5300 1,6110 -0,106
9 -1,1380 27,7800 1,458

10 48,0800 17,9100 -4,585
11 -3,2480 281,500 144,110
12 481,300 297,790 -76,740
13 169,030 882,770 243,470
14 148,800 -692,170 267,184
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Figure 1. Graph of X phase plane change with time.

Figure 2. Graph of Y phase plane change with time.
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Figure 3. Graph of Z phase plane change with time.

Table 3, Table 4 and Table 5 show the changes of x, y and z for different cases of α .

4. Conclusions and Comments

Chaos-based reliable communication systems have become an alternative to the standard spread
spectrum communication systems in the literature because they can spread the spectrum of informa-
tion signals over a wide area, have a noise-like structure and can be realized with simple, inexpensive
chaotic circuitry. In this study, the existence, uniqueness and non-negativity of the fractional order
Lorenz Chaos model system were mathematically analysed. In the obtained graphs, it is observed
that while the x phase plane is constant for α=1 and α=0.9, it starts to decrease after reaching a
maximum value at a certain point for α=0.8. While the Y phase plane is constant for α=1 and
α=0.9, it is observed that for α=0.8 it starts to decrease rapidly after taking the maximum value
at a certain point. In the Z phase plane, it is observed that it progresses steadily for α=1, increases
rapidly after a certain point for α=0.9, and increases rapidly after taking the minimum value at a
certain point for α=0.8.
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ABSTRACT. This study focuses on two main objectives. Firstly, the similarities and 
differences between the mathematically based fixed point iteration method and the 
metaheuristic teaching-learning based optimisation method are presented. 
Secondly, the performance of these two methods in finding solutions of a complex 
system of linear equations is compared. In this way, other researchers will be able 
to make a comparison between the results previously discussed by the authors in 
[2] and [3], respectively, and have an idea about choosing the required optimisation 
method using these results in their future research. 

 

1. INTRODUCTION 
 

Root-finding problems are one of the most frequently encountered and critically important topics 
in mathematics and engineering. Finding solutions to nonlinear equations plays an important role in 
both theoretical studies and practical applications [4-6]. However, since analytical solutions are not 
possible in many cases, iterative methods come into play. These methods use an iterative process to find 
the roots of complex equations and are evaluated by performance criteria such as convergence rates and 
accuracy levels. 
 
Traditional optimization methods usually involve mathematical modelling, using knowledge of 
derivatives as well as various techniques such as linear programming, integer programming, genetic 
algorithms. These methods seek solutions to optimize a given objective function under a set of 
constraints. However, these methods may not be sufficient for some problems. For example, in complex 
dynamic systems, the problem structure and constraints may change over time or be uncertain. Also, 
traditional optimization methods may be limited in terms of computational power and data processing 
capabilities when dealing with large datasets. Different optimization methods have been developed to 
overcome the limitations of traditional approaches and produce more efficient solutions [7-10]. These 
methods include data collection, analysis and learning processes. One of these methods is the Teaching-
Learning Based Optimization (TLBO) algorithm, which uses the information obtained from past data in 
the teaching process to support future decisions [11]. 
 
In this paper, we investigate the performance of two different iterative methods - the Fixed-Point 
Iterative Method and the Teaching-Learning Optimization Algorithm (TLBO) - on Capra and Canale's 
(2002) system of nonlinear equations given in [1]. The Fixed-Point Iterative Method is a classical and 
widely used technique, based on a simple iterative process to find the root of the equation. On the other 
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hand, the TLBO algorithm is a more modern optimization method inspired by the teaching and learning 
processes in nature. 
 
The aim of this study is to compare the performance of these two methods, to reveal their common and 
different aspects and to determine which method is more effective in which situations. For this purpose, 
various tests were performed on Capra and Canale's system of nonlinear equations and the results 
obtained were analysed graphically. This study provides important findings for understanding the 
performance of different iterative methods on nonlinear equations and sheds light on future research. 
 
 

1.1 Fixed-Point Iteration Method 
 
The fixed-point iteration method was first used by the German mathematician L.E.J. Brouwer in the 
early 1900s and is used in many areas of mathematics, especially in numerical analysis. This method is 
used to find approximate solutions of linear equations as well as approximate solutions of nonlinear 
systems of equations. 
 
In this method, which is used to solve an equation of the form ( ) 0f x = , let the given equation be 
expressed by the function 𝑥𝑥=𝑔𝑔(𝑥𝑥). Let the point 0x  be the first estimated point and the point 0x x=  be 

chosen such that ( ) 1g x′ < . By this we mean that convergence is absolute, i.e. it always converges towards 

the root. In this case, with successive iteration 
( )1 0
( )2 1

     .
     .
     .

( )1

x g x

x g x

x g xn n

=

=

= −

 

iterative method is obtained. 
 
The absolute difference between the root found and the previous root gives the absolute error, 

0 1 0 1 2 1 1,  ,...,  n n nE x x E x x E x x+= − = − = −  be defined as the zeroth, first and nth absolute errors 

respectively. In this case, one can see the following 
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Therefore 
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can be written. It can be seen that for a given iteration number n, if  ( ) 1ng x′ <  while n →∞ , then nx  

converges to real root. In particular, the fixed-point iteration method also gives an idea that if 0( ) 1g x′ <  

for 1 0x x→ then the initial solution can be used to reach the conclusion. 
 
The main idea behind the choice of fixed-point iteration functions is to decompose the equation 𝑓𝑓(𝑥𝑥) = 
0 appropriately and replace it with two equations of the form 1 ( )y g x=  and 2 ( )y h x= . The generated 
system is solved sequentially. Here, the following equation can be written for 𝑔𝑔(𝑥𝑥) and ℎ(𝑥𝑥), which are 
parts of the equation: 
 

𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) − ℎ(𝑥𝑥) = 0. 
 
By doing this, the number of equations to be solved is doubled, but the equations are simplified. One of 
them can even be directly equal to 𝑥𝑥 or solved with respect to 𝑥𝑥. In the application of the method, 
iteration starts with an initial value that is assumed to be close to the root. The first equation is either 
equal to 0x  or 1x  is found by substituting 0x . In the second equation, 2x  is calculated using 1x  and this 
process is continued until the desired approximate root value is reached. For this, the following 
algorithm is applied. 
 
Step 1. An initial value 0x  close to the root is estimated. 
Step 2. The equation 𝑓𝑓(𝑥𝑥) = 0 is rearranged in the form of 𝑥𝑥 = 𝑔𝑔(𝑥𝑥). 
Step 3. A new value for the root is calculated in the equation 1 ( )i ix g x+ = . 

Step 4. If 1

1

.100i i
a s

i

x x
x

ε ε+

+

−
= ≤  then stop, otherwise go to Step 3 by taking 1i ix x += . 

 
In the fixed-point method, there is always the possibility of divergence as well as convergence. 
Convergence and divergence are shown graphically in Figure 1 [13]. 
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       Figure 1. The fixed-point method’s a) convergence case, b) convergence case 

c) divergence case, d) divergence case 
 

Figure 1 (a) and Figure 1 (b) are graphical representations of the convergence of fixed-point iteration 
and Figure 1 (c) and Figure 1 (d) are graphical representations of the divergence of fixed-point iteration, 
where (a) and (b) are called monotonic graphs and (c) and (d) are called oscillating or spiral graphs. 
Convergence can be realized under the condition |𝑔𝑔′(𝑥𝑥)| < 1. 
 
In Figure 1, the point 0x  is used as the initial value. In the graph (d), when moving from the point 0x  to 

the line 1y x=  from the point where the curve 2 ( )y g x=  is reached, it seems to be approached to the 
root value, but then when the iteration is continued, in other words, when trying to approach the 
intersection point of the curves using the newly found approximate root value, it is seen that it moves 
away from this point. These situations can be encountered from time to time in the constant iteration 
method. Similarly, in graph (b), each iteration gets closer and closer to the root and the error value 
decreases with each step.  
 
Note that convergence occurs when the absolute value of the slope of the function 2 ( )y g x=  is smaller 

than the slope of the function 1y x= . If convergence occurs, the error at each step is the same or smaller 
than the error at the previous step. Therefore, fixed point iteration has linear convergence. 
 
 

1.2 Teaching-Learning Based Optimization Algorithm (TLBO) 
 
Learning and teaching based optimization (TLBO) can be defined as an approach that combines learning 
and teaching components related to the optimization problem. In the learning phase, TLBO analyses 
data relevant to problem solving and extracts knowledge and patterns by learning from this data. The 
learning process can converge to the optimal solution by using strategies, constraints or other factors to 
solve the problem with necessary updates to the teacher's experience and results. The learning process 
often involves statistical analysis, machine learning or artificial intelligence techniques. 
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A teaching-learning based optimization method is considered by Rao et al. [12]. As the solution 
population, the operations take place with classes and students as its members. The aim is to increase 
the knowledge level of the students in the class in order to obtain the optimum solution. Basically, it is 
realized in two phases such as teaching and learning. It is represented as a matrix representing the 
classes and the students in the classes. Each row in the matrix corresponds to a student. The rows 
represent the design proposal. The analysis starts with the random assignment of sections from a pre-
prepared list of profiles [12]. 
 
Learning Phase. The student who gives the best solution in the class is considered as the teacher. 
Accordingly, the other students are updated according to the following relationships by utilizing the 
teacher's knowledge. If the updated student gives a better solution than the old one, he/she replaces 
the old student. 
 
Teaching Phase. The process in this phase is very similar to the previous phase. There is interaction 
between the students in the class. There is a process of transferring knowledge from one student with a 
better solution and a higher level of knowledge to another student. If the new student finds a better 
solution than the current student, he/she will take his/her place. 
 
With teaching and learning based optimization, if the teaching and learning steps are considered as the 
interaction between teachers and students in a classroom, first the population (class size) dimensions to 
be evaluated are determined. Then the objective function is determined. In line with the determined 
objective function, the best individual (x) in the population is assigned as a teacher. The mean of the 
population (class) is calculated. Interaction between teacher and student is ensured. At this stage, a 
teacher tries to transfer information between students and increase the average result of the class. In the 
next stage, students try to increase their knowledge level through interaction among themselves. 
Students can also gain knowledge by discussing and interacting with other students. A student standing 
in the center of the class can communicate with those in the next row and across. The interaction will be 
provided in such a way that a student will learn new information if the other student has more 
information about him/her.  

.( . )new best f arithmetic meanx x r x T x −= + −   (1) 

In Equation (1), fT  is a constant that takes the value 1 or 2. r represents a random number in the closed 

interval [0,1]. newx  is the new student, x is the best student from the previous iteration, bestx  is the best 

student and arithmetic meanx −  is the arithmetic mean of the population. With the formula given in Equation 
(1), the knowledge level of the population (students) is determined after the interaction between the 
population individuals. The best individual is then selected as the teacher. The cycle continues until the 
determined learning level is achieved. Learning and teaching based optimization (TLBO) is defined as 
an algorithm that can model the effect of learning on students in the classroom [11]. 
 
1.3. Comparison of Common and Differences between Fixed Point Iteration Method and TLBO 
Algorithm 
 
While the fixed-point iteration method and the TLBO algorithm differ in their applications and specific 
methodologies, they undoubtedly share the following common features, especially in the context of 
iterative and optimisation processes. 
 
Fixed point iteration and TLBO algorithms aim to solve different types of problems with iterative 
approaches. Starting with an initial guess, FPI iteratively applies a function and converges to a fixed 
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point satisfying the condition 𝑓𝑓(𝑥𝑥)=𝑥𝑥. In contrast, TLBO is based on improving a population of solutions. 
TLBO consists of two phases: teaching and learning: In the teaching phase the best solution guides the 
process, while in the learning phase the solutions are improved by learning from each other. 
 
Both algorithms have different convergence goals and dependencies. While fixed point iteration method 
focuses on fixed point finding problems, TLBO is designed to solve direct optimisation problems. In 
fixed point iteration method, the initial guess affects both the convergence speed and the final solution, 
while in TLBO the quality of the initial population determines the performance of the algorithm and the 
quality of the solution obtained. 
 
The stopping criteria also differ between the two methods. Fixed point iteration stops when the 
difference between consecutive iterations falls below a certain threshold. TLBO usually stops when it 
reaches a certain number of iterations, when convergence reaches a threshold, or when the 
improvement rate becomes negligible. 
 
Fixed point iteration method focuses on a single solution point by providing a mathematical approach. 
TLBO is a heuristic metaheuristic that iteratively evolves a population of solutions. While fixed point 
iteration method is mostly used in areas such as numerical analysis, equation solving and mathematical 
modelling, TLBO has a wide range of applications in engineering, economics and scientific optimisation 
problems. 
 
As a result, fixed point iteration method has a simpler and mathematical structure, while TLBO is a 
complex and powerful optimisation technique inspired by the teaching-learning process. The nature, 
objectives and application areas of the two determine their suitability for different types of problems. 
 
1.4. Optimization Approach for Finding the Roots 
 
When the optimization process is used to find the roots of algebraic equations, the problem of finding 
the unknown values in each equation becomes an optimization problem to be solved by numerical 
methods. Optimization is the process of obtaining the best value of an objective function according to 
specified criteria. Since the numerical approach for finding roots in algebraic equations usually involves 
an iterative process, similarly, in finding roots with an optimization algorithm, starting from a given 
starting point, candidate root values are iteratively updated and reach a minimum or maximum value 
when the objective function is sufficiently close or a certain tolerance value is reached.  
 
In this section, Theorem 1.4.2 is used as a generalization of Theorem 1.4.1 for equations in one variable 
for finding roots in algebraic equations. 
 
Theorem 1.4.1. (Root Search in Optimization Algorithm) 
For I=[a,b] and I ⊂  ,  if the function :f I →   is continuous, then it has at least one minima on this 

interval and if  ( ) 0if x =  then there exists at least one ( ),ix I i∈ ∈  satisfying this equality (Köse et 

al., [2]). 
 
Theorem 1.4.2. (Root Finding Algorithm for Nonlinear Equation Systems)  



A STUDY ON NONLINEAR EQUATION SYSTEMS                                                 58 
 

Let I=[a,b] and I ⊂  , If the functions : n
if I →   are continuous, then for each 1 i n≤ ≤  the functions 

if  have at least one minimum value in this interval and have at least one point 1 2( , ,... )nx x x x I= ∈  that 

satisfies the equality ( )
1

0
n

i i
i

f x
=

=∑  (Köse et al., [2]). 

 
1.5. Numerical Example 
 
In [1], Canale and Capra considered a system of equations consisting of functions of two variables 

1( , )f x y  and 2 ( , )f x y  
 

2
1

2
2

( , ) 10 0
( , ) 3 57 0

f x y x xy
f x y y xy

= + − =

= + − =
.   (2) 

 
Since the real roots of this system of equations are x = 2 and y = 3, he used the fixed-point iteration 
method and the Newton-Raphson method to solve the system of equations, starting with initial guesses 
x = 1.5 and y = 3.5. 
 
In this study, the same problem will be addressed using a mathematics-based fixed-point iteration 
method and a meta-heuristic, the teaching-learning algorithm. Throughout the paper, 1( , ) f x y  and 

2 ( , )f x y  will be replaced by 1f  and 2 f , respectively, in the equation system given by (2). 
 
 
 

2. APPLICATION OF METHODS AND ALGORITHMS 
 
In Section 1.5, the success of the approximate solution of the equation system given by (2), which 
consists of nonlinear equations in two variables, will be measured first by the fixed-point iteration 
method and then by teaching-learning algorithm.  
 
 
2.1. Fixed Point Iteration Method Application 
 
Fixed point iteration functions in two variables associated with the functions 1f  and 2f , will be 
considered 
 

1 2 3

4 5 62

10 57 10( , ) , ( , ) , ( , )= ,
1 3

57 57( , ) , 10 , ( , )
3 3

g x y g x y g x y x
x y xy x

y yg x y g xy g x y
y x

= = −
+ +

− −
= = − =

 .  (3) 

 
These functions will be denoted as 1 2 3 4 5 6, , , , ,g g g g g g  for short. In this study, we have created three 

different sets of iteration functions for the functions 1f  and 2f .  The fixed point iteration functions 

related to the function 1f  are 1 3 5, ,g g g  and fixed point iteration functions related to the function 2f  

are 2 4 6, ,g g g . The iteration steps will be performed by taking 1 ,g x=  2 ,g y= 3 ,g y= 4 ,g x=

5 = ,g x  6g y=  and by choosing initial conditions as 0 1,5x =  and 0 3,5y = . The calculations were 
performed for all three iteration function sets by taking the maximum number of iterations as 50 and 
the tolerance value as 0.01 in the MATLAB program. 
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Capra and Canale also discussed iteration function sets in their book as in the following forms [1]. 
 

2
* * 2
3 4

10( , ) , ( , ) 57 3xg x y x g x y xy y
y
−

= = = − =   (4) 

5 6
57( , ) 10 , ( , )

3
yg x y xy x g x y y

x
−

= − = = =  (5) 

 
In addition to the iteration sets considered by Capra and Canale, it can be seen that the iteration sets 

1g and 2g  given in (3) are also considered in this study. The iteration set given by (4) considered by 

Capra and Canale is in the form * *
3 4( , ) , ( , )g x y x g x y y= = , but in this work, unlike the previous one, 

3 4,g y g x= =  is taken. These iteration steps can be practical and fast, depending on the experience 
of the mathematician solving the system in the normal method. But when we ask the Artificial 
Intelligent (AI) to generate these functions, it immediately suggests the convergent iteration function 
from Capra and Canale's book as the iteration function. But it does not suggest that there may be other 
functions and how they can be selected when a problem arises. We form the equation in mathematical 
theory about this. When we take the first derivative of the iteration function and set the initial condition 
in the first derivative, we claim that it can converge if the result is less than 1. 
 
This example illustrates the most serious shortcoming of fixed-point iteration, namely that convergence 
often depends on the way the equations are formulated. Moreover, even in cases where convergence is 
possible, divergence can occur if the initial guesses are not close enough to the true solution. Using 
simple reasoning, it can be seen that sufficient conditions for convergence are of the form  
 

1 1 1f f
x y

∂ ∂
+ <

∂ ∂
 

and  

2 2 1f f
x y

∂ ∂
+ <

∂ ∂
 

 
for the case with two equations. These criteria are so restrictive that fixed point iteration can be 
considered of limited utility in solving nonlinear systems. However, it can be seen that the contribution 
of this method is greater when solving linear systems. 
 

For each iteration function set considered in this study, the fact that 0 0 0( ) ( ) ( ) 1i i
i

g gg x x x
x y

∂ ∂′ = + <
∂ ∂

 for 

1 6i≤ ≤  also gives an idea about the result under the initial condition 0x .  
 

Using the iteration function set that satisfies this condition is more appropriate to ensure convergence, 
otherwise a divergence from the true solution will occur. Let us now give the implementation steps of 
both algorithms below.  
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Figure 2. Basic flow diagram of fixed-point iteration method 

 
 
 
2.2. Teaching-Learning Based Optimization Algorithm Application 
 
In order to solve the system of equations given by (2), TLBO method is used by taking the number of 
populations 40, the number of variables in the population 2, the upper bound [10, 10] and the lower 
bound [-8, -8].   
 
In each iteration, the best result x and y result and its value in the function are shown. 
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Figure 3. Flow diagram of learning-teaching based optimization algorithm 

 
 

3. PERFORMANCE RESULTS 
 
In this section, firstly, the convergence performance results of the system of equations given by (2) on 
three different iteration function sets obtained by the fixed-point iteration method are compared. Then, 
the performance results of teaching-learning based optimization algorithms for finding approximate 
solutions of the same equation system are obtained.  
 
The following table, shows the convergence tables for 1 2 3 4 5 6, , , , ,g g g g g g  fixed point iteration function 

sets, where x and y are solutions, the error of x is xE  and the error of y is yE . 

 
 

Data for function set 1 2,g g  Data for function set 3 4,g g  Data for function set 5 6,g g  

Number 
of 
iterations 

x   y   xE   
yE  x   y   xE   

yE  x   y   xE   
yE  
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1 2,0000 3,4030 0,5000 0,0970 5,1667 1,4558 3,6667 2,0442 2.1794 3.4480 0,6794 0,0520 
2 1,8508 2,6613 0,1492 0,7417 -3,2312 8,7362 8,3978 7,2805 1.5764 2.8619 0,6030 0,5861 
3 2,2162 3,6129 0,3654 0,9515 0,1363 0.2108 3,3675 8,5255 2.3427 3.3834 0,7663 0,5215 
4 1,7155 2,2781 0,5007 1,3348 73,2092 426,0335 73,0729 425,8227 1.4400 2.7620 0,9027 0,6213 
5 2,5040 4,4796 0,7885 2,2015 -73,0726 -0,0007 146,2819 426,0342 2.4541 3.5433 1,0141 0,7813 
6 1,4320 1,6450 1,0721 2,8346 72,9358 4,1366*10^7 146,0084 4,1366*10^7 1.1421 2.6946 1,3120 0,8487 
7 3,2500 7,0662 1,8180 5,4212 -72,987 0 145,7345 4,1366*10^7 2.6311 3.9811 1,4889 1,2865 
8 0,9693 0,8155 2,2806 6,2506 72,6613 2,9261*10^17 145,4600 2,9261*10^17 0 2.5917 2,6311 1,3894 
9 5,6027 16,9061 4,6333 16,0906 -72,5237 -0,0001 145,1850 2,9261*10^17 3.1747 3.6281 3,2486 1,0364 
10 0,4443 0,1999 5,1584 16,7062 72,3858 1,4641*10^37 144,9095 1,4641*10^37 2.4546 2.3581 0,7731 3,8440 
11 15524 45,0089 15,0798 44,8090 -

72,24767 0,0000 144,6335 1,4641*10^37 2.5174 2.0847 2,5549 0,3299 

12 0,1652 0,0272 15,3589 44,9817 72,1092 3,6655*10^76 144,3569 3,6655*10^76 2.6063 2.4692 1,2893 0,9714 
13 51981 56,2424 51,8156 56,2152 -71,9706 0,0000 144,0798 3,6655*10^76 2.2209 2.5194 1,0208 0,6176 
14 0,0924 0,0065 51,8884 56,2359 71,8316 2,2975*10^155 143,8022 2,2975*10^155 2.3038 2.7040 0,8905 0,4933 
15 101,1123 56,8975 101,0199 56,8910 -71,6924 0,0000 143,5240 2,2975*10^155 2.1611 2.7086 0,7196 0,5316 
16 0,0632 0,0033 101,0490 56,8942 71,5529 Inf 143,2453 Inf 2.2072 2.7792 0,7261 0,4248 
17 150,1736 56,9643 150,1103 56,9610 -71,4132 NaN 142,9661 NaN 2.1454 2.7723 0,6526 0,4646 
18 0,0483 0,0022 150,1253 56,9621 71,2731 NaN 142,6863 NaN 2.1712 2.8047 0,6603 0,4129 
19 198,0277 56,9817 197,9794 56,9795 -71,1328 NaN 142,4060 NaN 2.1392 2.7985 0,6254 0,4325 
20 0,0392 0,0017 197,9885 56,9800 70,9922 NaN 142,1251 NaN 2.1543 2.8160 0,6291 0,4063 
21 244,5107 56,9887 244,4715 56,9870 -70,8514 NaN 141,8436 NaN 2.1359 2.8117 0,6103 0,4162 
22 0,0331 0,0014 244,4776 56,9873 70,7102 NaN 141,5616 NaN 2.1451 2.8221 0,6121 0,4016 
23 289,5943 56,9923 289,5612 56,9909 -70,5688 NaN 141,2791 NaN 2.1338 2.8193 0,6011 0,4070 
24 0,0288 0,0012 289,5655 56,9911 70,4271 NaN 140,9960 NaN 2.1396 2.8257 0,6020 0,3983 
25 333,2890 56,9943 333,2602 56,9932 -70,2851 NaN 140,7123 NaN 2.1326 2.8239 0,5952 0,4015 
26 0,0256 0,0010 333,2634 56,9933 70,14286 NaN 140,4280 NaN 2.1363 2.8280 0,5958 0,3961 
27 375,6203 56,9956 375,5948 56,9946 -70,0003 NaN 140,1431 NaN 2.1318 2.8268 0,5915 0,3981 
28 0,0231 0,0009 375,5973 56,9947 69,8574 NaN 139,8577 NaN 2.1341 2.8294 0,5918 0,3947 
29 416,6204 56,9965 416,5973 56,9956 -69,7143 NaN 139,5717 NaN 2.1312 2.8286 0,5891 0,3960 
30 0,0211 0,0008 416,5993 56,9957 69,5708 NaN 139,2851 NaN 2.1328 2.8303 0,5893 0,3937 
31 456,3244 56,9971 456,3032 56,9963 -69,4271 NaN 138,9979 NaN 2.1309 2.8298 0,5875 0,3946 
32 0,0195 0,0007 456,3049 56,9964 69,2831 NaN 138,7102 NaN 2.1319 2.8309 0,5876 0,3931 
33 494,7685 56,9976 494,7490 56,9968 -69,1387 NaN 138,4218 NaN 2.1306 2.8306 0,5865 0,3937 
34 0,0181 0,0007 494,7504 56,9969 68,9941 NaN 138,1328 NaN 2.1313 2.8313 0,5866 0,3927 
35 531,9896 56,9979 531,9715 56,9972 -68,8492 NaN 137,8433 NaN 2.1305 2.8311 0,5858 0,3931 
36 0,0170 0,0006 531,9727 56,9973 68,7039 NaN 137,5531 NaN 2.1309 2.8316 0,5859 0,3924 
37 568,0242 56,9982 568,0073 56,9976 -68,5584 NaN 137,2623 NaN 2.1304 2.8314 0,5854 0,3927 
38 0,0160 0,0006 568,0082 56,9976 68,4125 NaN 136,9709 NaN 2.1307 2.8317 0,5854 0,3923 
39 602,9084 56,9984 602,8924 56,9978 -68,2663 NaN 136,6788 NaN 2.1303 2.8316 0,5851 0,3924 
40 0,0152 0,0006 602,8932 56,9978 68,1198 NaN 136,3862 NaN 2.1305 2.8318 0,5851 0,3922 
41 636,6774 56,9986 636,6623 56,9980 -67,9730 NaN 136,0929 NaN 2.1303 2.8318 0,5849 0,3923 
42 0,0144 0,0005 636,6630 56,9980 67,8259 NaN 135,7990 NaN 2.1304 2.8319 0,5849 0,3921 
43 669,3659 56,9987 669,3515 56,9982 -67,6785 NaN 135,5044 NaN 2.1303 2.8319 0,5848 0,3921 
44 0,0138 0,0005 669,3521 56,9982 67,5307 NaN 135,2092 NaN 2.1303 2.8320 0,5848 0,3920 
45 701,0076 56,9988 700,9938 56,9983 -67,3826 NaN 134,9134 NaN 2.1302 2.8319 0,5847 0,3921 
46 0,0132 0,0005 700,9944 56,9984 67,2342 NaN 134,6169 NaN 2.1303 2.8320 0,5847 0,3920 
47 731,6352 56,9989 731,6221 56,9985 -67,0855 NaN 134,3198 NaN 2.1302 2.8320 0,5846 0,3920 
48 0,0127 0,0005 731,6226 56,9985 66,9364 NaN 134,0220 NaN 2.1303 2.8320 0,5846 0,3920 
49 761,2809 56,9990 761,2682 56,9986 -66,7870 NaN 133,7235 NaN 2.1302 2.8320 0,5846 0,3920 
50 0,0122 0,0004 761,2687 56,9986 66,6373 NaN 133,4244 NaN 2.1303 2.8320 0,5846 0,3920 

Table 1. Convergence table for function sets 1 2 3 4 5 6, , , , ,g g g g g g  

 
It is seen from Table 1 that although the fixed-point iteration function set is close to the true root in the 
first iteration, it is observed that the roots and oscillate and do not converge to the true root as the 
number of iterations increases. It is also observed that the errors xE  and yE  increase continuously with 

the number of iterations. 
 
It is also seen that the roots x  and y  in the fixed-point iteration function set are quite far from the true 

root, i.e. diverging. Even at the 16th iteration the error yE  goes to infinity. 
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For the fixed-point iteration functions 5 6,g g  it is seen that it converges to the true root with 

2,1302 and 2,8320x y= = values at the 47th iteration. When the number of iterations is further 
increased in this step, it can be seen that it will get closer to the true root.  
 
Now let us present the performance results obtained with the TLBO algorithm in the table below. 
 

Iteration 
Number 

Best Result 
x   

Best Result 
y  min 1 2f f f= +   Iteration 

Number 
Best Result 
x   

Best Result 
y  min 1 2f f f= +   

1 5,5081 -1,8522 12,3035 26 1,9908 3,0072 0,0657 
2 3,0623 2,4998 9,9395 27 1,9908 3,0072 0,0657 
3 0,8620 4,4977 5,5669 28 1,9908 3,0072 0,0657 
4 1,6075 3,2514 4,9562 29 1,9908 3,0072 0,0657 
5 1,6075 3,2514 4,9562 30 1,9908 3,0072 0,0657 
6 2,2156 2,7944 3,4030 31 1,9908 3,0072 0,0657 
7 2,2156 2,7944 3,4030 32 1,9908 3,0072 0,0657 
8 1,9962 3,0389 1,3935 33 1,9908 3,0072 0,0657 
9 1,9962 3,0389 1,3935 34 1,9908 3,0072 0,0657 
10 1,9978 2,9936 0,3242 35 1,9908 3,0072 0,0657 
11 1,9978 2,9936 0,3242 36 1,9908 3,0072 0,0657 
12 2,0144 2,9876 0,1481 37 1,9908 3,0072 0,0657 
13 2,0144 2,9876 0,1481 38 2,0042 2,9963 0,0458 
14 2,0144 2,9876 0,1481 39 2,0036 2,9975 0,0268 
15 2,0144 2,9876 0,1481 40 2,0036 2,9975 0,0268 
16 2,0144 2,9876 0,1481 41 2,0036 2,9975 0,0268 
17 2,0144 2,9876 0,1481 42 2,0026 2,9981 0,0150 
18 2,0144 2,9876 0,1481 43 1,9982 3,0013 0,0109 
19 2,0144 2,9876 0,1481 44 1,9982 3,0013 0,0109 
20 2,0144 2,9876 0,1481 45 1,9982 3,0013 0,0109 
21 2,0144 2,9876 0,1481 46 1,9982 3,0013 0,0109 
22 2,0142 2,9882 0,1305 47 1,9982 3,0013 0,0109 
23 2,0142 2,9882 0,1305 48 1,9982 3,0013 0,0109 
24 2,0142 2,9882 0,1305 49 1,9995 3,0005 0,0072 
25 2,0142 2,9882 0,1305 50 1,9995 3,0005 0,0072 

Table 2. Convergence data with TLBO algorithm 
 
It can be seen from the table above that the best solution with the TLBO algorithm is found as 

min 0,0072f =  at the 49th iteration with x=1.9995 and y=3.0005. This shows that the TLBO algorithm can 
be used as a successful approach that is very close to the real solution. 
 
3.1. Convergence Graphs 
 
The graphs showing the convergence speed of both algorithms in the root finding process according to 
the number of iterations are given below. 
 
 
 
 
3.1.1. Convergence Graphs for Fixed Point Iteration Function Sets 
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                         (a) 

 
                              (b) 

 
                           (c) 

Figure 4. (a) Convergence graphs of fixed-point iteration set 1 2,g x g y= =  
                (b) Convergence graphs of fixed-point iteration set 3 4,g y g x= =  
                 (c) Convergence graphs of fixed-point iteration set 5 6,g x g y= =  

 
Figure 4 (a) shows that in the fixed-point iteration function set 1 2,x g y g= = , variable x converges to 
1.25 but does not converge to the true root 2, variable y converges to 0.9 but does not converge to the 
true root 3. Therefore, 1 2,x g y g= =  fixed point iteration function set is divergent to the true root. 
 
Figure 4 (b) shows that the x and y roots oscillate and do not converge to the true root in the fixed-point 
iteration function set 3 4,g g . 
 
Figure 4 (c) shows that in the 5 6,g x g y= =  fixed point iteration function set, x converges to 2.1 and y 
converges to 2.8, and as the number of iterations increases, it converges to the true root x=2 and y=3. 
 

 
                         (a) 

 
                             (b) 

 
                             (c) 

Figure 5. (a) Convergence graph for fixed point iteration function sets 1 2,x g y g= =  of functions 1 2 ve f f  

                    (b) Convergence graph for fixed point iteration function sets 4 3,x g y g= =  of functions 1 2 ve f f  

                  (c) Convergence graph for fixed point iteration function sets 5 6,x g y g= =  of functions 1 2 ve f f  
 
According to Figure 5 (a) and (b), it can be seen that the functions 1f  and 2 f  do not converge to zero 

for the values 1 2,x g y g= =  and 4 3,x g y g= =  obtained from the fixed point iteration function sets 

and therefore diverges. Figure 5 (c) shows that the functions of 1f  and 2f  converge to zero for the 

fixed-point iteration function set 5 6 ,x g y g= = .  When the x and y values obtained from the functions 

5 6 ,x g y g= =  are substituted into the functions 1f  and 2f , 1f  approaches zero, that is, the true root, 

while 2f  approaches a value close to zero. 
In order to find the root with Heuristic Optimization algorithms, the convergence to the root is checked 
by taking the sum of the absolute values of the objective functions using Theorem 1.4.2. Therefore, there 
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is no need for derivatives or generating extra functions to solve the root finding problem. The objective 
function must converge to the minimum value. Here, the convergence to zero of the sum of the absolute 
values of the objective functions for the approximate roots of the fixed point iteration and the 
approximate roots of the heuristic method is graphically compared and given in Figures 6 and 7. 
 

As a result of Theorem 1.4.2, now let us present the graphs obtained from the absolute sums of 1f  and 

2f  values in Figure 5.  The approach of the sum of 1 2f f+  to zero depending on the iteration number 

is given in Figure 6. 
 

 
                          (a) 

 
                               (b) 

 
                            (c) 

Figure 6. (a) Convergence graphs of fixed-point iteration functions 1 2,x g y g= =  of functions 1 2f f+  

                 (b) Convergence graphs of fixed-point iteration functions 3 4,y g x g= =  of functions 1 2f f+  

                    (c) Convergence graphs for fixed point iteration functions 5 6 ,x g y g= =  of functions 1 2f f+  
 
 

In Figure 6 (a), it can be seen that the sum of 1 2f f+  for the first two selected iteration formulas does 

not approach zero and makes a fluctuating search for fixed point iteration function sets 1 2,x g y g= = . 

Figure 6 (b) shows that the sum of 1 2f f+  does not converge to zero for fixed point iteration function 

sets 4 3,x g y g= = , while Figure 6 (c) shows that the sum of 1 2f f+  converges to zero for fixed point 

iteration functions 5 6 ,x g y g= = . 
 
 
3.1.2. Convergence Graphs for the Teaching-Learning Algorithm 

 

 
Figure 7. Convergence error graph of TLBO algorithm 
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According to Figure 8, it is seen that the error margins in x and ye values are very close to 0.01 until the 
10th iteration with the TLBO algorithm. In this respect, it can be said that the TLBO algorithm 
approaches the actual x and y values with very little error. 
 

 
Figure 8. Zero convergence graph of min 1 2f f f= +  for TLBO algorithm. 

 
Figure 8 shows that the value of min 1 2f f f= +  starts to approach zero after the 10th iteration and 

reaches its closest value to zero at the 49th iteration. 
 
3.2. Error Analysis Graphs 

 
The graphs comparing the error values at each iteration step for the fixed-point iteration method and 
the teaching-learning based optimization methods that we used to find approximate solutions of the 
system of equations given by (2) will be given below. 

 
3.2.1 Convergence Error Graphs for Fixed Point Iteration Functions 
 

 
                                 (a) 

 
                            (b) 

 
                            (c) 

Figure 9. (a) Convergence error graphs of fixed-point iteration function set 1 2,x g y g= =  
                   (b) Convergence error graphs of fixed-point iteration function set 4 3,x g y g= =  
                  (c) Convergence error graphs of fixed-point iteration function set 5 6,x g y g= =  

 
The convergence error graphs of fixed-point iteration functions are presented in Figure 9. Figure 9 (a) 
and Figure 9 (b) illustrate that the errors obtained for the fixed-point iteration functions exhibit 
fluctuations, whereas Figure 9 (c) demonstrates that the errors for the fixed-point iteration functions 
converge to zero.  
 
Convergence Error Graphs for the TLBO algorithm are given in Figure 10. As illustrated in Figure 10, 
the convergence error graph for the TLBO algorithm exhibits a similar pattern to the graph (Figure 8) 
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of the function converging to the minimum value. The TLBO algorithm demonstrates a consistent 
reduction in the approximation error as it approaches the true root. To summarize; the convergence 
error graphs for the TLBO algorithm, display a consistent reduction in approximation error, similar to 
the function’s graph in Figure 8, as the algorithm steadily converges to the true root for variables (x) 
and (y). 

 
Figure 10. Convergence error graphs of the TLBO algorithm ,x y  

 
 

4. CONCLUSION 
 

It is seen that TLBO converges better to the true root according to the number of iterations. Since the 
fixed-point iteration method aims to approach the best solution by considering different iteration sets, 
the success to be achieved here varies according to the choice of iteration sets. Even from this point of 
view, the fixed-point iteration method is an optimization method that requires more operations and 
cannot be said to be more successful than the TLBO algorithm in terms of convergence in the problem 
considered.  

 
Since the problem considered in this paper consists of only two nonlinear equations, the analysis of 
computation times does not make a significant difference, since current computers are quite powerful 
and therefore the total computation times of the algorithms differ by milliseconds. In more complex 
systems, with more equations, the time difference can be more discriminating. 
 
Choosing different functions can lead to better results, but there’s a risk of non-convergence due to 
dependency on function creation and initial values. The functions from Canale and Capra’s book [1] are 
used here as they are standard references, helping those interested in the field to understand the topic 
and make comparisons. 
 
Heuristic optimization techniques, like numeric methods, don’t provide exact solutions but can get close 
to the real solution. By setting a maximum number of iterations or acceptable error margins, we can 
achieve a good approximation. In the teaching and learning algorithm, iterations are capped at 50 steps 
to avoid repetition, usually resulting in a stable approximation despite further iterations. 
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