Impacts of nano-TiO<sub>2</sub> on the initial development stages of barley seedlings under
 salinity

3

# 4 ABSTRACT

5 The most important development period in cereal plants is the initial stage, that is, seed 6 germination and early seedling development. Even if the barley is thought to be a 7 partially salt-tolerant plant, it may be severely affected when exposed to salinity at initial 8 developmental periods. Pre-treatment and preparation of seeds before sowing have an 9 important in agriculture. Nano-seed priming treatment is a new approach used to increase 10 germination, emergence and seedling growth recently. In this study, the effects of nano- $TiO_2(0, 100, 200 \text{ mg } L^{-1} \text{ n-Ti}O_2)$  pre-application and ongoing/combination application 11 12 under salinity (0, 100, 200, 300 mM NaCl) on germination and early seedling growth of barley plants were investigated. Root lengths (RL, mm), germination rates (GR, %), 13 radicle emerging (RE, %), number of coleoptiles (CN) were measured depending on the 14 day (1, 2, 3 days). At the end of the third day, seedling fresh and dry weights (FW,DW 15 16 mg) were measured. The relative growth index (RGI) of root and mean germination time (MGT) were calculated. It was determined that the application of 100 mg  $L^{-1}$  n-TiO<sub>2</sub> 17 increased root length and RGI compared to control groups. It was observed that the 18 application of 100 mg L<sup>-1</sup> n-TiO<sub>2</sub> significantly increased the germination percentage, 19 biomass and root length especially in 100 mM salt conditions. Also, 100 mg L<sup>-1</sup> n-TiO<sub>2</sub> 20 21 increased the RE too in 100 mM salt conditions (1st day). In this study, it was 22 determined that 300 mM NaCl was inhibitory dose, and also germination remained 23 below 20% in 200 mM NaCl in all groups.

24 Keywords: NaCl, Nano-Priming, Germination, Relative growth index

## 25 1. Introduction

26

27 Cereal seeds cultivated in the field are exposed to severe environmental stress factors, especially during early germination, emergence and beginning seedling 28 29 development (Bennett et al. 1992). Aridity and saltiness come first among these 30 undesirable environmental stress conditions (Panuccio et al. 2014). Barley (Hordeum 31 *vulgare* L.), is a wanted cereal crop cultivated in very large areas in Turkey and in the 32 world. Barley is considered a partially salt-tolerant cereal crop and it was reported that 33 the "Kral 97" genotype used in this study was of moderate tolerance (Bağcı et al. 2003; 34 Mahmood 2011). 35 Pre-treatment and preparation of seeds before sowing in order to improve quality and 36 increase germination energy in agricultural production has been an application area that 37 has been ongoing for a long time and has been popular recently. This method of 38 application may mostly use to increase the germination rate, total germination and 39 seedling power under unfavorable environmental conditions. This technique, called seed 40 priming, which is used especially for cereal and vegetable seeds, stimulates metabolic 41 processes related to seed germination and early seedling development, and as an outcome of these processes, seeds resistant to abiotic stress conditions, like water 42 43 scarcity develop (Korkmaz and Pill 2003; Armin et al. 2010; Theerakulpisut et al. 44 2016). 45 A wide variety of seed priming agents can be used to increase the effectiveness of 46 seeds and reduce the impact of environmental stresses. These seed priming agents may 47 have osmo-, hydro-, chem-, bio-, hormo-, halo-priming properties. New priming 48 materials have been added to the existing seed priming agents with the developing

49 technologies (such as nanotechnology) recently. Nano-seed priming treatment is a new

50 approach used to increase germination, emergence and seedling growth. (Lutts et al.

51 2016; Mahakham et al. 2017; Acharya et al. 2020). Metallic nanoparticles (zinc,

52 titanium, and silver) can be used as protective agents against biotic and abiotic stress

53 factors (do Espirito Santo Pereira et al. 2021).

54 TiO<sub>2</sub> nanoparticles (NPs) occur in 3 different forms as anatase, rutile and brookite 55 (Macwan et al. 2011). TiO<sub>2</sub> nanoparticles have been one of the 10 most used 56 nanoparticle types in the world and it has a wide range of usage in different sectors from 57 cosmetics to batteries, paint to construction industry and from the food industry to the pharmaceutical industry (Piccinno et al. 2012; Gogos et al. 2012, Liu and Cohen 2014). 58 59 In addition to, TiO<sub>2</sub> nanoparticle is included in the list of nanoparticles that should be examined primarily by the Organization for Economic Development and Cooperation 60 61 (OECD 2010).

62 Titanium is also a quite widely used chemical element in agricultural research.

63 Although titanium is not included in the essential list of macro and microelements

among plant nutrients, it has been widely used in plant nutrition lately (Bacilieri et al.

65 2017) and farther it is thought to be a benefical element when used correctly in crop

66 production (Lyu et al. 2017). There are many studies reporting that this element has a

67 positive effect on plants under stress conditions, especially germination, root

development and vegetative growth (Feizi et al. 2012; Dehkourdi and Mosavi 2013;

69 Haghighi and Silva 2014; Mutlu et al. 2018).

Overall, researchers suggest that the application of  $TiO_2$  NPs in salt stress, drought stress, and heavy metal stress situations can be a promising approach to prevent their negative effects on seed germination and early growth. There is a huge gap still waiting

| 73                                                                                             | to be investigated regarding the use of nanoparticles in seed preparation. In this study, it                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 74                                                                                             | has been tried to find answers to the question of whether nano-TiO <sub>2</sub> be one of these new                                                                                                                                                                                                                                                                                                                                                                   |
| 75                                                                                             | priming agents? The application time of the nanoparticles, the way of application, the                                                                                                                                                                                                                                                                                                                                                                                |
| 76                                                                                             | concentration to be applied, and how it will be applied in which stress situation, how it                                                                                                                                                                                                                                                                                                                                                                             |
| 77                                                                                             | will work, is a highly interesting subject. Therefore, in this research, a study that                                                                                                                                                                                                                                                                                                                                                                                 |
| 78                                                                                             | investigates the effects on germination rate, root length, biomass and coleoptile with                                                                                                                                                                                                                                                                                                                                                                                |
| 79                                                                                             | TiO <sub>2</sub> nanoparticle pre-application and ongoing application under salt stress is designed.                                                                                                                                                                                                                                                                                                                                                                  |
| 80                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 81                                                                                             | 2. Materials and Methods                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 82                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 83                                                                                             | 2.1. Seed samples                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 84                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 85                                                                                             | The seeds of Hordeum vulgare L. (barley), which are widely cultivated, were used in                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.4                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 86                                                                                             | this study. Barley seeds were subjected to surface sterilization prior put to use. After the                                                                                                                                                                                                                                                                                                                                                                          |
| 86<br>87                                                                                       | seeds were kept in 5% sodium hypochlorite for 5 minutes, they were washed five times                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 87                                                                                             | seeds were kept in 5% sodium hypochlorite for 5 minutes, they were washed five times                                                                                                                                                                                                                                                                                                                                                                                  |
| 87<br>88                                                                                       | seeds were kept in 5% sodium hypochlorite for 5 minutes, they were washed five times                                                                                                                                                                                                                                                                                                                                                                                  |
| 87<br>88<br>89                                                                                 | seeds were kept in 5% sodium hypochlorite for 5 minutes, they were washed five times<br>with pure water and dried at room temperature on filter papers and used in the study.                                                                                                                                                                                                                                                                                         |
| 87<br>88<br>89<br>90                                                                           | seeds were kept in 5% sodium hypochlorite for 5 minutes, they were washed five times<br>with pure water and dried at room temperature on filter papers and used in the study.                                                                                                                                                                                                                                                                                         |
| 87<br>88<br>89<br>90<br>91                                                                     | seeds were kept in 5% sodium hypochlorite for 5 minutes, they were washed five times<br>with pure water and dried at room temperature on filter papers and used in the study.<br>2.2. Preparation and pre-application of TiO <sub>2</sub> nanoparticle suspensions                                                                                                                                                                                                    |
| 87<br>88<br>89<br>90<br>91<br>92                                                               | <ul> <li>seeds were kept in 5% sodium hypochlorite for 5 minutes, they were washed five times with pure water and dried at room temperature on filter papers and used in the study.</li> <li>2.2. Preparation and pre-application of TiO<sub>2</sub> nanoparticle suspensions</li> <li>The commercial form of TiO<sub>2</sub> nanoparticles (32 nm) was used in the study (Titanium</li> </ul>                                                                        |
| <ul> <li>87</li> <li>88</li> <li>89</li> <li>90</li> <li>91</li> <li>92</li> <li>93</li> </ul> | seeds were kept in 5% sodium hypochlorite for 5 minutes, they were washed five times<br>with pure water and dried at room temperature on filter papers and used in the study.<br>2.2. Preparation and pre-application of TiO <sub>2</sub> nanoparticle suspensions<br>The commercial form of TiO <sub>2</sub> nanoparticles (32 nm) was used in the study (Titanium<br>(IV) oxide, NanoArc, anatase, nanopowder, 99.9% metals basis). Suspensions of TiO <sub>2</sub> |

| 97  | sterilized seeds were kept in aerated solution containing different concentrations of                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 98  | nano-TiO <sub>2</sub> (0, 100, 200 mg $L^{-1}$ TiO <sub>2</sub> ) for 24 h before salinity application. At the end of |
| 99  | this pretreatment, seeds for each application were put between two layers of filter papers                            |
| 100 | in square petri dishes. 25 seeds were placed in each petri dish and the study was carried                             |
| 101 | out with 4 repetitions.                                                                                               |
| 102 |                                                                                                                       |
| 103 | 2.3. $TiO_2$ nanoparticle and salinity applications                                                                   |
| 104 |                                                                                                                       |
| 105 | Nanoparticle applications were made as pre-applications before switching to salt and                                  |
| 106 | nanoparticle combined applications. Solutions containing nanoparticle (0, 100, 200 mg                                 |
| 107 | L <sup>-1</sup> TiO <sub>2</sub> ) and salt (0, 100, 200, 300 mM NaCl) in different concentrations were added in      |
| 108 | equal amounts on the seeds found in petri dishes in the combinations given in Table 1.                                |
| 109 | The same amount of deionized water was added to the control groups. There were 12                                     |
| 110 | application groups in total and 100 seeds were used in each application group (Table 1).                              |
| 111 |                                                                                                                       |
| 112 | 2.4. Germination of barley seeds and growth                                                                           |
| 113 |                                                                                                                       |
| 114 | The application groups in petri dishes were germinated at 24:18°C day:night                                           |
| 115 | temperature, 16:8 day:night light period, 150 $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> light intensity and 60±5%     |
| 116 | humidity conditions for 3 days under controlled conditions in the climate room.                                       |
| 117 |                                                                                                                       |
| 118 | 2.5. Assays                                                                                                           |
| 119 |                                                                                                                       |

| 120 | In the study, root lengths (RL, mm), germination rates (%), radicle emerging (RE,            |
|-----|----------------------------------------------------------------------------------------------|
| 121 | %), number of coleoptiles (CN) were measured depending on the day (1, 2, 3 days). At         |
| 122 | the end of the third day, seed fresh and dry weight (at 80°C for 24 h) (mg) were             |
| 123 | measured. Seed weights were given for 100 seeds. In addition, plants were                    |
| 124 | photographed daily for three days. The relative growth index (RGI) of root and mean          |
| 125 | germination time (MGT) were calculated.                                                      |
| 126 | Seeds were considered germinated when the radicles were $\geq 2 \text{ mm}$ long and radicle |
| 127 | emergence was defined as the radicles were <2 mm long (Kaya et al. 2006; Gao et al.          |
| 128 | 2018). The number of seeds that emerged and germinated was recorded every 24 h for 3         |
| 129 | days. Radicle emergence and seed germination percentages were calculated using the           |
| 130 | following formulas (Koksal et al. 2015; Gao et al. 2018).                                    |
| 131 |                                                                                              |
| 132 | Radicle Emergence (%)= Number of emerged seeds / Total number of seeds X 100 [1]             |
| 133 | Seed Germination (%)= Number of germinated seeds / Total number of seeds X 100 [2]           |
| 134 |                                                                                              |
| 135 | Root length was measured daily with digital caliper. Based on the daily measurement          |
| 136 | relative growth index (RGI) of root was calculated with following formula:                   |
| 137 |                                                                                              |
| 138 | $RGI(mm \ [day] \ ^{(-1)}) = (RL2 - RL1)/(t2 - t1) $ [3]                                     |
| 139 |                                                                                              |
| 140 | The RGI formula was modified from Acosta-Motos et al. (2017) and Ren et al.                  |
| 141 | (2016).                                                                                      |
| 142 | Where, RL2 - RL1, root length for seed at the beginning and at the end of                    |
| 143 | experiment; t2 - t1 was the time duration for the treatment.                                 |
|     |                                                                                              |

146 The experiment was conducted using a completely randomized experimental design 147 with two factors (NaCl and n-TiO<sub>2</sub> concentrations). Treatments had four replications 148 with 25 seeds each. All quantitative data expressed as percentages were subjected to 149 arcsine transformation. Data were subjected to ANOVA and the means were separated 150 using the LSD multiple range test at  $p \le 0.05$ . All statistical analyses were performed 151 using the JMP8 software package. 152 153 3. Results and Discussion 154 155 This study was carried out to evaluate the effects of nanoparticles and salinity at the 156 initial stage of plant development in nano TiO<sub>2</sub>-primed barley seeds. Different 157 concentrations of primed nano-TiO<sub>2</sub> (0, 100, 200 mg L<sup>-1</sup> TiO<sub>2</sub>) seeds were germinated 158 under different concentrations of NaCl (0, 100, 200 and 300 mM), nano-TiO<sub>2</sub> (0, 100, 200 mg L<sup>-1</sup> TiO<sub>2</sub>) and NaCl/n-TiO<sub>2</sub> combinations. The effects of Nano-seed priming, 159 160 nanoparticles and salt applications on the root lengths, germination rates, coleoptile and 161 biomass were comparatively investigated daily for 3 days. In addition, RGI and MGT 162 were calculated based on with these data. Phenotypic images of barley seedlings in 163 different concentrations of TiO<sub>2</sub> NPs/NaCl treatments depending on the days are given 164 in Figure 1 (a, b, c). The effects of nano-titanium and salinity were found significant in

- terms of germination and early seedling parameters on barley plants, statistically.
- 166 The findings in this study showed that the germination and growth parameters of
- 167 barley were negatively affected due to the increased salt concentration (Figure 1a, b, c).

| 168 | In many studies, including this study, salinity in barley plants has been shown to reduce                          |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 169 | seed germination, radicle emergence and inhibit root elongation depending on the                                   |
| 170 | concentration (Ayers 1953; Bağcı et al. 2003; Katerji et al. 2006; Mahmood 2011;                                   |
| 171 | Askari et al. 2016; Demiroğlu Topçu and Özkan 2017). Germination times were                                        |
| 172 | lengthen out as the salt concentration increased. It was found that germination did not                            |
| 173 | occur at a salt concentration of 300mM, indicating that this concentration was an overly                           |
| 174 | high dose for the "Barley Kral 97". So what differences have been observed with the                                |
| 175 | application of titanium nanoparticles?                                                                             |
| 176 | Strikingly, on the first day of application (Figure 1a), the highest RE (20%) ratio was                            |
| 177 | obtained at 100 mg L <sup>-1</sup> nano-TiO <sub>2</sub> +100mM salt application compared to all groups.           |
| 178 | This rise was exactly twice of 100 mM salt applications (%10) (Figure 2a). It was                                  |
| 179 | observed that germination rates dramatically decreased significantly with the increase in                          |
| 180 | salinity (Figure 2b). On the 3rd day of treatment (Figure 1c), the highest values of                               |
| 181 | germination rates were obtained from control (87%) and 100 mg $L^{-1}$ nano-TiO <sub>2</sub> (83%).                |
| 182 | When the salt concentration was 100 mM, the highest germination rates were found in                                |
| 183 | 100 mg $L^{-1}$ nano-TiO <sub>2</sub> (70%) (Table 2). The protective effect of TiO <sub>2</sub> was seen when the |
| 184 | salinity level was 100 mM.                                                                                         |
| 185 | As seen in Figure 2c, when salinity and TiO <sub>2</sub> levels increased, coleoptile numbers                      |
| 186 | drastically decreased (Table 2). The highest values of coleoptile numbers were obtained                            |
| 187 | from control (78%) and 100 mg $L^{-1}$ nano-TiO <sub>2</sub> (76%). Coleoptile numbers decreased at                |
| 188 | 200 mg $L^{-1}$ nano-TiO <sub>2</sub> (59%). Titanium could not positively effective of coleoptile                 |
| 189 | numbers under saline conditions (Table 3).                                                                         |
| 190 | Treatment effects in terms of root length on daily observations were shown in Figure                               |

190 Treatment effects in terms of root length on daily observations were shown in Figure
191 3. The effects of salinity and nano-TiO<sub>2</sub> on root length were presented in Tables 2 and 3.

192 When salinity increased, root length dramatically decreased. The highest values of root length were obtained from control (16.69 mm) and 100 mg  $L^{-1}$  Nano-TiO<sub>2</sub> (17.6 mm). 193 Root length decreased at 200 mg  $L^{-1}$  nano-TiO<sub>2</sub> (11.0 mm). Although there were no 194 statistical differences among control and 100 mg L<sup>-1</sup> nano-TiO<sub>2</sub> in terms of root length, 195 the highest root length values were obtained 100 mg  $L^{-1}$  nano-TiO<sub>2</sub> levels (5.75 mm). 196 197 When the salt concentration was 100 mM, the most root length was found in the plants treated with 100 mg  $L^{-1}$  nano-TiO<sub>2</sub> levels (4.99 mm). When the salt level was up to 100 198 199 mM, root length decreased, drastically (Table 3). 200 The effects of salinity and titanium on the fresh weight (FW) of seeds were presented 201 in Tables 2 and 3. As salinity increased, fresh weight decreased. The differences 202 between fresh weights in terms of salt treatments were found important, statistically. 203 Nano-TiO<sub>2</sub> did not affect the fresh weights of plants (Table 2). It was not seen 204 statistically significant differences in terms of barley seeds dry weights (DW) under 205 salinity and titanium treatments (Tables 2 and 3). 206 The root relative growth index (RGI) results clearly demonstrated the negative 207 effects of salt stress on the radicle development stage of the seeds (Table 2). The highest RGI was obtained from control (7.37) and 100 mg  $L^{-1}$  nano-TiO<sub>2</sub> (7.68). The mean 208 germination time (MGT) increased with 200 mM NaCI+n-TiO<sub>2</sub> application. 209 210 Gohari et al. (2000) showed that 50 and 100 mM NaCl negatively affect the 211 agronomic properties (plant height, shoot and leaf fresh and dry weights and leaf number) of the *Dracocephalum moldavica*, but the application of 100 mg  $L^{-1}$  TiO<sub>2</sub> NPs 212 213 reduces these negative effects, as in the results of this study. Also, Feizi et al. (2012) 214 reported that nano-TiO<sub>2</sub> in a suitable concentration could promote the seed germination

215 of wheat in comparison to bulk TiO<sub>2</sub>. Haghighi and Silva (2014) reported that nano-

216 TiO<sub>2</sub> application had a positive effects on germination studies on tomato, onion and radish seeds that 200, 100 and less than 100 mg L<sup>-1</sup> TiO<sub>2</sub>, respectively, were appropriate 217 218 concentrations and suggested that nano-TiO<sub>2</sub> may function as a seed priming agent for 219 horticultural crops. However, they especially emphasized in their studies that need for 220 more experiments should be done on this subject. Dehkourdi and Mosavi (2013) showed that the application of nano-anatase  $TiO_2$  at a concentration of 30 mg ml<sup>-1</sup> 221 222 caused a significant increase in germination, germination rate index, root and shoot 223 length, fresh weight, viability index and chlorophyll content. Mutlu et al. (2018) 224 reported that nano-TiO<sub>2</sub> treatments (0.1%, 0.2% and 0.3%) were ineffective on 225 germination percentage in maize cultivar, regardless of concentration. In the case of 226 stress (300 mM NaCl), they indicated that nano-TiO<sub>2</sub> treatments caused significant 227 increases in root-stem length and fresh-dry weights. Further, notified that the 228 application of salt stress in maize plants inhibits seed germination and seedling growth. Doğaroğlu and Köleli (2016) reported that especially in 80 and 100 mg L<sup>-1</sup> nano-TiO<sub>2</sub> 229 230 concentration, number of seed germination increased compared to control in lettuce. 231 Younes et al. (2020) pointed out the extraordinary effect on germination characteristics 232 and seedling growth by treating seeds of eggplant, pepper and tomato plants with gelcoated TiO<sub>2</sub> nanomaterials (0, 50, 100 and 150 mg  $L^{-1}$ ). They reported that the 233 234 maximum transplants lengths, fresh and dry weight were recorded at the level 100 mg  $L^{-1}$  nano-TiO<sub>2</sub> whatever the crop plant used, in line with the results in this study. Also, 235 236 in the same study it has been shown that in the solanaceae family that the germinability 237 increased and the mean germination time decreased by gel-coating the seeds with 100 mg  $L^{-1}$  nano-TiO<sub>2</sub> (Younes et al. 2020). Besides, It has been suggested that different 238 nanoparticle seed preparation practices under salt stress in cotton and cucumber seeds 239

240 are a sustainable, practical and scalable tool to improve crop tolerance to stress (An et 241 al. 2020; Mahdy et al. 2020). As seen in the studies, there are differences in the 242 response to nanoparticles between concentration, application method and plant types. 243 Taken together all of these literature, similar results also reported by other 244 researchers on the different plant species To summarize the study, it was observed that 245 100 mg L<sup>-1</sup> nano-TiO<sub>2</sub> application increased root length and RGI compared to control groups. It was determined that 100 mg  $L^{-1}$  nano-TiO<sub>2</sub> application significantly increased 246 247 RE, germination percentage, biomass and root length, especially under 100 mM salt 248 conditions.

249

# 250 **4. Conclusion**

This experimental design showed that  $n-TiO_2$  seed priming application at 100 mg L<sup>-1</sup> 251 252 improved the seedling growth compared to control, and also alleviated the negative 253 effects of salt stress (100 mM NaCl) by improving growth. The results also show that the effects of nanoparticles may vary depending on concentration. The effects of 254 255 nanoparticles vary depending on the period of plant development and the duration of 256 application. Therefore, it should be studied in more detail. If the strong clues obtained 257 are supported by observing the advanced development stages of the plants and making 258 field studies, more final results can be reached.

259

#### 260 Acknowledgment

261 We thank the Dr. Sara Yasemin, Siirt University, for contributions to statistical

analyses. We thank the Prof. Dr. Serpil ÜNYAYAR, Faculty of Medicine, Girne

263 American University Drive, TRNC, for supports.

# 265 **References**

- 267 Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS (2020) Nanoparticle-
- 268 mediated seed priming improves germination, growth, yield, and quality of
- watermelons (*Citrullus lanatus*) at multi-locations in Texas. Scientific Reports 10(1):
  5037.
- 271 Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sánchez-Blanco
- 272 MJ, Hernández JA (2017) Plant responses to salt stress: Adaptive mechanisms.
- 273 Agronomy 7: 18.
- An J, Hu P, Li F, Wu H, Shen Y, White J, Tian X, Li Z, Giraldo JP (2020) Emerging
- 275 Investigator Series: Molecular mechanisms of plant salinity stress tolerance
- improvement by seed priming with cerium oxide nanoparticles. Environmental
- 277 Science: Nano doi: 10.1039/d0en00387e.
- 278 Armin M, Asgharipour M, Razavi-Omrani M (2010) The effect of seed priming on
- 279 germination and seedling growth of watermelon (*Citrullus lanatus*). Advances in
- 280 Environmental Biology 4(3): 501-505.
- 281 Askari H, Kazemitabar SK, Zarrini HN, Saberi MH (2016) Salt tolerance assessment of
- 282 barley (*Hordeum vulgare* L.) genotypes at germination stage by tolerance indices.
- 283 Open Agriculture 1: 37-44.
- Ayers AD (1953) Germination and emergence of several varieties of barley in salinized
- soil cultures. Agronomy Journal 45(2): 68.

- Bacilieri FS, Pereira de Vasconcelos AC, Quintao Lana RM, Mageste JG, Torres JLR
- (2017) Titanium (Ti) in plant nutrition-A review. Australian Journal of Crop Science
  11(4): 382-386.
- 289 Bağcı SA, Ekiz H, Yılmaz A (2003) Determination of the salt tolerance of some barley
- 290 genotypes and the characteristics affecting tolerance. Turkish Journal of Agriculture
- and Forestry 27: 253-260.
- Bennett MA, Fritz VA, Callan NW (1992) Impact of seed treatments on crop stand
  establishment. HortTechnology 2: 345-349.
- 294 Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO<sub>2</sub>) on parsley seed
- 295 germination (*Petroselinum crispum*) in vitro. Biological Trace Element Research
  296 155: 283-286.
- 297 Demiroğlu Topçu G, Özkan SŞ (2017) Farklı tuz (NaCl) konsantrasyonlarının bazı arpa
- 298 (*Hordeum vulgare* L.) çeşitlerinin çimlenme özelliklerine etkisinin belirlenmesi.
- 299 ÇOMÜ Ziraat Fakültesi Dergisi 5(2): 37-43.
- 300 do Espirito Santo Pereira A, Caixeta Oliveira H, Fernandes Fraceto L, Santaella C
- 301 (2021) Nanotechnology potential in seed priming for sustainable agriculture.
- 302 Nanomaterials 11(2): 267. doi: 10.3390/nano11020267.
- 303 Doğaroğlu Z, Köleli N (2016) Titanyum dioksit ve titanyum dioksit-gümüş
- 304 nanopartiküllerinin marul (*Lactuca sativa*) tohumunun çimlenmesine etkisi.
- 305 Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31(ÖS2): 193-198.
- doi: 10.21605/cukurovaummfd.316762.
- 307 Feizi H, Razavi P, Shahtahmasebi N, Fotovat A (2012) Impact of bulk and nanosized
- 308 titanium dioxide (TiO<sub>2</sub>) on wheat seed germination and seedling growth. Biological
- 309 Trace Element Research 146: 101-106.

| 310 | Gao Y, Cui Y, Long R, Sun Y, Zhang T, Yang Q, Kang J (2018) Salt-stress induced              |
|-----|----------------------------------------------------------------------------------------------|
| 311 | proteomic changes of two contrasting alfalfa cultivars during germination stage.             |
| 312 | Journal of Science of Food and Agriculture 99(3): 1384-1396.                                 |
| 313 | Garcia-Lopez JS, Lira-Saldivar RH, Zavala-Garcıa F, Olivares-Saenz E, Nino-Medina            |
| 314 | G, Ruiz-Torres NA, Mendez-Arguello B, Dıaz-Barriga E (2018) Effects of zinc                  |
| 315 | oxide nanoparticles on growth and antioxidant enzymes of Capsicum chinense.                  |
| 316 | Toxicological&Environmental Chemistry 100: 560-572 ISSN: 0277-2248.                          |
| 317 | Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and                   |
| 318 | fertilization: current state, foreseen applications, and research priorities. Journal of     |
| 319 | Agricultural and Food Chemistry 60(39): 9781-9792.                                           |
| 320 | Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura               |
| 321 | S (2020) Titanium dioxide nanoparticles (TiO <sub>2</sub> NPs) promote growth and ameliorate |
| 322 | salinity stress effects on essential oil profile and biochemical attributes of               |
| 323 | Dracocephalum moldavica. Scientific Reports 10(1): 912.                                      |
| 324 | Haghighi M, Teixeira da Silva JA (2014) The effect of N-TiO2 on tomato, onion, and           |
| 325 | radish seed germination. Journal of Crop Science and Biotechnology 17(4): 221-227.           |
| 326 | Katerji N, Hoorn JW, Hamdy A, Mastrorilli M, Fares C, Ceccarelli S, Grando S, Oweis          |
| 327 | T (2006) Classification and salt tolerance analysis of barley varieties. Agricultural        |
| 328 | Water Management 851(1-2): 184-192.                                                          |
| 329 | Kaya MD, Okçu G, Atak M, Çıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome            |
| 330 | salt and drought stress during germination in sunflower (Helianthus annuus L.).              |
| 331 | European Journal of Agronomy 24: 291-295.                                                    |

- 332 Koksal N, Agar A, Yasemin S (2015) The effects of top coat substrates on seedling
- growth of marigold. Journal of Applied Biological Sciences 9(3): 66-72.

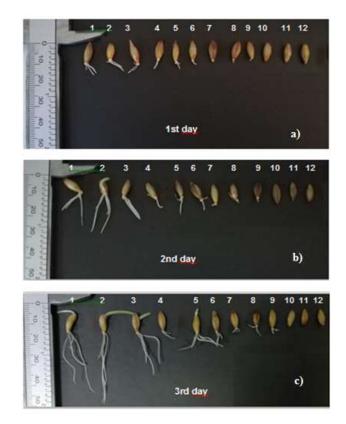
- 334 Korkmaz A, Pill WG (2003) The effect of different priming treatments and storage
- conditions on germination performance of lettuce seeds. European Journal of
- 336 Horticultural Science 68(6): 260-265.
- 337 Liu HH, Cohen Y (2014) Multimedia environmental distribution of engineered
- nanomaterials. Environmental Science & Technology 48(6): 3281-3292.
- 339 Lutts S, Benincasa P, Wojtyla L, Szymon Kubala S, Pace R, Lechowska K, Quinet M,
- 340 Garnczarska M (2016) Seed priming: new comprehensive approaches for an old
- 341 empirical technique. New Challenges in Seed Biology Basic and Translational
- 342 Research Driving Seed Technology. Intechopen.
- 343 Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as a beneficial
- element for crop production. Frontiers in Plant Science 8: 597.
- 345 Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO<sub>2</sub> sol-gel type
- 346 syntheses and its applications. Journal of Materials Science 46(11): 3669-3686.
- 347 Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming
- 348 technology for enhancing germination and starch metabolism of aged rice seeds
- 349 using phytosynthesized silver nanoparticles. Scientific Reports 7(1): 8263.
- 350 Mahdy AM, Sherif FF, Elkhatib EA, Fathi NO, Ahmed MH (2020) Seed priming in
- 351 nanoparticles of water treatment residual can increase the germination and growth of
- cucumber seedling under salinity stress. Journal of Plant Nutrition 43(12): 1862-
- 353 1874. doi: 10.1080/01904167.2020.1750647.
- 354 Mahmood K (2011) Salinity tolerance in barley (*Hordeum vulgare* L.): Effects of
- 355 varying NaCl,  $K^+/Na^+$  and NaHCO<sub>3</sub> levels on cultivars differing in tolerance.
- Pakistan Journal of Botany 43: 1651-1654.

- 357 Mutlu F, Yürekli F, Mutlu B, Emre FB, Okusluk F, Ozgul O (2018) Assessment of
- 358 phytotoxic and genotoxic effects of anatase TiO<sub>2</sub> nanoparticles on maize cultivar by
- using rapd analysis. Fresenius Environmental Bulletin 27(1): 436-445.
- 360 OECD (2010). List of manufactured nanomaterials and list of endpoints for phase one
- 361 of the sponsorship programme for the testing of manufactured nanomaterials:
- 362 Revision. safety of manufactured nanomaterials.
- 363 Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A. (2014) Effect of saline water on
- 364 seed germination and early seedling growth of the halophyte quinoa. AoB Plants
- 365 6:047, doi: 10.1093/aobpla/plu047.
- 366 Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities
- 367 and uses of ten engineered nanomaterials in Europe and the world. Journal of
- 368 Nanoparticle Research 14(9): 1109.
- 369 Ren J, Sun LN, Zhang QY, Song XS (2016) Drought tolerance is correlated with the
- activity of antioxidant enzymes in *Cerasus humilis* seedlings. Biomed Research
- 371 International 7: 1-9.
- 372 Theerakulpisut P, Kanawapee N, Panwong B (2016) Seed priming alleviated salt stress
- 373 effects on rice seedlings by improving Na+/K+ and maintaining membrane integrity.
- 374 International Journal of Plant Biology 7(6402): 53-58.
- 375 Younes NA, Shokry Hassan H, Elkady MF, Hamed AM, Dawood MFA (2020) Impact
- 376 of synthesized metal oxide nanomaterials on seedlings production of three
- 377 Solanaceae crops. Heliyon 6(1): E03188. doi: 10.1016/j.heliyon.2020.e03188.
- 378
- 379
- 380

| Groups | NaCl (mM) | TiO2 (mg L <sup>-1</sup> ) |
|--------|-----------|----------------------------|
| 1      | 0         | 0                          |
| 2      | 0         | 100                        |
| 3      | 0         | 200                        |
| 4      | 100       | 0                          |
| 5      | 100       | 100                        |
| 6      | 100       | 200                        |
| 7      | 200       | 0                          |
| 8      | 200       | 100                        |
| 9      | 200       | 200                        |
| 10     | 300       | 0                          |
| 11     | 300       | 100                        |
| 12     | 300       | 200                        |
|        |           |                            |

# **Table 1.** Experimental application groups

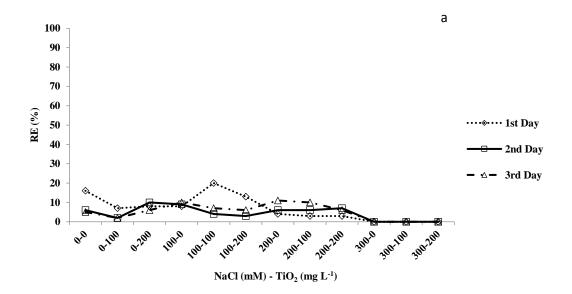
| Salinity<br>(mM) | n-TiO <sub>2</sub> (mg L <sup>-1</sup> ) | MeanRadicleGerminationEmergingTime(%) | Comination | Coleoptile              | Root     | Fresh         | Dry        | RGI          |          |
|------------------|------------------------------------------|---------------------------------------|------------|-------------------------|----------|---------------|------------|--------------|----------|
|                  |                                          |                                       |            | Germination<br>rate (%) | number   | length        | Weight     | Weight       | mm day   |
|                  |                                          |                                       |            |                         | (%)      | ( <b>mm</b> ) | <b>(g)</b> | ( <b>g</b> ) | -1       |
|                  | 0                                        | 1.48c                                 | 5 (12)c    | 87(69)a                 | 78 (62)a | 16.69a        | 2.90       | 1.05         | 7.37a    |
| 0                | 100                                      | 1.42c                                 | 2 (7)d     | 83(66)a                 | 76 (61)a | 17.6a         | 2.95       | 1.05         | 7.68a    |
|                  | 200                                      | 1.53c                                 | 6 (14)c    | 75(60)b                 | 59 (50)c | 11.0b         | 2.55       | 1.06         | 4.83b    |
|                  | 0                                        | 1.55c                                 | 10 (18)ab  | 58(50)d                 | 43 (41)c | 3.80c         | 2.31       | 1.16         | 1.56c    |
| 100              | 100                                      | 1.57c                                 | 7 (15) bc  | 70(57)bc                | 41 (40)c | 4.99c         | 2.21       | 1.11         | 2.12c    |
|                  | 200                                      | 1.67c                                 | 6 (14)c    | 64(53)cd                | 41 (40)c | 3.92c         | 2.14       | 1.10         | 1.65c    |
|                  | 0                                        | 1.96b                                 | 11 (20)a   | 17(24)e                 | 5 (12)d  | 0.45d         | 1.93       | 1.10         | 0.22d    |
| 200              | 100                                      | 2.33a                                 | 10 (18)ab  | 15(23)e                 | 3 (10)e  | 0.42d         | 1.89       | 1.09         | 0.20d    |
|                  | 200                                      | 1.63c                                 | 6 (14)c    | 10(18)f                 | 3 (10)e  | 0.26d         | 1.96       | 1.13         | 0.12d    |
|                  | 0                                        | 0d                                    | 0e         | 0g                      | Of       | 0d            | 1.86       | 1.13         | 0d       |
| 300              | 100                                      | 0d                                    | 0e         | 0g                      | Of       | 0d            | 1.91       | 1.16         | 0d       |
|                  | 200                                      | 0d                                    | 0e         | 0g                      | Of       | 0d            | 1.77       | 1.16         | 0d       |
| LSD              |                                          | 0.261**                               | 3.609**    | 3.856***                | 2.552*** | 2.080***      | NS         | NS           | 0.980*** |

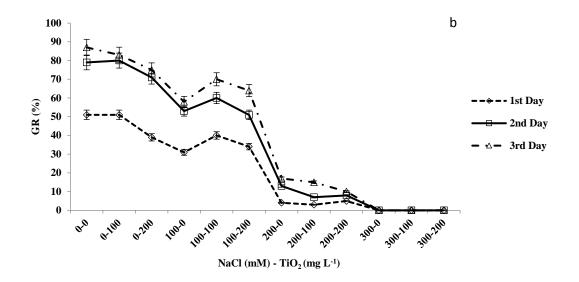

**Table 2.** Effects of n-TiO<sub>2</sub> and salinity interactions on MGT, RE, GR, CN, RL, FW, DW, RGI on thr 3rd day

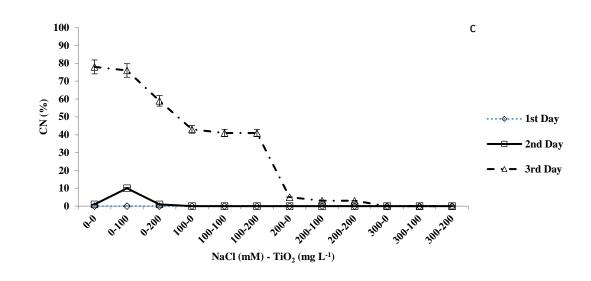
| NaCl (mM)                             | MGT      | RE(%)    | GR(%)    | CN (%)   | RL(mm)   | FW(g)     | DW (g) | RGI      |
|---------------------------------------|----------|----------|----------|----------|----------|-----------|--------|----------|
| 0                                     | 1.48b    | 4 (11)b  | 82 (65)a | 71 (57)a | 15.1a    | 2.80a     | 1.05   | 6.62a    |
| 100                                   | 1.59b    | 7 (15)a  | 64 (53)b | 42 (40)b | 4.2b     | 2.21b     | 1.12   | 1.77b    |
| 200                                   | 1.97a    | 8 (17)a  | 14 (22)c | 3 (11)c  | 0.4c     | 1.93bc    | 1.11   | 0.18c    |
| 300                                   | 0c       | 0c       | 0d       | 0d       | 0c       | 1.85c     | 1.15   | 0c       |
| LSD                                   | 0.151*** | 2.084*** | 2.226*** | 1.474*** | 1.201*** | 0.369***  | NS     | 0.566*** |
| n-TiO <sub>2</sub> (mg L <sup>-</sup> | -1)      |          |          |          |          |           |        |          |
| 0                                     | 1.25     | 6 (13)a  | 41 (36)a | 31(29)a  | 5.24a    | 2.25      | 1.11   | 2.29a    |
| 100                                   | 1.32     | 5 (10)b  | 42 (36)a | 30 (28)b | 5.75a    | 2.24      | 1.10   | 2.50a    |
| 200                                   | 1.21     | 4 (10)b  | 37 (33)b | 26 (25)c | 3.80b    | 2.11      | 1.11   | 1.65b    |
| LSD                                   | NS       | 1.804*   | 1.928**  | 1.276*** | 0.977**  | <i>NS</i> | NS     | 0.489**  |

**Table 3.** Effects of n-TiO<sub>2</sub> and salinity levels on MGT, RE, GR, CN, RL, FW, DW, RGI on thr 3rd day

p<0.05, p<0.01, p<0.01, p<0.001, ns: Nonsignificant. Figures in parentheses are arcsine transformed values of percentages.


397

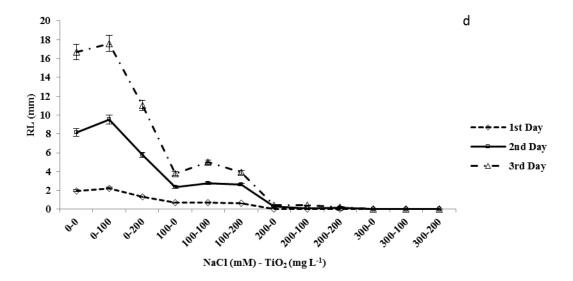



**Figure 1.** Phenotypic images of barley seedlings in different concentrations of TiO<sub>2</sub>

NPs/NaCl treatments depending on the days [a) 1st day, b) 2nd day, c) 3rd day].








406 Figure 2. a) Radicle emergence percentage (RE-%), b) Germination percentage (GR-

407 %), c) Coleoptile number (CN-%) of barley seedlings in different concentrations

of TiO<sub>2</sub> NPs/NaCl treatments, depending on the days.





**Figure 3.** Root length (RL, mm) of barley seedlings in different concentrations of TiO<sub>2</sub>

414 NPs/NaCl treatments depending on the days.