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Abstract

        Vanishing polynomials form an ideal of polynomial ring over the coefficient ring. In this paper, we give some vanishing polynomials of the polynomial ring  where  and an explicit minimal strong Gröbner basis of the ideal of vanishing polynomials of the ring . Our proof is based fully on a combinatorial way.
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1. Introduction

        Although the notion of Gröbner basis firstly handled with the current name by Buchberger in his PhD thesis (Buchberger 1965), in 1927, Macaulay had been used this idea in his famous paper (Macaulay 1927).

        When Buchberger was studying Gröbner basis for polynomial rings in his thesis at the same time Hironoka suggested the standart basis idea which is a remarkable method for solving the important problem of algebraic geometry “resolution of singularities of algebraic varieties” (Hironaka 1964). 
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        Though the statements Gröbner basis and standart basis are actually express the same things, Gröbner basis is come into prominence for the contribution to the computer algebra.
        After the efforts of Buchberger and Hironoka in the 1960s, Gröbner basis did not see sufficiently interest about twenty years. But, in the middle of 1980s, the software Macaulay designed by David Bayer and Michael Stilman became a groundbreaking development for the Gröbner basis studies. This computer algebra system is still in progress and used in several works about the Gröbner basis (Grayson and Stilman 2016).
        The concept of Gröbner basis has been had many applications in different areas of mathematics. Solution of integer programming problem (Conti and Traverso 1991), graph theory (de Loera 1995), toric ideal theory serving as a bridge between the monomial ideal theory and the theory of triangulations of convex polytopes (Sturmfels 1996) and finding Markov basis in a statistical model (Aoki et al. 2010) are some examples of these applications.
        In general, the interests of Gröbner basis are centered upon the field as a coefficient ring. The main reason for this is applications of Gröbner basis for arbitrary rings are very constraint. But, in recent years, several works with different coefficient rings have accelerated. For example, when proving correctness of data paths in system on chip design, usage of Gröbner basis in polynomial rings over Z_n has led to emergence of many works in this direction (Greuel et al. 2011), (Greuel et al. 2008), (Shekhar et al. 2005), (Wienand et al. 2008).
        Let R be an arbitrary coefficient ring with finite elements. The polynomial p∈R[x_1,x_2,...,x_n] is called vanishing if the image of all elements of R^nis zero under this polynomial. All vanishing polynomials form an ideal I which is called vanishing ideal. In this paper, our aim is to present an explicit Gröbner basis for the vanishing ideal I⊂Z_2×Z_2 [x].
        This paper is organized as follows: Section 2 is devoted to some necessary notions about the polynomial rings and Gröbner basis. In the last section, we give some vanishing polynomials of the polynomial ring Z_m×Z_l [x_1,x_2,…,x_n] and the Gröbner basis of vanishing ideal I of polynomial ring with univariate over Z_2×Z_2.

2. Materials and Methods

        Let R be a commutative Noetherian ring with unity and R[x_1,x_2,...,x_n] a polynomial ring over R where n≥1. Let  x^(α_i )  =x_1^(α_(i_1 ) ) x_2^(α_(i_2 ) )...x_n^(α_(i_n ) ) be a monomial, f=a_0 x^(α_0 )+a_1 x^(α_1 )+...+a_t x^(α_t ) a polynomial in R[x_1,x_2,...,x_n] where > being a monomial ordering, x^(α_0 )>x^(α_1 )>...>x^(α_t ). We use the following notation:

Lt(f)=a_0 x^(α_0 )	leading term of f
Lp(f)=x^(α_0 )	leading power product of f
Lc(f)=a_0	leading coefficient of f
L(X)=<Lt(f):f∈X>	leading term ideal of X
 
Definition 2.1. Let R be a ring and I an ideal of polynomial ring R[x_1,x_2,...,x_n]. G={g_1,g_2,...,g_t} consisting of nonzero polynomials is a Gröbner basis of I if G⊂I and L(G)=L(I). 
Definition 2.2. Let G={g_1,g_2,...,g_t} be a Gröbner basis of an ideal I. If Lc(g_i)=1 for all i∈{1,2,..,t} and Lp(g_i) does not divide Lp(g_j) for i≠j then G is said to be a minimal Gröbner basis. 
Example 2.3. Let f_1=y+x, f_2=x∈Q[x,y] and let us use the lex term order with y>x. Then {f_1,f_2} is a minimal Gröbner basis for the ideal I=<y^2+yx+x^2,y+x,y>. 
Definition 2.4. Let G={g_1,g_2,...,g_t} be a set consisting of nonzero polynomials in R[x_1,x_2,...,x_n]. If there is an i∈{1,2,...,t} in which Lt(g_i) divides Lt(f) for all f∈I=<g_1,g_2,...,g_t> then G is said to be a strong Gröbner basis for I. Additionally, if Lt(g_i) does not divide Lt(g_j) for i≠j then G is said to be a minimal strong Gröbner basis. 


3. Results

Definition 3.1. For f∈R[x_1,x_2,...,x_n], let we define a new function f^*:R^n→R in which f^* (a_1,a_2,...,a_n)=f(a_1,a_2,...,a_n). If f^* is identically zero then f is called a vanishing polynomial. The set I={f∈R[x_1,x_2,...,x_n]:f is vanishing} is an ideal of R[x_1,x_2,...,x_n] which is called vanishing ideal.

        An explicit minimal strong Gröbner basis has been obtained for vanishing ideal of R[x_1,x_2,...,x_n] whereR=Z_m (m≥2) in (Greuel et al. 2011). In this paper, we determine some vanishing polynomials in R[x_1,x_2,...,x_n] where R=Z_m×Z_l ((m,l)≠1) and give a minimal strong Gröbner basis for the vanishing ideal of Z_2×Z_2 [x].
 
Lemma 3.2. Consider the polynomial ring R[x_1,x_2,...,x_n] where R=Z_m×Z_l. The polynomials,
p(k,t)=(m/2,l/2)x_1^(k_1 ) (x_1^(t_1 )+1)...x_n^(k_n ) (x_n^(t_n )+1) 	 for m and l even
p(k,t)=(0,l/2)x_1^(k_1 ) (x_1^(t_1 )+1)...x_n^(k_n ) (x_n^(t_n )+1) 	 for m odd and l even
p(k,t)=(m/2,0)x_1^(k_1 ) (x_1^(t_1 )+1)...x_n^(k_n ) (x_n^(t_n )+1) 	 for m even and l odd
are vanishing polynomials.  
Proof. Let we consider the case m and l are both even. We make our proof by induction on n. p(k,t)=(m/2,l/2)(x_1^(k_1 ) (x_1^(t_1 )+1)) for n=1. If we write any element of Z_m×Z_l, say (a,b), in the statement x_1^(k_1 ) (x_1^(t_1 )+1) then we come across the element (a^(k_1 ) (a^(t_1 )+1),b^(k_1 ) (b^(t_1 )+1)). If a is even then all of its powers are also even and so a^(k_1 ) (a^(t_1 )+1) is even, otherwise its powers are odd but a^(k_1 ) (a^(t_1 )+1) is still even. Likewise, due to the fact that b^(k_1 ) (b^(t_1 )+1) is even for all case, these statements are simplify with 2. Therefore, the value of (m/2,l/2)(x_1^(k_1 ) (x_1^(t_1 )+1)) for the element (a,b) of Z_m×Z_l is being zero. So, this indicates that p(k,t) is a vanishing polynomial.

        Assume that the statement is true for n=d. That is, p(k,t)=(m/2,l/2)x_1^(k_1 ) (x_1^(t_1 )+1)x_2^(k_2 ) (x_2^(t_2 )+1)...x_d^(k_d ) (x_d^(t_d )+1) are vanishing polynomials. For n=d+1, p(k,t)=(m/2,l/2)x_1^(k_1 ) (x_1^(t_1 )+1)...x_(d+1)^(k_(d+1) ) (x_(d+1)^(t_(d+1) )+1) and because of the value of (m/2,l/2)x_(d+1)^(k_(d+1) ) (x_(d+1)^(t_(d+1) )+1) is zero for all (a,b)∈Z_m×Z_l, p(k,t) is a vanishing polynomial for n=d+1. Thus, p(k,t) is a vanishing polynomial for the case m and l are both even.

The proof can be done in a similar way for the other cases.

Theorem 3.3. Let p(k,t) be a polynomial like in the Lemma 3.2 for polynomial ring Z_2×Z_2 [x]. That is, p(k,t)=x^(k_1 ) (x^(t_1 )+1)). Then, G={x(x+1)} is a minimal strong Gröbner basis for the vanishing ideal I of Z_2×Z_2 [x].
Proof. First of all, it is easily seen that there is no vanishing polynomial type ax+b in Z_2×Z_2 [x]. Now we show that L(I)=L(G). From the Lemma 3.2, one can see that G⊂I and so L(G)⊂L(I). For the inverse inclusion let f∈L(I) be arbitrary. Then, there exist some n≥1, t_i∈Z_2×Z_2 [x] and f_i∈I (1≤i≤n) such that
f=∑_(i=1)^n▒‍ t_i Lt(f_i).
If we assume that Lt(f_i)=a_i x^(k_i ) then
f=∑_(i=1)^n▒‍ t_i Lt(f_i)=∑_(i=1)^n▒‍ t_i a_i x^(k_i )=∑_(i=1)^n▒‍ t_i a_i x^(k_i-2) x^2=∑_(i=1)^n▒‍ t_i a_i x^(k_i-2) Lt(x(x+1)).
Thus, f∈L(G) and so L(I)⊂L(G) (note that k_i-2 is not negative since there is no vanishing polynomial degree one). This shows that L(I)=L(G).
It is clear that G is a minimal strong Gröbner basis.

4. Discussion

        Since the division is troubled in rings except for fields, Gröbner basis works are progressing slowly in polynomial rings over any ring. In this paper, we give the Gröbner basis for the vanishing ideal over the coefficient ring Z_2×Z_2. The latter case is giving the Gröbner basis for the vanishing ideal of Z_m×Z_l [x_1,x_2,…,x_n] where (m,l)≠1.
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