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A contribution to complementary soft binary piecewise plus and gamma 

operations 

Aslıhan Sezgin1,* , Emre Akbulut2  

1Department of Mathematics and Science Education, Faculty of Education, Amasya University, Amasya, Türkiye 
2Department of Mathematics, Graduate School of Natural and Applied Sciences, Amasya University, Amasya, Türkiye 

Abstract − Molodtsov, in 1999, introduced soft set theory as mathematical a tool to deal with uncertainty. Since then, different 

kinds of soft set operations have been defined and used in various types. In this paper, it is aimed to contribute to the soft set literature 

by obtaining the distributions of soft binary piecewise operations over complementary soft binary piecewise plus and gamma 

operations. 

Keywords: Soft sets, conditional complements, soft set operations 

Subject Classification (2020): 03E20, 03E72  

1. Introduction 

The existence of some types of uncertainty in the problems of many fields such as economics, environmental 

and health sciences, engineering prevents us from using classical methods to solve the problems successfully. 

There are three well-known basic theories that we can consider as a mathematical tool to deal with 

uncertainties, which are probability theory, fuzzy set theory, and interval mathematics. But since all these 

theories have their own shortcomings, Molodtsov [1] introduced Soft Set Theory as mathematical tools to 

overcome these uncertainties. Since then, this theory has been applied to many fields including information 

systems, decision making, optimization theory, game theory, operations research, measurement theory and so 

on. In [2,3], first contributions as regards soft set operations were made. After then, Ali et al. [4] introduced 

and investigated several soft set operations such as restricted and extended soft set operations. in Sezgin and 

Atagün [5] discussed the basic properties of soft set operations and illustrated the interconnections of soft set 

operations with each other. They also defined the notion of restricted symmetric difference of soft sets and 

investigated its properties. Sezgin et al. [6] defined a new soft set operation called extended difference of soft 

sets and Stojanovic [7] proposed the extended symmetric difference of soft sets and investigated its properties. 

The two main categories into which the operations of soft set theory fall, according to the research, are 

restricted soft set operations and extended soft set operations. 

Çağman [8] proposed two conditional complements of sets as a new concept of set theory, i.e., inclusive 

complement and exclusive complement and explored the relationships between them. By the inspiration of 

this study, Sezgin et al. [9] defined some new binary operations on sets and investigated their basic properties 

together with their interconnections. Aybek [10] transferred these complements to soft set theory and defined 
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some new restricted soft set operations and extended soft set operations. Demirci [11], Sarıalioğlu [12], and 

Akbulut [13] introduced a new type of extended operation by changing the form of extended soft set operations 

using the complement at the first and second row of the piecewise function of extended soft set operations and 

studied the basic properties of them in detail. Moreover, Eren [14] defined a new type of soft difference 

operations and with the inspiration of this study, Yavuz [15] defined some new soft set operations called soft 

binary piecewise operations and studied their basic properties. Also, by introducing a new type of soft binary 

piecewise operation, studies on soft set operations were studied [16-21] by changing the form of soft binary 

piecewise operation by using the complement at the first row of the soft binary piecewise operations. 

Sezgin and Atagün [16] and Sezgin and Aybek [17] defined complementary soft binary piecewise plus and 

gamma operation, respectively. The algebraic properties of these new operations were investigated. Especially 

the distributions of these operations over extended soft set operations, complementary extended soft set 

operations, soft binary piecewise operations, complementary soft binary piecewise operations, and restricted 

soft set operations were handled. In this study, we aim to contribute to the literature of soft set theory by 

obtaining the distributions of soft binary piecewise operations over complementary soft binary piecewise plus 

and gamma operations. 

2. Preliminaries 

Definition 2.1. [1] Let 𝑈 be the universal set, 𝐸 be the parameter set, 𝑃(𝑈) be the power set of 𝑈 and 𝑁 ⊆ 𝐸. 

A pair (𝐾,𝑁) is called a soft set over 𝑈 where 𝐾 is a set-valued function such that 𝐾:𝑁 → 𝑃(𝑈). 

The set of all the soft sets over 𝑈 is designated by 𝑆𝐸(𝑈), and throughout this paper, all the soft sets are the 

elements of 𝑆𝐸(𝑈). Çağman [8] defined two conditional complements of sets, for the ease of illustration, we 

show these complements as + and 𝜃, respectively. These complements are defined as following: Let 𝑃 and 𝐶 

be two subsets of 𝑈. 𝐶-inclusive complement of 𝑃 is defined by, 𝑃 + 𝐶 =  𝑃′ ∪ 𝐶 and 𝐶-exlusive complement 

of 𝑃 is defined by 𝑃𝜃𝐶 =  𝑃′ ∩ 𝐶. Here, 𝑈 refers to a universe, 𝑃′ is the complement of 𝑃 over 𝑈. Sezgin et 

al. [9] introduced such new three complements as binary operations of sets as following: Let 𝑃 and 𝐶 be two 

subsets of 𝑈. Then, 𝑃 ∗ 𝐶 = 𝑃′ ∪ 𝐶′, 𝑃𝛾𝐶 = 𝑃′ ∩ 𝐶, 𝑃𝜆𝐶 = 𝑃 ∪ 𝐶′ [9]. Aybek [10] conveyed these classical 

sets to soft sets, and they defined restricted and extended soft set operations and investigated their properties. 

As a summary for soft set operations, we can categorize all types of soft set operations as following: Let “∇” 

be used to represent the set operations (i.e., here ∇ can be ∩, ∪, −, ∆, +, 𝜃, ∗, 𝜆, 𝛾), then restricted operations, 

extended operations, complementary extended operations, soft binary piecewise operations, complementary 

soft binary piecewise operations are defined in soft set theory as following: 

Definition 2.2. [4,6,10] Let (𝐾, 𝑃) and (G, 𝐶) be soft sets over 𝑈. The restricted operation ∇ (restricted 

intersection, union, difference, symmetric difference, plus, theta, star, gamma, and lambda) of (𝐾, 𝑃) and 

(𝐺, 𝐶) is the soft set (𝑌, 𝑆), denoted by (𝐾, 𝑃)∇𝑅(𝐺, 𝐶) = (𝑌, 𝑆) where 𝑆 = 𝑃 ∩ 𝐶 ≠ ∅ and for all 𝑣 ∈ 𝑆, 

𝑌(𝑣) = 𝐾(𝑣) ∇ 𝐺(𝑣). 

Definition 2.3. [2,4,6,7,10] Let (𝐾, 𝑃) and (𝐺, 𝐶) be soft sets over 𝑈. The extended operation ∇ (extended 

union, intersection, difference, symmetric difference, plus, theta, gamma, lambda, and star) of (𝐾, 𝑃) and 

(𝐺, 𝐶) is the soft set (𝑌, 𝑆), denoted by (𝐾, 𝑃)∇𝜀(𝐺, 𝐶) = (𝑌, 𝑆) where 𝑆 = 𝑃 ∪ 𝐶 and for all 𝑣 ∈ 𝑆, 

𝑌(𝑣) = {
𝐾(𝑣), 𝑣 ∈ 𝑃 − 𝐶
𝐺(𝑣), 𝑣 ∈ 𝐶 − 𝑃

𝐾(𝑣)∇𝐺(𝑣), 𝑣 ∈ 𝑃 ∩ 𝐶
 

Definition 2.4. [11-13] Let (𝐾, 𝑃) and (𝐺, 𝐶) be soft sets over 𝑈. The complementary extended operation 𝛻 

(complementary extended gamma, intersection, star, plus, union, theta, difference, and lambda) of (𝐾, 𝑃) and 

(𝐺, 𝐶) is the soft set (𝑌, 𝑆), denoted by (𝐾, 𝑃)∇
∗

𝜀(𝐺, 𝐶) = (𝑌, 𝑆) where 𝑆 = 𝑃 ∪ 𝐶 and for all 𝑣 ∈ 𝑆, 
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𝑌(𝑣) = {
𝐾′(𝑣), 𝑣 ∈ 𝑃 − 𝐶
𝐺′(𝑣), 𝑣 ∈ 𝐶 − 𝑃

𝐾(𝑣)∇𝐺(𝑣), 𝑣 ∈ 𝑃 ∩ 𝐶
 

Definition 2.5. [14,15] Let (𝐾, 𝑃) and (𝐺, 𝐶) be soft sets over 𝑈. The soft binary piecewise operation ∇ (soft 

binary piecewise difference, intersection, union, plus, gamma, theta, lambda, and star) of (𝐾, 𝑃) and (𝐺, 𝐶) is 

the soft set (𝑌, 𝑃), denoted by (𝐾, 𝑃)∇̃(𝐺, 𝐶) = (𝑌, 𝑃) where for all 𝑣 ∈ 𝑃, 

𝑌(𝑣) = {
𝐾(𝑣), 𝑣 ∈ 𝑃 − 𝐶

𝐾(𝑣)∇𝐺(𝑣), 𝑣 ∈ 𝑃 ∩ 𝐶
 

Definition 2.6. [16-21] Let (𝐾, 𝑃) and (𝐺, 𝐶) be soft sets over 𝑈. The complementary soft binary piecewise 

operation ∇ (complementary soft binary piecewise star, theta, plus, intersection, union, gamma, lambda, and 

difference) of (𝐾, 𝑃) and (𝐺, 𝐶) is the soft set (𝑌, 𝑃), denoted by (𝐾, 𝑃)∇̃
∗

(𝐺, 𝐶) = (𝑌, 𝑃) where for all 𝑣 ∈ 𝑃, 

𝑌(𝑣) = {
𝐾′(𝑣), 𝑣 ∈ 𝑃 − 𝐶

𝐾(𝑣)∇𝐺(𝑣), 𝑣 ∈ 𝑃 ∩ 𝐶
 

Definition 2.7. [16] Let (𝐾, 𝑃) and (𝐺, 𝐶) be soft sets over 𝑈. The complementary soft binary piecewise plus 

(+) operation of (𝐾, 𝑃) and (𝐺, 𝐶) is the soft set (𝑌, 𝑃), denoted by (𝐾, 𝑃)+̃
∗

 (𝐺, 𝐶) = (𝑌, 𝑃) where for all 𝑣 ∈

𝑃, 

𝑌(𝑣) = {
𝐾′(𝑣), 𝑣 ∈ 𝑃 − 𝐶

𝐾′(𝑣) ∪ 𝐺(𝑣), 𝑣 ∈ 𝑃 ∩ 𝐶
 

Definition 2.8. [17] Let (𝐾, 𝑃) and (𝐺, C) be soft sets over 𝑈. The complementary soft binary piecewise 

gamma (γ) operation of (𝐾, 𝑃) and (𝐺, 𝐶) is the soft set (𝑌, 𝑃), denoted by (𝐾, 𝑃)γ̃
∗

 (𝐺, 𝐶) = (𝑌, 𝑃) where for 

all 𝑣 ∈ 𝑃, 

𝑌(𝑣) = {
𝐾′(𝑣), 𝑣 ∈ 𝑃 − 𝐶

𝐾′(𝑣) ∩ 𝐺(𝑣), 𝑣 ∈ 𝑃 ∩ 𝐶
 

3. Distribution Rules 

In this section, distributions of soft binary piecewise operations over complementary soft binary piecewise 

plus and gamma operation are investigated in detail, and many interesting results are obtained. 

Theorem 3.1. Let (𝐾, 𝑃), (𝐺, 𝐶), and (𝐿, 𝑅) be soft sets over 𝑈. Then, we have the following distributions of 

soft binary piecewise operations over complementary soft binary piecewise plus (+) operation: 

i. (𝐾, 𝑃) ∩̃ [(𝐺, 𝐶)+̃
∗

(𝐿, 𝑅)] = [(𝐾, 𝑃) ∖̃ (𝐺, 𝐶)] ∩̃ [(𝐿, 𝑅) ∩̃ (𝐾, 𝑃)] where 𝑃 ∩ 𝐶 ∩ 𝑅 = ∅ 

Proof. 

Handle the left-hand side of the equality and let (𝐺, 𝐶)+̃
∗

(𝐿, 𝑅) = (𝑀, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑀(𝐼) = {
𝐺′(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺′(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝐾, 𝑃) ∩̃ (𝑀, 𝐶) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝑀(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

and thus 
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𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝐺′(𝐼), 𝐼 ∈ 𝑃 ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∩ [𝐺′(𝐼) ∪ 𝐿(𝐼)], 𝐼 ∈ 𝑃 ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅
 (3.1) 

Handle the left-hand side of the equality: [(𝐾, 𝑃) ∖̃ (𝐺, 𝐶)] ∩̃ [(𝐿, 𝑅) ∩̃ (𝐾, 𝑃)]. Let (𝐾, 𝑃) ∖̃ (𝐺, 𝐶) = (𝑉, 𝑃) 

where for all 𝐼 ∈ 𝑃 

𝑉(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∩ 𝐺′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Suppose that (𝐿, 𝑅) ∩̃ (𝐾, 𝑃) = (𝑊, 𝑅) where for all 𝐼 ∈ 𝑅 

𝑊(𝐼) = {
𝐿(𝐼), 𝐼 ∈ 𝑅 − 𝑃

𝐿(𝐼) ∩ 𝐾(𝐼), 𝐼 ∈ 𝑅 ∩ 𝑃
 

Let (𝑉, 𝑃) ∩̃ (𝑊, 𝑅) = (𝑇, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∩𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

and thus 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∩ 𝐺′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼) ∩ [𝐿(𝐼) ∩ 𝐾(𝐼)], 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾(𝐼) ∩ 𝐺′(𝐼)] ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅

[𝐾(𝐼) ∩ 𝐺′(𝐼)] ∩ [𝐿(𝐼) ∩ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 

Therefore, 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∩ 𝐺′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅

[𝐾(𝐼) ∩ 𝐺′(𝐼)] ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅
[𝐾(𝐼) ∩ 𝐺′(𝐼)] ∪ [𝐿(𝐼) ∩ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.2) 

Handle 𝐼 ∈ 𝑃 − 𝐶 in the first equation. Since 𝑃 − 𝐶 =  𝑃 ∩ 𝐶′, if 𝐼 ∈ 𝐶′, then 𝐼 ∈ 𝐿 − 𝐶 or 𝐼 ∈ (𝐶 ∪ 𝑅)′. 

Hence, if 𝐼 ∈ 𝑃 − 𝐶, then 𝐼 ∈ 𝑃 ∩ 𝐶′ ∩ 𝑅′ or 𝐼 ∈ 𝑃 ∩ 𝐶′ ∩ 𝑅. Thus, it can be observed that (3.1)=(3.2). ◻ 

ii. [(𝐾, 𝑃) +̃
∗

(𝐺, 𝐶)] ∩̃  (𝐿, 𝑅) = [(𝐾, 𝑃)𝛾̃
∗
(𝐿, 𝑅)] ∪̃ [(𝐺, 𝐶) ∩̃  (𝐿, 𝑅)] 

Proof. 

Handle the left-hand side of the equality and let (𝐾, 𝑃) +̃
∗

 (𝐺, 𝐶) = (𝑀, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑀(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Let (𝑀, 𝑃) ∩̃ (𝐿, 𝑅) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝑀(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑀(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 
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𝑁(𝐼) = {

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾′(𝐼) ∪ 𝐺(𝐼)] ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.3) 

Handle the left-hand side of the equality: [(𝐾, 𝑃)𝛾̃
∗
(𝐿, 𝑅)] ∪̃ [(𝐺, 𝐶) ∩̃ (𝐿, 𝑅)]. Let (𝐾, 𝑃)𝛾̃

∗
(𝐿, 𝑅) = (𝑉, 𝑃) 

where for all 𝐼 ∈ 𝑃 

𝑉(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝐾′(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Suppose that (𝐺, 𝐶) ∩̃ (𝐿, 𝑅) = (𝑊, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑊(𝐼) = {
𝐺(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝑉, 𝑃) ∪̃ (𝑊, 𝑅) = (𝑇, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∪𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∪ [𝐺(𝐼) ∩ 𝐿(𝐼)], 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 ∩ 𝑅) = ∅
[𝐾′(𝐼) ∩ 𝐿(𝐼)] ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 − 𝑅) = ∅

[𝐾′(𝐼) ∩ 𝐿(𝐼)] ∪ [𝐺(𝐼) ∩ 𝐿(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.4) 

It can be observed that (3.3)=(3.4). ◻ 

iii. (𝐾, 𝑃)  ∪̃ [(𝐺, 𝐶) +̃
∗

 (𝐿, 𝑅)] = [(𝐾, 𝑃)𝜆̃(𝐺, 𝐶)] ∪̃ [(𝐿, 𝑅) ∪̃  (𝐾, 𝑃)] where 𝑃 ∩ 𝐶′ ∩ 𝑅 = ∅. 

Proof. 

Handle the left-hand side of the equality and let (𝐺, 𝐶) +̃
∗

 (𝐿, 𝑅) = (𝑀, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑀(𝐼) = {
𝐺′(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺′(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝐾, 𝑃) ∪̃ (𝑀, 𝐶) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝑀(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Thus, 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝐺′(𝐼), 𝐼 ∈ 𝑃 ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∪ [𝐺′(𝐼) ∪ 𝐿(𝐼)], 𝐼 ∈ 𝑃 ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅
 (3.5) 

Handle the left-hand side of the equality: [(𝐾, 𝑃)𝜆̃(𝐺, 𝐶)] ∪̃ [(𝐿, 𝑅) ∪̃ (𝐾, 𝑃)]. Let (𝐾, 𝑃)𝜆̃(𝐺, 𝐶) = (𝑉, 𝑃) 

where for all 𝐼 ∈ 𝑃 

𝑉(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝐺′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
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Suppose that (𝐿, 𝑅) ∪̃ (𝐾, 𝑃) = (𝑊, 𝑅) where for all 𝐼 ∈ 𝑅 

𝑊(𝐼) = {
𝐿(𝐼), 𝐼 ∈ 𝑅 − 𝑃

𝐿(𝐼) ∪ 𝐾(𝐼), 𝐼 ∈ 𝑅 ∩ 𝑃
 

Let (𝑉, 𝑃) ∪̃ (𝑊, 𝑅) = (𝑇, 𝑃). Then, for all 𝐼 ∈ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∪𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∪ 𝐺′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼) ∪ [𝐿(𝐼) ∪ 𝐾(𝐼)], 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾(𝐼) ∪ 𝐺′(𝐼)] ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅

[𝐾(𝐼) ∪ 𝐺′(𝐼)] ∪ [𝐿(𝐼) ∪ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.6) 

It can be observed that (3.5)=(3.6). ◻ 

iv. [(𝐾, 𝑃) +̃
∗

 (𝐺, 𝐶)] ∪̃ (𝐿, 𝑅) = [(𝐾, 𝑃) +̃
∗

 (𝐿, 𝑅)] ∪̃ [(𝐺, 𝐶) ∪̃ (𝐿, 𝑅)] 

Proof. 

Handle the left-hand side of the equality and let (𝐾, 𝑃) +̃
∗

 (𝐺, 𝐶) = (𝑀, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑀(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Let (𝑀, 𝑃) ∪̃ (𝐿, 𝑅) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝑀(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑀(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑁(𝐼) = {

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾′(𝐼) ∪ 𝐺(𝐼)] ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.7) 

Handle the left-hand side of the equality: [(𝐾, 𝑃) +̃
∗

 (𝐿, 𝑅)] ∪̃ [(𝐺, 𝐶) ∪̃ (𝐿, 𝑅)]. Let (𝐾, 𝑃) +̃
∗

 (𝐿, 𝑅) = (𝑉, 𝑃) 

where for all 𝐼 ∈ 𝑃 

𝑉(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝐾′(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Suppose that (𝐺, 𝐶) ∪̃ (𝐿, 𝑅) = (𝑊, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑊(𝐼) = {
𝐺(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝑉, 𝑃) ∪̃ (𝑊, 𝑅) = (𝑇, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∪𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

and thus 
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𝑇(𝐼) =

{
 
 

 
 

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∪ [𝐺(𝐼) ∪ 𝐿(𝐼)], 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 ∩ 𝑅) = ∅
[𝐾′(𝐼) ∪ 𝐿(𝐼)] ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 − 𝑅) = ∅

[𝐾′(𝐼) ∪ 𝐿(𝐼)] ∪ [𝐺(𝐼) ∪ 𝐿(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.8) 

It can be observed that (3.7)=(3.8). ◻ 

v. (𝐾, 𝑃)\̃ [(𝐺, 𝐶) +̃
∗

 (𝐿, 𝑅)] = [(𝐾, 𝑃) ∩̃ (𝐺, 𝐶)] ∩̃ [(𝐿, 𝑅)𝛾̃(𝐾, 𝑃)] where 𝑃 ∩ 𝐶′ ∩ 𝑅 = ∅  

Proof. 

Handle the left-hand side of the equality and let (𝐺, 𝐶) +̃
∗

 (𝐿, 𝑅) = (𝑀, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑀(𝐼) = {
𝐺′(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺′(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝐾, 𝑃)\̃(𝑀, 𝐶) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∩ 𝑀′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Thus, 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∩ [𝐺(𝐼) ∪ 𝐿′(𝐼)], 𝐼 ∈ 𝑃 ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅
 (3.9) 

Handle the left-hand side of the equality: [(𝐾, 𝑃) ∩̃ (𝐺, 𝐶)] ∩̃ [(𝐿, 𝑅) 𝛾̃(𝐾, 𝑃)]. Let (𝐾, 𝑃) ∩̃ (𝐺, 𝐶) = (𝑉, 𝑃) 

where for all 𝐼 ∈ 𝑃 

𝑉(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Suppose that (𝐿, 𝑅)𝛾̃(𝐾, 𝑃) = (𝑊, 𝑅) where for all 𝐼 ∈ 𝑅 

𝑊(𝐼) = {
𝐿(𝐼), 𝐼 ∈ 𝑅 − 𝑃

𝐿′(𝐼) ∩ 𝐾(𝐼), 𝐼 ∈ 𝑅 ∩ 𝑃
 

Let (𝑉, 𝑃) ∩̃ (𝑊, 𝑅) = (𝑇, 𝑃). Then, for all 𝐼 ∈ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∩𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼) ∩ [𝐿′(𝐼) ∩ 𝐾(𝐼)], 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾(𝐼) ∩ 𝐺(𝐼)] ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅

[𝐾(𝐼) ∩ 𝐺(𝐼)] ∩ [𝐿′(𝐼) ∩ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.10) 

It can be observed that (3.9)=(3.10). ◻ 
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vi. [(𝐾, 𝑃) +̃
∗

 (𝐺, 𝐶)] \̃(𝐿, 𝑅) = [(𝐾, 𝑃) 𝜃̃
∗

 (𝐿, 𝑅)] ∪̃ [(𝐺, 𝐶)\̃(𝐿, 𝑅)] 

Proof. 

Handle the left-hand side of the equality and let (𝐾, 𝑃) +̃
∗

(𝐺, 𝐶) = (𝑀, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑀(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Let (𝑀, 𝑃)\̃(𝐿, 𝑅) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝑀(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑀(𝐼) ∩ 𝐿′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑁(𝐼) = {

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐿′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾′(𝐼) ∪ 𝐺(𝐼)] ∩ 𝐿′(𝐼), 𝐼 ∈ 𝑃 ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.11) 

Handle the left-hand side of the equality: [(𝐾, 𝑃)𝜃̃
∗

(𝐿, 𝑅)] ∪̃ [(𝐺, 𝐶)\̃(𝐿, 𝑅)]. Let (𝐾, 𝑃)𝜃̃
∗

(𝐿, 𝑅) = (𝑉, 𝑃) where 

for all 𝐼 ∈ 𝑃 

𝑉(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝐾′(𝐼) ∩ 𝐿′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Suppose that (𝐺, 𝐶)\̃(𝐿, 𝑅) = (𝑊, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑊(𝐼) = {
𝐺(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺(𝐼) ∩ 𝐿′(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝑉, 𝑃) ∪̃ (𝑊, 𝑅) = (𝑇, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∪𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐿′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∪ [𝐺(𝐼) ∩ 𝐿′(𝐼)], 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 ∩ 𝑅) = ∅
[𝐾′(𝐼) ∩ 𝐿′(𝐼)] ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 − 𝑅) = ∅

[𝐾′(𝐼) ∩ 𝐿′(𝐼)] ∪ [𝐺(𝐼) ∩ 𝐿′(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.12) 

It can be observed that (3.11)=(3.12). ◻ 

vii. (𝐾, 𝑃)𝜆̃ [(𝐺, 𝐶)+̃
∗

(𝐿, 𝑅)] = [(𝐾, 𝑃) ∪̃ (𝐺, 𝐶)] ∪̃ [(𝐿, 𝑅)+̃(𝐾, 𝑃)] where 𝑃 ∩ 𝐶′ ∩ 𝑅 = ∅ 

Proof. 

Handle the left-hand side of the equality and let (𝐺, 𝐶)+̃
∗

(𝐿, 𝑅) = (𝑀, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑀(𝐼) = {
𝐺′(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺′(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
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Let (𝐾, 𝑃)𝜆̃(𝑀, 𝐶) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝑀′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Thus, 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∪ [𝐺(𝐼) ∪ 𝐿′(𝐼)], 𝐼 ∈ 𝑃 ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅
 (3.13) 

Handle the left-hand side of the equality: [(𝐾, 𝑃) ∪̃ (𝐺, 𝐶)] ∪̃ [(𝐿, 𝑅)+̃(𝐾, 𝑃)]. Let (𝐾, 𝑃) ∪̃ (𝐺, 𝐶) = (𝑉, 𝑃) 

where for all 𝐼 ∈ 𝑃 

𝑉(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Suppose that (𝐿, 𝑅)+̃(𝐾, 𝑃) = (𝑊, 𝑅) where for all 𝐼 ∈ 𝑅 

𝑊(𝐼) = {
𝐿(𝐼), 𝐼 ∈ 𝑅 − 𝑃

𝐿′(𝐼) ∪ 𝐾(𝐼), 𝐼 ∈ 𝑅 ∩ 𝑃
 

Let (𝑉, 𝑃) ∪̃ (𝑊, 𝑅) = (𝑇, 𝑃). Then, for all 𝐼 ∈ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∪𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼) ∪ [𝐿′(𝐼) ∪ 𝐾(𝐼)], 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾(𝐼) ∪ 𝐺(𝐼)] ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅

[𝐾(𝐼) ∪ 𝐺(𝐼)] ∪ [𝐿′(𝐼) ∪ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.14) 

It can be observed that (3.13)=(3.14). ◻ 

viii. [(𝐾, 𝑃)+̃
∗

(𝐺, 𝐶)] 𝜆̃(𝐿, 𝑅) = [(𝐾, 𝑃) ∗̃
∗
(𝐿, 𝑅)] ∪̃ [(𝐺, 𝐶)𝜆̃(𝐿, 𝑅)] 

Proof. 

Handle the left-hand side of the equality and let (𝐾, 𝑃)+̃
∗

(𝐺, 𝐶) = (𝑀, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑀(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Let (𝑀, 𝑃)𝜆̃(𝐿, 𝑅) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝑀(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑀(𝐼) ∪ 𝐿′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑁(𝐼) = {

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐿′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾′(𝐼) ∪ 𝐺(𝐼)] ∪ 𝐿′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.15) 
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Handle the left-hand side of the equality: [(𝐾, 𝑃) ∗̃
∗
(𝐿, 𝑅)] ∪̃ [(𝐺, 𝐶)𝜆̃(𝐿, 𝑅)]. Let (𝐾, 𝑃) ∗̃

∗
(𝐿, 𝑅) = (𝑉, 𝑃) 

where for all 𝐼 ∈ 𝑃 

𝑉(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝐾′(𝐼) ∪ 𝐿′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Suppose that (𝐺, 𝐶)𝜆̃(𝐿, 𝑅) = (𝑊, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑊(𝐼) = {
𝐺(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺(𝐼) ∪ 𝐿′(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝑉, 𝑃) ∪̃ (𝑊, 𝑅) = (𝑇, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∪𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐿′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅

𝐾′(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∪ [𝐺(𝐼) ∪ 𝐿′(𝐼)], 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 ∩ 𝑅) = ∅
[𝐾′(𝐼) ∪ 𝐿′(𝐼)] ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 − 𝑅) = ∅

[𝐾′(𝐼) ∪ 𝐿′(𝐼)] ∪ [𝐺(𝐼) ∪ 𝐿′(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.16) 

It can be observed that (3.15)=(3.16). ◻ 

Theorem 3.2. Let (𝐾, 𝑃), (𝐺, 𝐶), and (𝐿, 𝑅) be soft sets over 𝑈. Then, we have the following distributions of 

soft binary piecewise operations over complementary soft binary piecewise gamma (𝛾) operation: 

i. (𝐾, 𝑃) ∩̃ [(𝐺, 𝐶)γ̃
∗
(𝐿, 𝑅)] = [(𝐾, 𝑃)\̃(𝐺, 𝐶)] ∪̃ [(𝐿, 𝑅) ∩̃ (𝐾, 𝑃)] where 𝑃 ∩ 𝐶 ∩ 𝑅 = ∅ 

Proof. 

Let first handle the left-hand side of the equality and let (𝐺, 𝐶)γ̃
∗
(𝐿, 𝑅) = (𝑀, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑀(𝐼) = {
𝐺′(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺′(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝐾, 𝑃) ∩̃ (𝑀, 𝐶) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∩ 𝑀(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Thus, 

𝑁(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∩ 𝐺′(𝐼), 𝐼 ∈ 𝑃 ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∩ [𝐺′(𝐼) ∩ 𝐿(𝐼)], 𝐼 ∈ 𝑃 ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅
 (3.17) 

Handle the left-hand side of the equality: [(𝐾, 𝑃)\̃(𝐺, 𝐶)] ∪̃ [(𝐿, 𝑅) ∩̃ (𝐾, 𝑃)]. Let (𝐾, 𝑃)\̃(𝐺, 𝐶) = (𝑉, 𝑃) 

where for all 𝐼 ∈ 𝑃 

𝑉(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∩ 𝐺′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Suppose that (𝐿, 𝑅) ∩̃ (𝐾, 𝑃) = (𝑊, 𝑅) where for all 𝐼 ∈ 𝑅 
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𝑊(𝐼) = {
𝐿(𝐼), 𝐼 ∈ 𝑅 − 𝑃

𝐿(𝐼) ∩ 𝐾(𝐼), 𝐼 ∈ 𝑅 ∩ 𝑃
 

Let (𝑉, 𝑃) ∪̃ (𝑊, 𝑅) = (𝑇, 𝑃). Then, for all 𝐼 ∈ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∪𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∩ 𝐺′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼) ∪ [𝐿(𝐼) ∩ 𝐾(𝐼)], 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾(𝐼) ∩ 𝐺′(𝐼)] ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅

[𝐾(𝐼) ∩ 𝐺′(𝐼)] ∪ [𝐿(𝐼) ∩ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 

Therefore, 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∩ 𝐺′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅

[𝐾(𝐼) ∩ 𝐺′(𝐼)] ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅
[𝐾(𝐼) ∩ 𝐺′(𝐼)] ∪ [𝐿(𝐼) ∩ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.18) 

Handle 𝐼 ∈ 𝑃 − 𝐶 in the first equation. Since 𝑃 − 𝐶 =  𝑃 ∩ 𝐶′, if 𝐼 ∈ 𝐶′, then 𝐼 ∈ 𝑅 − 𝐶 or 𝐼 ∈ (𝐶 ∪ 𝑅)′. 

Hence, if 𝐼 ∈ 𝑃 − 𝐶, then 𝐼 ∈ 𝑃 ∩ 𝐶′ ∩ 𝑅′ or 𝐼 ∈ 𝑃 ∩ 𝐶′ ∩ 𝑅. Thus, it can be observed that (3.17)=(3.18). ◻ 

ii. [(𝐾, 𝑃)γ̃
∗
(𝐺, 𝐶)] ∩̃ (𝐿, 𝑅) = [(𝐾, 𝑃)γ̃

∗
(𝐿, 𝑅)] ∩̃ [(𝐺, 𝐶) ∩̃ (𝐿, 𝑅)] 

Proof. 

Handle the left-hand side of the equality and let (𝐾, 𝑃)γ̃
∗
(𝐺, 𝐶) = (𝑀, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑀(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Let (𝑀, 𝑃) ∩̃ (𝐿, 𝑅) = (𝑁, 𝑃) where for all 𝐼 ∊ 𝑃 

𝑁(𝐼) = {
𝑀(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑀(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑁(𝐼) = {

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾′(𝐼) ∩ 𝐺(𝐼)] ∩ 𝐿(𝐼), 𝐼 ∈ 𝑃 ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.19) 

Handle the left-hand side of the equality: [(𝐾, 𝑃)γ̃
∗

 (𝐿, 𝑅)] ∩̃ [(𝐺, 𝐶) ∩̃ (𝐿, 𝑅)]. Let (𝐾, 𝑃)γ̃
∗
(𝐿, 𝑅) = (𝑉, 𝑃) 

where for all 𝐼 ∈ 𝑃 

𝑉(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝐾′(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Suppose that (𝐺, 𝐶) ∩̃ (𝐿, 𝑅) = (𝑊, 𝐶) where for all 𝐼 ∊ 𝐶 
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𝑊(𝐼) = {
𝐺(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝑉, 𝑃) ∩̃ (𝑊, 𝑅) = (𝑇, 𝑃) where for all 𝐼 ∊ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∩𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∩ [𝐺(𝐼) ∩ 𝐿(𝐼)], 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 ∩ 𝑅) = ∅
[𝐾′(𝐼) ∩ 𝐿(𝐼)] ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 − 𝑅) = ∅

[𝐾′(𝐼) ∩ 𝐿(𝐼)] ∩ [𝐺(𝐼) ∩ 𝐿(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.20) 

It can be observed that (3.19)=(3.20). ◻ 

iii. (𝐾, 𝑃) ∪̃ [(𝐺, 𝐶)γ̃
∗
(𝐿, 𝑅)] = [(𝐾, 𝑃)𝜆̃(𝐺, 𝐶)] ∩̃ [(𝐿, 𝑅) ∪̃ (𝐾, 𝑃)] 

Proof. 

Handle the left-hand side of the equality and let (𝐺, 𝐶)γ̃
∗
(𝐿, 𝑅) = (𝑀, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑀(𝐼) = {
𝐺′(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺′(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝐾, 𝑃) ∪̃ (𝑀, 𝐶) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝑀(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Thus, 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝐺′(𝐼), 𝐼 ∈ 𝑃 ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∪ [𝐺′(𝐼) ∩ 𝐿(𝐼)], 𝐼 ∈ 𝑃 ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅
 (3.21) 

Handle the left-hand side of the equality: [(𝐾, 𝑃)𝜆̃(𝐺, 𝐶)] ∩̃ [(𝐿, 𝑅) ∪̃ (𝐾, 𝑃)]. Let (𝐾, 𝑃)𝜆̃(𝐺, 𝐶) = (𝑉, 𝑃) 

where for all 𝐼 ∊ 𝑃 

𝑉(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝐺′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Suppose that (𝐿, 𝑅) ∪̃ (𝐾, 𝑃) = (𝑊, 𝑅) where for all 𝐼 ∊ 𝑅 

𝑊(𝐼) = {
𝐿(𝐼), 𝐼 ∈ 𝑅 − 𝑃

𝐿(𝐼) ∪ 𝐾(𝐼), 𝐼 ∈ 𝑅 ∩ 𝑃
 

Let (𝑉, 𝑃) ∩̃ (𝑊, 𝑅) = (𝑇, 𝑃). Then, for all 𝐼 ∊ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∩𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 
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𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∪ 𝐺′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼) ∩ [𝐿(𝐼) ∪ 𝐾(𝐼)], 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾(𝐼) ∪ 𝐺′(𝐼)] ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅

[𝐾(𝐼) ∪ 𝐺′(𝐼)] ∩ [𝐿(𝐼) ∪ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 

Therefore, 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∪ 𝐺′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅

[𝐾(𝐼) ∪ 𝐺′(𝐼)] ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅
[𝐾(𝐼) ∪ 𝐺′(𝐼)] ∩ [𝐿(𝐼) ∪ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.22) 

It can be observed that (3.21)=(3.22). ◻ 

iv. [(𝐾, 𝑃)γ̃
∗
(𝐺, 𝐶)] ∪̃ (𝐿, 𝑅) = [(𝐾, 𝑃)+̃

∗

(𝐿, 𝑅)] ∩̃ [(𝐺, 𝐶) ∪̃ (𝐿, 𝑅)] 

Proof. 

Handle the left-hand side of the equality and let (𝐾, 𝑃)γ̃
∗
(𝐺, 𝐶) = (𝑀, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑀(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Let (𝑀, 𝑃) ∪̃ (𝐿, 𝑅) = (𝑁, 𝑃) where for all 𝐼 ∊ 𝑃 

𝑁(𝐼) = {
𝑀(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑀(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑁(𝐼) = {

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾′(𝐼) ∩ 𝐺(𝐼)] ∪ 𝐿(𝐼), 𝐼 ∈ 𝑃 ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.23) 

Handle the left-hand side of the equality: [(𝐾, 𝑃)+̃
∗

 (𝐿, 𝑅)] ∩̃ [(𝐺, 𝐶) ∪̃ (𝐿, 𝑅)]. Let (𝐾, 𝑃)+̃
∗

(𝐿, 𝑅) = (𝑉, 𝑃) 

where for all 𝐼 ∊ 𝑃 

𝑉(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝐾′(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Suppose that (𝐺, 𝐶) ∪̃ (𝐿, 𝑅) = (𝑊, 𝐶) where for all 𝐼 ∊ 𝐶 

𝑊(𝐼) = {
𝐺(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝑉, 𝑃) ∩̃ (𝑊, 𝑅) = (𝑇, 𝑃) where for all 𝐼 ∊ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∩𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 
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𝑇(𝐼) =

{
 
 

 
 

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∩ [𝐺(𝐼) ∪ 𝐿(𝐼)], 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 ∩ 𝑅) = ∅
[𝐾′(𝐼) ∪ 𝐿(𝐼)] ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 − 𝑅) = ∅

[𝐾′(𝐼) ∪ 𝐿(𝐼)] ∩ [𝐺(𝐼) ∪ 𝐿(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.24) 

It can be observed that (3.23)=(3.24). ◻ 

v. (𝐾, 𝑃)\̃ [(𝐺, 𝐶)γ̃
∗
(𝐿, 𝑅)] = [(𝐾, 𝑃) ∩̃ (𝐺, 𝐶)] ∪̃ [(𝐿, 𝑅)γ̃(𝐾, 𝑃)] where 𝑃 ∩ 𝐶 ∩ 𝑅 = ∅ 

Proof.  

Handle the left-hand side of the equality and let (𝐺, 𝐶)γ̃
∗
(𝐿, 𝑅) = (𝑀, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑀(𝐼) = {
𝐺′(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺′(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝐾, 𝑃)\̃(𝑀, 𝐶) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∩ 𝑀′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Thus, 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∩ [𝐺(𝐼) ∪ 𝐿′(𝐼)], 𝐼 ∈ 𝑃 ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅
 (3.25) 

Handle the left-hand side of the equality: [(𝐾, 𝑃) ∩̃ (𝐺, 𝐶)] ∪̃ [(𝐿, 𝑅)γ̃(𝐾, 𝑃)]. Let (𝐾, 𝑃) ∩̃ (𝐺, 𝐶) = (𝑉, 𝑃) 

where for all 𝐼 ∊ 𝑃 

𝑉(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Suppose that (𝐿, 𝑅)γ̃(𝐾, 𝑃) = (𝑊, 𝑅) where for all 𝐼 ∈ 𝑅 

𝑊(𝐼) = {
𝐿(𝐼), 𝐼 ∈ 𝑅 − 𝑃

𝐿′(𝐼) ∩ 𝐾(𝐼), 𝐼 ∈ 𝑅 ∩ 𝑃
 

Let (𝑉, 𝑃) ∪̃ (𝑊, 𝑅) = (𝑇, 𝑃). Then, for all 𝐼 ∈ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∪𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼) ∪ [𝐿′(𝐼) ∩ 𝐾(𝐼)], 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾(𝐼) ∩ 𝐺(𝐼)] ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅

[𝐾(𝐼) ∩ 𝐺(𝐼)] ∪ [𝐿′(𝐼) ∩ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅
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Therefore, 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅

[𝐾(𝐼) ∩ 𝐺(𝐼)] ∪ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅
[𝐾(𝐼) ∩ 𝐺(𝐼)] ∪ [𝐿′(𝐼) ∩ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.26) 

It can be observed that (3.25)=(3.26). ◻ 

vi. [(𝐾, 𝑃)γ̃
∗
(𝐺, 𝐶)] \̃(𝐿, 𝑅) = [(𝐾, 𝑃)𝜃̃

∗

(𝐿, 𝑅)] ∩̃ [(𝐺, 𝐶)\̃(𝐿, 𝑅)] 

Proof. 

Let first handle the left-hand side of the equality and let (𝐾, 𝑃)γ̃
∗
(𝐺, 𝐶) = (𝑀, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑀(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Let (𝑀, 𝑃)\̃(𝐿, 𝑅) = (𝑁, 𝑃) where for all 𝐼 ∊ 𝑃 

𝑁(𝐼) = {
𝑀(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑀(𝐼) ∩ 𝐿′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑁(𝐼) = {

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐿′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾′(𝐼) ∩ 𝐺(𝐼)] ∩ 𝐿′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.27) 

Handle the left-hand side of the equality: [(𝐾, 𝑃)𝜃̃
∗

(𝐿, 𝑅)] ∩̃ [(𝐺, 𝐶)\̃(𝐿, 𝑅)]. Let (𝐾, 𝑃)𝜃̃
∗

(𝐿, 𝑅) = (𝑉, 𝑃) where 

for all 𝐼 ∊ 𝑃 

𝑉(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝐾′(𝐼) ∩ 𝐿′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Suppose that (𝐺, 𝐶)\̃(𝐿, 𝑅) = (𝑊, 𝐶) where for all 𝐼 ∊ 𝐶 

𝑊(𝐼) = {
𝐺(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺(𝐼) ∩ 𝐿′(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝑉, 𝑃) ∩̃ (𝑊, 𝑅) = (𝑇, 𝑃) where for all 𝐼 ∊ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∩𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐿′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∩ [𝐺(𝐼) ∩ 𝐿′(𝐼)], 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 ∩ 𝑅) = ∅
[𝐾′(𝐼) ∩ 𝐿′(𝐼)] ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 − 𝑅) = ∅

[𝐾′(𝐼) ∩ 𝐿′(𝐼)] ∩ [𝐺(𝐼) ∩ 𝐿′(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.28) 
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It can be observed that (3.27)=(3.28). ◻ 

vii. (𝐾, 𝑃)𝜆̃ [(𝐺, 𝐶)γ̃
∗
(𝐿, 𝑅)] = [(𝐾, 𝑃) ∪̃ (𝐺, 𝐶)] ∩̃ [(𝐿, 𝑅)+̃(𝐾, 𝑃)] where 𝑃 ∩ 𝐶 ∩ 𝑅 = ∅ 

Proof. 

Handle the left-hand side of the equality and let (𝐺, 𝐶)γ̃
∗
(𝐿, 𝑅) = (𝑀, 𝐶) where for all 𝐼 ∈ 𝐶 

𝑀(𝐼) = {
𝐺′(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺′(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝐾, 𝑃)𝜆̃(𝑀, 𝐶) = (𝑁, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝑀′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Thus, 

𝑁(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∪ [𝐺(𝐼) ∪ 𝐿′(𝐼)], 𝐼 ∈ 𝑃 ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅
 (3.29) 

Handle the left-hand side of the equality: [(𝐾, 𝑃) ∪̃ (𝐺, 𝐶)] ∩̃ [(𝐿, 𝑅)+̃(𝐾, 𝑃)]. Let (𝐾, 𝑃) ∪̃ (𝐺, 𝐶) = (𝑉, 𝑃) 

where for all 𝐼 ∊ 𝑃 

𝑉(𝐼) = {
𝐾(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Suppose that (𝐿, 𝑅)+̃(𝐾, 𝑃) = (𝑊, 𝑅) where for all 𝐼 ∊ 𝑅 

𝑊(𝐼) = {
𝐿(𝐼), 𝐼 ∈ 𝑅 − 𝑃

𝐿′(𝐼) ∪ 𝐾(𝐼), 𝐼 ∈ 𝑅 ∩ 𝑃
 

Let (𝑉, 𝑃) ∩̃ (𝑊, 𝑅) = (𝑇, 𝑃). Then, for all 𝐼 ∊ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∩𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼) ∩ [𝐿′(𝐼) ∪ 𝐾(𝐼)], 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾(𝐼) ∪ 𝐺(𝐼)] ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅

[𝐾(𝐼) ∪ 𝐺(𝐼)] ∩ [𝐿′(𝐼) ∪ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 

Therefore, 

𝑇(𝐼) =

{
 
 

 
 

𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾(𝐼) ∪ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾(𝐼) ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 − 𝑃) = ∅
𝐾(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶′ ∩ 𝑅

[𝐾(𝐼) ∪ 𝐺(𝐼)] ∩ 𝐿(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 − 𝑃) = ∅
[𝐾(𝐼) ∪ 𝐺(𝐼)] ∩ [𝐿′(𝐼) ∪ 𝐾(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ (𝑅 ∩ 𝑃) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.30) 

It can be observed that (3.29)=(3.30). ◻ 

viii. [(𝐾, 𝑃)γ̃
∗
(𝐺, 𝐶)] 𝜆̃(𝐿, 𝑅) = [(𝐾, 𝑃) ∗̃

∗
(𝐿, 𝑅)] ∩̃ [(𝐺, 𝐶)𝜆̃(𝐿, 𝑅)] 



17 

 

Sezgin and Akbulut / JAUIST / 4(1) (2023) 1-19  

Proof. 

Handle the left-hand side of the equality and let(𝐾, 𝑃)γ̃
∗
(𝐺, 𝐶) = (𝑀, 𝑃) where for all 𝐼 ∈ 𝑃 

𝑀(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝐶

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ 𝑃 ∩ 𝐶
 

Let (𝑀, 𝑃)𝜆̃(𝐿, 𝑅) = (𝑁, 𝑃) where for all 𝐼 ∊ 𝑃 

𝑁(𝐼) = {
𝑀(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑀(𝐼) ∪ 𝐿′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑁(𝐼) = {

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) − 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) − 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐿′(𝐼), 𝐼 ∈ (𝑃 − 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶′ ∩ 𝑅
[𝐾′(𝐼) ∩ 𝐺(𝐼)] ∪ 𝐿′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝐶) ∩ 𝑅 = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.31) 

Handle the left-hand side of the equality: [(𝐾, 𝑃) ∗̃
∗
(𝐿, 𝑅)] ∩̃ [(𝐺, 𝐶)𝜆̃(𝐿, 𝑅)]. Let (𝐾, 𝑃) ∗̃

∗
(𝐿, 𝑅) = (𝑉, 𝑃) 

where for all 𝐼 ∊ 𝑃 

𝑉(𝐼) = {
𝐾′(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝐾′(𝐼) ∪ 𝐿′(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Suppose that (𝐺, 𝐶)𝜆̃(𝐿, 𝑅) = (𝑊, 𝐶) where for all 𝐼 ∊ 𝐶 

𝑊(𝐼) = {
𝐺(𝐼), 𝐼 ∈ 𝐶 − 𝑅

𝐺(𝐼) ∪ 𝐿′(𝐼), 𝐼 ∈ 𝐶 ∩ 𝑅
 

Let (𝑉, 𝑃) ∩̃ (𝑊, 𝑅) = (𝑇, 𝑃) where for all 𝐼 ∊ 𝑃 

𝑇(𝐼) = {
𝑉(𝐼), 𝐼 ∈ 𝑃 − 𝑅

𝑉(𝐼) ∩𝑊(𝐼), 𝐼 ∈ 𝑃 ∩ 𝑅
 

Thus, 

𝑇(𝐼) =

{
 
 

 
 

𝐾′(𝐼), 𝐼 ∈ (𝑃 − 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅′

𝐾′(𝐼) ∪ 𝐿′(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) − 𝐶 = 𝑃 ∩ 𝐶′ ∩ 𝑅

𝐾′(𝐼) ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 − 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅′

𝐾′(𝐼) ∩ [𝐺(𝐼) ∪ 𝐿′(𝐼)], 𝐼 ∈ (𝑃 − 𝑅) ∩ (𝐶 ∩ 𝑅) = ∅
[𝐾′(𝐼) ∪ 𝐿′(𝐼)] ∩ 𝐺(𝐼), 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 − 𝑅) = ∅

[𝐾′(𝐼) ∪ 𝐿′(𝐼)] ∩ [𝐺(𝐼) ∪ 𝐿′(𝐼)], 𝐼 ∈ (𝑃 ∩ 𝑅) ∩ (𝐶 ∩ 𝑅) = 𝑃 ∩ 𝐶 ∩ 𝑅

 (3.32) 

It can be observed that (3.31)=(3.32). ◻ 

4. Conclusion 

In this paper, we explore more about complementary soft binary piecewise plus and gamma operation by 

investigating the relationships between these soft set operations and soft binary piecewise operations. In this 

paper, it is aimed to contribute to the soft set literature by obtaining the distributions of soft binary piecewise 

operations over complementary soft binary piecewise plus and gamma operations. This is a theoretical study 

for soft sets and some future studies may continue by investigating the distributions of soft binary piecewise 

operations over other complementary soft piecewise operations. 
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Development of pulp and paper using stem and fruit stem of Musa Species 
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Abstract − Paper is a thin material mainly used for writing, printing, and packaging. The stem and fruit stem of two Musa species, 

Musa Acuminata Balbisiana (Banana stem) and Musa Paradisiaca (Plantain stem), were expanded. This research aimed to find 

other alternatives to reduce the use of wood fibers that are being converted into paper. The stem chips were charged into a digester 

with different percentages (5, 10, and 15%) of sodium hydroxide (NaOH) and were subjected to the impregnating temperature 

(60oC) for 1 hour before heating to 100oC for 3 hours. The stems were pounded finely with mortar and pestle and then bleached 

using 15% hydrogen peroxide. Calcium carbonate (10%) was added to both pulps obtained as filler, while 5% glue was added as a 

sizing agent. The mixture was agitated, pressurized, and air-dried, and mechanical tests were carried out. It was shown that the 

tearing resistance, tensile strength, and elongation tests obtained using 5% NaOH for banana, plantain and banana fruit stems were 

0.84 mN, 17.82 N/m2, and 4.90 mm; 1.35 mN, 14.95 N/m, and 2.17 mm; and 1.90 mN, 24.77 N/m2, and 5.49 mm while the pulp 

yields were 36.7%, 35.5%, and 38.5%, respectively. The results obtained using 10% NaOH for banana, plantain, and banana fruit 

stems were 0.80 mN, 17.30 N/m2, and 4.85 mm; 1.25 mN, 14.73 N/m2, and 2.0 mm; 1.85 mN, 23.60 N/m2, and 5.35 mm while the 

pulp yields were 35.80%, 34.12%, and 32.25% in that order. Moreover, using 15% of NaOH for banana, plantain, and banana fruit 

stems gave 0.70 mN, 6.89 N/m2, and 1.86 mm; 0.79 mN, 8.70 N/m2,  and 2.90 mm; and 1.5 mN, 12.62 N/m2, and 3.03 mm while 

the pulp yields were 33.8, 33.11, and 31.03%, respectively. This showed that banana fruit stems pulped at 5% NaOH gave better 

results than banana and plantain stems. In conclusion, the pulp is suitable for producing fiberboards and cartons. 

Keywords: Banana stem, plantain stem, pulp, pressurized, filler, tensile strength 

Subject Classification (2020): 

1. Introduction 

Man derives his livelihood directly from the natural endowment in which trees fall into this category with more 

economical and biotechnological values. Naturally, wood has diverse applications for humanity, such as paper 

production, which has increased tremendously over the past four decades. Other agricultural residues can also 

be used for pulp and paper production. The high demand for pulp and paper has dramatically reduced pulp 

wood with a decline in forest-based material. This has prompted many researchers to look for alternatives to 

pulp wood, such as waste of bagasse and rice straw for producing paper. It is observed that among the agro 

waste, much research has not been carried out using banana stems [1]. Paper is a slender material produced by 

pressing together moist fibers derived from cellulose pulp capable of writing or packaging. In developing 

 

ISSN: 2717-8900 https://doi.org/10.54559/jauist.1140132 

https://orcid.org/0000-0003-3562-5919
https://orcid.org/0009-0001-0033-1171
https://orcid.org/0000-0002-4535-1459
https://orcid.org/0000-0001-5843-7641
https://orcid.org/0000-0002-2373-1477
https://doi.org/10.54559/jauist.1140132


21 

 

Aiyedun et al. / JAUIST / 4(1) (2023) 20-32  

countries like Nigeria, the availability of a steady supply of paper is an essential tool for promoting education 

and increasing literacy. The development triggers an increased demand for the local production of paper and 

paper products in food processing, export packaging, hygiene, and household items [2]. The research focused 

on producing paper from the Pulp obtained from banana stem waste, plantain stem waste, and banana fruit 

stem waste. 

2. Preliminaries 

2.1. Chemistry of Paper 

The basic structure of pulp and paper sheets is a felted mat of cellulose fibers held together by hydrogen bonds. 

Cellulose is a polysaccharide with 600 to 1,500 repeated sugar units. It is the structural component of the 

primary cell wall of green plants and many forms of algae. Cellulose is the most common organic compound 

on Earth. About 33% of all plant matter is cellulose. Cellulose fibers have high tensile strength, will absorb 

the additives used to modify pulp into paper and board products, and are supple and chemically stable. The 

purpose of pulping is to separate cellulose fibers from the other components of the fiber source. In the case of 

wood, these include hemicelluloses (with 15 to 90 repeated sugar units), lignin (highly polymerized and 

complex, mainly phenyl propane units; they act as the “glue” that cements the fibers together), extractives 

(fats, waxes, alcohols, phenols, aromatic acids, essential oils, oleoresins, sterols, alkaloids and pigments), and 

minerals and other inorganic. The relative proportions of these components vary according to the fiber source, 

as shown in Table 1 [3]. 

Table 1. Chemical constituents of pulp and paper fiber sources 

                         Woods 

Carbohydrates 
Softwood     Hardwood Straw Bamboo Cotton 

α-cellulose 38–46 38–49 28–42 26–43 80–85 

Hemicelluloses 23–31 20–40 23–38 15–26 nd 

Lignin 22–34 16–30 12–21 20–32 nd 

Extractives 1-5 2-8 1-2 0.2-5 nd 

Minerals 0.1-7 0.1-11 3-20 1-10 0.8-2 

Sourced from Anya and Teschke [4] 

2.2. Wood Pulp 

Wood pulp is a dry fibrous material prepared by chemically or mechanically separating the fibers which make 

up wood. [5] revealed that pulping is the process by which the bonds within the wood structure are 

mechanically or chemically ruptured. Chemical pulps can be produced by either alkaline sulfate, Kraft, or 

acidic (sulfite) processes. The highest proportion of pulp is produced by the sulfate method, followed by 

mechanical (including semi-chemical, thermomechanical, and mechanical) and sulfite methods. Pulping 

processes differ in the yield and quality of the product, and for chemical methods, in the chemicals used and 

the proportion that can be recovered for reuse [6]. 

2.2.1. Mechanical Pulping 

[7] revealed that mechanical pulps are produced by grinding wood against a stone or between metal plates, 

thereby separating the wood into individual fibers. Shearing breaks cellulose fibers and the resulting pulp is 

weaker than chemically separated pulps. The lignin connecting cellulose to hemicelluloses is not dissolved; it 

merely softens, allowing the fibers to be ground out of the wood matrix. The main difference between chemical 

and mechanical pulp is the yield ratio. Mechanical pulp uses 80 to 95% of the wood fiber, while chemical pulp 
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uses approximately 45 to 55%. The critical characteristic of mechanical pulp is that it is primarily used for 

producing paper products where quality is not a significant concern (e.g., newsprint). Mechanical pulping is 

additionally the only option for processing recovered paper for pulp production. Several mechanical pulping 

techniques exist [8].  

Refiner mechanical pulping (RMP): Its key characteristics are the high yield and the fact that fibers are not 

too short. RMP can use chips as raw material, processed by two grooved discs. The fibers produced with this 

technique are lighter than usual; thus, the ratio of paper produced per wood use is increased compared to other 

pulping methods [9]. 

Chemi-thermomechanical pulping (CTMP): This technique is characterized by using chemicals in the 

refining process and the increased flexibility and brightness of the fiber produced. The main advantage of this 

pulp type, while also a significant drawback, is the relatively high energy demand. The main disadvantage of 

mechanical pulping is that it is an energy-intensive process and is the most effective energy consumer per 

product quantity compared to other pulping options. Some additional drawbacks are the relatively short fibers 

of pulp produced, the low ratio of impurities removal, and the paper products’ low strength and brightness 

characteristics [9]. 

2.2.2. Chemical Pulping 

Chemical pulps are produced by chemically dissolving the lignin between the wood fibers, enabling the fibers 

to separate relatively undamaged. Because most non-fibrous wood components are removed in these processes, 

yields are usually 40 to 55%. In chemical pulping, chips and chemicals in an aqueous solution are cooked 

together in a pressure vessel (digester), which can be operated on a batch or continuous basis. In batch cooking, 

the digester is filled with chips through a top opening, the digestion chemicals are added, and the contents are 

cooked at elevated temperature and pressure. Once the cooking is complete, the pressure is released, “blowing” 

the de-lignified pulp out of the digester and into a holding tank. The sequence is then repeated. In continuous 

digesting, pre-steamed chips are fed into the digester continuously. Chips and chemicals are mixed together in 

the impregnation zone at the top of the digester and then proceed through the upper, lower, and washing zones 

before being blown into the blow tank [10]. 

2.3. Sulphate Pulping 

The sulfate or Kraft pulping process produces a stronger, darker pulp than other methods and requires chemical 

recovery to compete economically. The method evolved from soda pulping (which uses only sodium hydroxide 

for digestion). It began to gain prominence in the industry from the 1930s to 1950s with the development of 

chlorine dioxide bleaching and chemical recovery processes. Developing corrosion-proof metals, such as 

stainless steel, to handle the acidic and alkaline pulp mill environments also played a role [11]. The cooking 

liquor for the sulfate process is a solution of sodium hydroxide (NaOH) and sodium sulfide (Na2S). The NaOH 

dissolves some of the non-fibrous materials. Others decomposed upon being heated, forming acids as displayed 

in (2.1). These acids react with the base NaOH to form compounds soluble in water. The NaOH also reacts 

with the resins in the wood, forming water-soluble soaps. Thus, in one way or another, the non-fibrous 

materials are dissolved and separated from the cellulose fibers. As sodium hydroxide is consumed, the sodium 

sulfide reacts with water to produce more sodium hydroxide [12]. 

Na2S   +   H2O       →      NaHS    +    NaOH (2.1) 
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2.4. Bleaching the Pulp 

[13] stated that bleaching is a multi-stage process that refines and brightens raw pulp. The objective is to 

dissolve (chemical pulps) or modify (mechanical pulps) the brown-colored lignin that was not removed during 

pulping while maintaining the integrity of the pulp fibers. A mill produces customized pulp by varying the 

bleaching agents’ order, concentration and reaction time. Each bleaching stage is defined by its bleaching 

agent, pH (acidity), temperature, and duration. After each bleaching stage, the pulp may be washed with caustic 

to remove spent bleaching chemicals and dissolved lignin before progressing to the next stage. After the last 

stage, the pulp is pumped through screens and cleaners to remove contaminants such as dirt or plastic. It is 

then concentrated and conveyed to storage [14]. 

2.5. Stock Preparation and Paper Making 

There are two types of stock preparation systems used. In one, the stock is treated first in a beater and then in 

a Jordan conical refiner. Continuous stock preparation, consisting of disk-type refining and conical refining, is 

employed in high-production mills. What happens to the cellulose fibers during stock preparation has an 

essential effect on the characteristics of paper produced. The beaters and the refiners roughen the individual 

fibers and fray their ends; this condition is desirable. When such fibers are used to create paper, the fibers 

interlock to make a strong paper. Secondly, the beating also breaks down the water-resistant outer walls of the 

fibers, thereby exposing the inner fibrils. This effect is called fibrillation. Once it takes place, the fibers take 

on water and swell. This effect is called hydration. The longer the refining process continues, the more the 

fibers are hydrated and the stronger the resulting paper becomes [10]. 

2.6. Fillers 

Materials called fillers are added to the pulp during stock preparation. Printing papers may contain 15 -25% of 

fillers by weight. Other papers designed for strength and rugged use, such as bond and ledger, may have 2-6% 

fillers. The three materials most commonly used for fillers are clay, a naturally occurring Alumino-Silicate; 

Titanium Dioxide, TiO2; and Calcium Carbonate, CaCO3. The principal reason for adding fillers is to increase 

opacity, brightness, and smoothness and to reduce ink-strike through [10]. 

2.7. Drying of Pulp and Paper 

Drying involves using air or heat to remove water from the paper sheet. In the earliest days of paper-making, 

this was done by hanging the paper sheets like laundry. In more modern times, various forms of heated drying 

mechanisms are used. On the paper machine, the most common is the steam-heated can dryer. These dryers 

can heat to temperatures above 93°C and are used in long sequences of more than 40 cans. The heat produced 

by these can quickly dry the paper to less than 6% moisture [15]. 

2.8. Finishing 

The paper may undergo sizing to alter its physical properties for various applications. The paper, at this point, 

is uncoated. Coated paper has a thin layer of material such as calcium carbonate or China clay applied to one 

or both sides to create a surface more suitable for high-resolution halftone screens. Coated or uncoated papers 

may have their surfaces polished by calendaring [16]. This research aimed to produce paper from the pulp 

obtained from banana, plantain, and fruit stem wastes and to evaluate the mechanical properties of the paper 

produced. 
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3. Materials and Methods 

Papermaking begins with the collection of raw materials. It continues through preparing the raw material, 

making pulp, screening out the sheets of paper, drying the paper, and finally finishing it. 

3.1. Chemicals Used 

Sodium Hydroxide (NaOH), Hydrogen peroxide (H2O2) 

Calcium Carbonate (CaCO3), Binder (Top Bond with compositions of polyvinyl formal, calcium carbonate 

and water) 

3.2. Raw Materials Used 

Banana stem waste 

Plantain stem waste and  

Banana fruit stem waste                                                               

3.3. Pulping Process 

The raw materials, which are Musa Species (banana stem waste, plantain stem waste, banana fruit stem waste, 

banana peel, and plantain peel), were obtained from Yaba College of Technology staff quarters, where they 

were locally grown. The freshly-cut sample parts were cut into an average of 2.0 cm chips, pounded with 

mortar and pestle for about 10 minutes, and then squeezed to remove some juice. 

3.3.1. Chemical Method 

The freshly cut and pounded (685.76g) samples chips of average length of 2.0 cm were charged into the 

digester (1000 ml Beaker) with the required amount of chemical solution of liquor to goods ratio (LR) of 5:1. 

Different percentages (5%, 10% and 15%) of Sodium Hydroxide concentration were used as cooking liquor. 

The pulping consisted of two stages. In the first stage, the crushed sample stems were heated to the 

impregnating temperature 600C and maintained at this temperature for 1 hour (60 minutes) so that the cooking 

liquor could penetrate the sample before it was heated to a boiling point 1000C and maintained at this 

temperature for 3 hours (180 minutes) for the digestion to be completed. At the end of the cooking (digestion), 

the pulp, which at this stage was dark brown and called black liquor, was washed several times with water. 

The resulting pulp was filtered, pressed, and passed (to neutralize any residual alkaline) once with hot water 

and several times with cold water. The pulp collected was defibrated and kept for further processing (bleaching 

or paper making). 

3.3.2. Chemical/ Mechanical Method 

A small sample quantity was collected and weighed in the chemical-mechanical method. The weighed sample 

was cut and chopped into about 2 mm and then pounded with mortar and pestle until it became a fine slurry 

(pulp). The sample was weighed in a beaker containing 5%, 10%, and 15% sodium hydroxide solution. The 

content was then boiled for an hour (60 minutes) and stirred occasionally. After 1 hour of boiling, the sample 

was removed from the alkaline solution and rinsed with water to remove the black liquor of the sodium lignite 

and the unused alkali. The washed sample was then pounded with mortar and pestle until it became slurry 

(pulp). The pounded sample (pulp) was then washed, filtered, defibrated, and kept for further processing 

(bleaching or paper making). The established standard used for this work was the TAPPI standard. 
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3.3.3. Bleaching Stage 

The slurry (pulp) was bleached with hydrogen peroxide by boiling for 30 minutes to increase the brightness of 

the pulp. After this, the bleached pulp was washed in running water, and the pulp water slurry was adjusted to 

contain 5% fiber and 95% water. It was then left as stock for paper making. 

3.4. Production of Handmade Papers 

Procedure 

Banana stem waste was cut and weighed (685.76g). The sample was cut into 10-20 mm chips, pounded with 

mortar and pestle for about 10 minutes, then squeezed to remove some juice from it and reweighed. The banana 

chips were charged into the digester (1 Litre  Beaker) with a 5%  concentration of Sodium Hydroxide at liquor 

to goods ratio (LR) of 5:1.  The pulping consisted of two stages. In the first stage, the crushed sample stems 

were heated to the impregnating temperature 600C and maintained at this temperature for 1 hour (60 minutes) 

before it was heated to a boiling point 1000C and kept at this temperature for 3 hours (180 minutes). At the end 

of the cooking (digestion), the pulp, which at this stage was dark brown, is called black liquor. The resulting 

pulp was filtered, pressed, washed several times in running water, and filtered. The sample was then bleached 

by boiling with hydrogen peroxide (15% w/v mass of pulp) for 30 minutes, filtered, and then the pH was taken. 

5% of binder “ Top Bond” and 10% CaCO3 were added to the pulp. The mixture was appropriately attired with 

a stirrer to defibrate (separate) the fibers with other chemicals of different proportions, as shown in Table 2. 

The mixture (pulp) was then transferred to the paper-making mold screen. The paper produced was dried in 

the open air for 2-3 hours, hot pressed, and then calendered to smoothen the surface.  

The pulp yield in stem and pulp yield in residue indicates the mass (weight) amount of material recovered after 

a specific process compared to the starting amount of material before the process. The recovery from pulping 

wood is commonly expressed as the percentage, by oven-dry weight, of pulp obtained from the original wood 

weight. 

Table 2. The mixing proportion of Stems and Chemicals 

Chemical/Parameters NaOH (%) H2O2 (%w/v) CaCO3 (%w/v) 

Banana Stem 

5 

15 10 10 

15 

Plantain Stem 

5 

15 10 10 

15 

Banana Fruit Stem 5 15 10 

3.5. Calculations Involved 

Digestion Stage: 

Weight of the Banana stem after chopping = 685.76g 

Weight of Banana stem after pounding & squeezing = 208.38g 

Liquor to goods ratio (LR) = 5:1 
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Total volume of bath = weight of goods ×  liquor ratio  

= 208.38 x 5  = 1042 ml 

Mass of sodium hydroxide (NaOH) = 5% × Weight of Sample 

= 
5

100
𝑥 208.38 = 10.42g 

The volume of water for digestion = Total volume of bath =1042 ml 

Impregnating Temperature = 60 0C 

Impregnating Duration = 60 minutes 

Cooking Temperature = 100 0C 

Cooking Duration = 180 minutes 

Mass of pulp obtained after digestion = 76.47g 

pH of pulp = 11.05 

Bleaching stage: 

Volume of Hydrogen Peroxide (𝐻2𝑂2) = 15%
𝑤

𝑣
of weight of pulp ×  liquor ratio  

=15/100 × 76.47 × 5  = 57.35 ml 

Total Bath = Mass of pulp ×  L. R (goods to liquor ratio)   

= 76.47 × 5 = 382 ml 

Volume of Water for bleaching = Total bath − Volume of Hydrogen Peroxide  

= 382ml – 57.35 ml = 324.65 ml 

Duration of bleaching = 30 minutes 

Mass of pulp obtained after bleaching = 68.80g 

Paper Making Stage: 

Mass of pulp for paper making = 9.16g 

Mass of Calcium Carbonate (10%w/w CaCO3) added = 10% of mass of pulp 

= 10/100 × 9.16 = 0.916g 

Mass of binder added = 5 % mass of pulp 

= 5/100 × 9.16 = 0.458g 

Volume of water added to bleach sample to form paper slurry = 5 × Mass of pulp  

= 5 × 9.16 = 46 ml 

Condition of Drying = Normal Atmospheric Condition 

Duration of Drying = 2 hours 

3.6. Mechanical Properties 

Mechanical tests such as tearing resistance, tensile strength, and elongation were carried out on the produced 

paper using an Instron Universal Testing Machine with Model Number 3369 and its tenacity. The test 
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procedure started in load control until the sample was loaded with a force of 0.25kN. Then, the procedure was 

carried out entirely under displacement control through the vertical LVDT at a rate of 3μm/s. 

4. Results and Discussions 

4.1. The Production of Pulp and Paper 

Figures 1-3 show the pulp and paper produced by different mixing proportions of raw materials. These were 

made from chemical/mechanical pulp of freshly harvested banana, plantain, and banana fruit stems pulped 

with 5, 10, and 15% of sodium hydroxide (NaOH), 10% of calcium carbonate (CaC03), 5% of binder, 15% of 

Hydrogen peroxide (H2O2), the required amount of chemical solution of liquor to goods ratio (LR) of 5:1 while 

the mass of pulp was 9.16g. Generally, the samples pulped with 5% sodium hydroxide (NaOH) showed lighter 

and smoother surfaces, while samples pulped with 15% NaOH were darker with rough surfaces. The brightness 

of the papers produced from plantain, banana, and banana fruit stems decreased steadily in that order [6]. 

 

(a) 

 

(b) 

 

(c) 

Figure 1. Banana stems; (a) 5% of NaOH, (b) 10% of NaOH, and (c) 15% of NaOH 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Plantain stems; (a) 5% of NaOH, (b) 10% of NaOH, and (c) 15% of NaOH 

 

(a) 

 

(b) 

 

(c) 

Figure 3. Banana fruit stems; (a) 5% of NaOH, (b) 10% of NaOH, and (c) 15% of NaOH 
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4.2. Musa Species Pulped with three different percentages of Caustic Soda (NaOH) 

The delignification of the chopped raw materials (banana, plantain, and banana fruit stem wastes) was varied 

according to independent parameters. The independent variables obtained after the operation by mixing 5% of 

Sodium Hydroxide (NaOH) are displayed in Table 3, while 10% and 15% (NaOH) mixture proportions are 

shown in Tables 4 and 5, respectively. Each factor was studied with pulp yield, and different types of handmade 

paper were produced from the pulp. In Table 3, the quantity of pulp (yield) in residue for banana, plantain, and 

banana fruit stems was 36.70, 35.50, and 38.5%, respectively, while the quantity of pulp (yield) in the stem for 

banana, plantain, and banana fruit stems were 11.15, 11.22, and 14.19% in that order. Moreover, in Table 4, 

the quantity of pulp (yield) in residue for banana, plantain, and banana fruit stems was 35.80, 34.12, and 32.25, 

respectively, while the quantity of pulp (yield) in the stem were 10.86, 10.51, and 11.90% in that order. Table 

5 displayed that the quantity of pulp (yield) in residue for banana, plantain, and banana fruit stems was 33.80, 

33.11, and 31.20%, while the quantity of pulp (yield) in the stem was 10.32, 33.11, and 31.20 % in the same 

order [6]. 

 

Table 3. Musa Species Pulped with 5% charge Caustic Soda (NaOH) 

Particulars Banana Stem Plantain Stem Banana Fruit stem 

Mass of Stem before Pounding (g) 685.76 708.96 427.09 

Mass of Stem after pounding (g) 208.38 224.06 157.40 

Quantity of residue in Stem for pulping (%)  30.39 31.60 36.8 

Volume of Fluid obtained from Stem (ml) 472      481    264   

Mass of Fluid obtained from Stem (g) 474.38 482.36 266.81 

Quantity of Fluid in Stem (%) 69.20 68.04 62.47 

Mass of Pulp obtained (g) 76.47 79.54 60.60 

Mass Rejected (Undigested residue)(g) 4.79 5.26 3.81 

Quantity of pulp (yield) in residue (%)  36.70 35.50 38.5 

Quantity of pulp (yield) in stem (%)  11.15 11.22 14.19 

Quantity rejected (Undigested) in residue (%)  2.30 2.35 2.42 

Quantity rejected (Undigested) in Stem (%)  0.70 0.70 0.89 

pH of Black Liquor 11.05 11.10 11.13 
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Table 4. Musa Species Pulped with 10% charge Caustic Soda (NaOH) 

Particulars Banana Stem Plantain Stem Banana Fruit stem 

Mass of Stem before Pounding (g) 650.50 650.50 650.50 

Mass of Stem after pounding (g) 197.25 200.35 240.00 

Quantity of residue in Stem for pulping (%)              30.32 30.80 46.89 

Volume of Fluid obtained from Stem (ml) 445 448 407 

Mass of Fluid obtained from Stem (g) 449.15 449.40 409.20 

Quantity of Fluid in Stem (%) 69.05 69.09 62.91 

Mass of Pulp obtained (g) 70.62 68.36 77.40 

Mass Rejected (Undigested residue)(g) 4.14 4.31 3.57 

Quantity of pulp (yield) in residue (%)  35.80 34.12 32.25 

Quantity of pulp (yield) in stem (%)  10.86 10.51 11.90 

Quantity rejected (Undigested) in residue (%)  2.10 2.25 2.38 

Quantity rejected (Undigested) in Stem (%)  0.64 0.66 0.88 

pH of Black Liquor 12.90 12.92 12.95 

 

Table 5. Musa Species Pulped with15% charge Caustic Soda (NaOH) 

Particulars Banana Stem     Plantain Stem Banana Fruit Stem 

Mass of Stem before Pounding (g) 650.50 650.50 650.50 

Mass of Stem after pounding (g) 198.50 200.35 240.00 

Quantity of residue in Stem for pulping (%)              30.51 30.80 36.92 

Volume of Fluid obtained from Stem (ml) 447 448 406 

Mass of Fluid obtained from Stem (g) 450.47 448.32 409.00 

Quantity of Fluid in Stem (%) 69.25 68.92 62.82 

Mass of Pulp obtained (g) 67.10 66.33 76.87 

Mass Rejected (Undigested residue)(g) 3.57 4.12 5.48 

Quantity of pulp (yield) in residue (%)  33.80 33.11 31.2 

Quantity of pulp (yield) in stem (%)  10.32 33.11 31.2 

Quantity rejected (Undigested) in residue (%)  1.80 2.06 2.28 

Quantity rejected (Undigested) in Stem (%)  0.55 0.63 0.84 

pH of Black Liquor 13.12 13.17 13.48 
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4.3. The Mechanical Properties of Produced Pulp and Paper 

The mechanical test results from handmade paper produced from pulp from raw samples (banana, plantain, 

and banana fruit stem waste) pulped with 5, 10, and 15% NaOH are presented in Table 6. Three mechanical 

properties were examined using the procedure stipulated by the Technical Association of Pulp and Paper 

Industry (TAPPI), including tear resistance, tensile strength, and elongation tests. The results were then 

compared with test results from already-made commercial papers. It was discovered that banana fruit stem 

waste pulped with 5% NaOH gave the highest tearing resistance, tensile strength, and elongation test (1.90 

mN, 24.77 N/m2, and 5.49 mm) while banana stem waste pulped with 15% NaOH gave the lowest tearing 

resistance (0.5mN). It was noticed that the mechanical properties of the handmade paper decreased as the 

concentration of the NaOH increased [14].  

The results of the tearing resistance, tensile strength and elongation test obtained using 5% NaOH for banana 

stem, plantain stem and banana fruit stems were 0.84 mN, 17.82 N/m2, and 4.90 mm; 1.35 mN, 14.95 N/m, 

and 2.17 mm; and 1.90 mN, 24.77 N/m2, and 5.49 mm; while the pulp yields were 36.7, 35.5, and 38.5%, 

respectively. The results obtained using 10 % NaOH for banana stem, plantain stem, and banana fruit stems 

were 0.80 mN, 17.30 N/m2, and 4.85 mm; 1.25 mN, 14.73 N/m2, and 2.0 mm; and 1.85 mN, 23.60 N/m2, and 

5.35 mm; while the pulp yields were 35.80%, 34.12%, and 32.25 % in that order. The results obtained using 

15% NaOH for the banana stem, plantain stems, and banana fruit stems were 0.70 mN, 6.89 N/m2, and 1.86 

mm; 0.79 mN, 8.70 N/m2, 2.90 mm; and 1.5 mN, 12.62 N/m2, and 3.03 mm while the pulp yields were 33.8, 

33.11, and 31.03%, respectively. This showed that banana fruit stems pulped at 5% sodium hydroxide gave 

better results than banana or plantain stems. The study showed that the pulp is suitable for producing corrugated 

boards, fiberboards, and cartons [6]. 

The evaluation of the mechanical test on the handmade paper shows that the banana fruit stem pulped with 5% 

NaOH gave the highest tearing resistance, tensile strength, and elongation test. The banana stem pulped with 

15% NaOH gave the lowest tearing resistance, while the Dried Plantain stem pulped with 10% and 15% NaOH 

gave the most insufficient tensile strength and elongation test. Comparing the pulp yield (which is a relative 

return of the pulp compared to the raw chips) obtained from all the raw materials (banana stem, plantain stem, 

and banana fruit stem) pulped with 5%, 10%, and 15% NaOH, it could be seen that banana fruit stem waste 

pulped with 5% NaOH gave the highest pulp yield (38.5%). The same banana fruit stem waste gave the lowest 

pulp yield (30.20%) when pulped with 15% NaOH. It was noticed that the pulp yield decreased as the 

percentages of the NaOH used increased [5]. 

The result of the mechanical test carried out on the paper produced from Musa Species, when compared with 

that obtained from commercial papers (Universal Extra white 80 grams bond, Newsprint, and File cover), 

shows that paper produced from banana fruit stem pulped with 5% NaOH gave a higher tearing resistance and 

elongation test. As a result, paper made from this Musa Species could be suitable for wrapping, packaging, 

and offset printing purposes [6]. 

Table 6. Mechanical properties of produced paper 

Samples Pulped up with Chemical Elongation (mm) Tearing Resistance (mN) Tensile strength (N/m2) 

Banana stem                
5% (NaOH), 10% (CaCO3), 

5% Binder,15% (H2O2) 

0.84 17.82 4.90 

Plantain stem 1.35 14.95 2.17 

Banana fruit stem 1.90 24.77 5.49 

Banana stem                
10% (NaOH), 10%(CaCO3), 

5%, Binder,15% (H2O2) 

0.80 17.30 4.85 

Plantain stem 1.25 14.73 2.00 

Banana fruit stem 1.85 23.60 5.35 

Banana stem                
15%(NaOH), 15% (CaCO3), 

5% Binder,15% (H2O2) 

0.50 8.90 2.21 

Plantain stem 0.59 4.14 1.90 

Banana fruit stem 0.67 13.84 3.89 
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The graphical representation of the pulp yield of samples is shown in Figure 2. Comparing the pulp yield 

(which is a relative return of the pulp compared to the raw chips) obtained from all the raw materials (banana 

stem, plantain stem, and banana fruit stem) pulped with 5, 10 and 15% of NaOH, it could be seen that banana 

fruit stem waste pulped with 5% NaOH gave the highest pulp yield (38.5%). The same banana fruit stem waste 

gave the lowest pulp yield (30.20%) when pulped with 15% NaOH. It could also be observed that the pulp 

yield decreases as the percentages of the NaOH used increase [14]. 

 

Figure 2. Graphical representation of pulp yield of banana, plantain, and banana fruit stem waste 

pulped with 5%, 10%, and 15% NaOH 

5. Conclusion 

The percentage pulp yield from banana stem waste, plantain stem waste, and banana fruit stem waste for pulp 

yield at 5 %, 10 %, and 15 % NaOH were 36.70, 35.80, and 33.80%; 35.50, 34.12, and 33.11%; and 38.50, 

32.25, and 31.03%, respectively which are high enough for industrial pulp and paper making. This study has 

shown that pulp could be produced from Musa species and that the pulp is suitable for the production of 

corrugated boards, fiberboards, and cartons. It could also be ideal for printing and writing papers when mixed 

with long fiber pulp. 
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Abstract − In this article, normal paracontact metric space forms are investigated on 𝑊0-curvature tensor. Characterizations of 
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1. Introduction 

The study of paracontact geometry was initiated by Kenayuki and Williams [1]. Zamkovoy [2] studied 

paracontact metric manifolds and their subclasses. Recently, Welyczko [3-4] studied curvature and torsion of 

Frenet Legendre curves in 3-dimensional normal paracontact metric manifolds. In the recent years, contact 

metric manifolds and their curvature properties have been studied by many authors in [5-7]. 

In this article, normal paracontact metric space forms are investigated on 𝑊0-curvature tensor. 

Characterizations of normal paracontact space forms are obtained on 𝑊0-curvature tensor. Special curvature 

conditions established with the help of Riemann, Ricci, concircular curvature tensors are discussed on 𝑊0-

curvature tensor. Through these curvature conditions, some important characterizations of normal paracontact 

metric space forms are obtained. 

2. Preliminaries 

Take an 𝑛-dimensional differentiable 𝑀 manifold. If it admits a tensor field 𝜙 of type (1,1), a contravariant 

vector field 𝜉 and a 1-form 𝜂 satisfying the following conditions: 

𝜙2𝑋 = 𝑋 − 𝜂(𝑋)𝜉, 𝜙𝜉 = 0, 𝜂(𝜙𝑋) = 0, 𝜂(𝜉) = 1 (2.1) 

and 

𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌), 𝑔(𝑋, 𝜉) = 𝜂(𝑋) (2.2) 
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for all 𝑋, 𝑌, 𝜉 ∈ 𝜒(𝑀), (𝜙, 𝜉, 𝜂) is called almost paracontact structure and (𝑀, 𝜙, 𝜉, 𝜂) is called almost 

paracontact metric manifold. If the covariant derivative of 𝜙 satisfies  

(∇𝑋𝜙)𝑌 = −𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋 + 2𝜂(𝑋)𝜂(𝑌)𝜉 (2.3) 

then, 𝑀 is called a normal paracontact metric manifold, where ∇ is Levi-Civita connection. From (2.3), we 

can easily to see that 

𝜙𝑋 = ∇𝑋𝜉 (2.4) 

for any 𝑋 ∈ 𝜒(𝑀) [1]. 

Moreover, if such a manifold has constant sectional curvature equal to 𝑐, then it is the Riemannian curvature 

tensor is 𝑅 given by 

 

𝑅(𝑋, 𝑌)𝑍 =
𝑐 + 3

4
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] +

𝑐 − 1

4
[𝜂(𝑋)𝜂(𝑍)𝑌

                       −𝜂(𝑌)𝜂(𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 + 𝑔(𝜙𝑌, 𝑍)𝜙𝑋

                      −𝑔(𝜙𝑋, 𝑍)𝜙𝑌 − 2𝑔(𝜙𝑋, 𝑌)𝜙𝑍]

 (2.5) 

for any vector fields 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) [5]. 

In a normal paracontact metric space form by direct calculations, we can easily to see that 

𝑆(𝑋, 𝑌) =
𝑐(𝑛 − 5) + 3𝑛 + 1

4
𝑔(𝑋, 𝑌) +

(𝑐 − 1)(5 − 𝑛)

4
𝜂(𝑋)𝜂(𝑌) (2.6) 

which implies that 

𝑄𝑋 =
𝑐(𝑛 − 5) + 4𝑛 + 1

4
𝑋 +

(𝑐 − 1)(5 − 𝑛)

4
𝜂(𝑋)𝜉 (2.7) 

for any 𝑋, 𝑌 ∈ 𝜒(𝑀), where 𝑄 is the Ricci operator and 𝑆 is the Ricci tensor of 𝑀. 

Lemma 2.1. Let 𝑀 be an 𝑛-dimensional normal paracontact metric manifold. In this case, the following 

equations hold. 

𝑅(𝜉, 𝑋)𝑌 = 𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋 (2.8) 

𝑅(𝑋, 𝜉)𝑌 = −𝑔(𝑋, 𝑌)𝜉 + 𝜂(𝑌)𝑋 (2.9) 

𝑅(𝑋, 𝑌)𝜉 = 𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌 (2.10) 

𝜂(𝑅(𝑋, 𝑌)𝑍) = 𝑔(𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋, 𝑍) (2.11) 

𝑆(𝑋, 𝜉) = (𝑛 − 1)𝜂(𝑋) (2.12) 

𝑄𝜉 = (𝑛 − 1)𝜉 (2.13) 

where 𝑅, 𝑆, and 𝑄 are Riemann curvature tensor, Ricci curvature tensor, and Ricci operator, respectively.  
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Tripathi and Gunam [8] described a 𝜏-curvature tensors of the (1,3) type in an 𝑛-dimensional (𝑀, 𝑔) semi-

Riemann manifold. One of these tensors is defined as follows: 

Definition 2.1. Let 𝑀 be an 𝑛-dimensional semi-Riemannian manifold. The curvature tensor defined as  

𝑊0(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

𝑛 − 1
[𝑆(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] (2.14) 

is called the 𝑊0-curvature tensor.  

For the 𝑛-dimensional normal paracontact metric space form, if we choose 𝑋 = 𝜉, 𝑌 = 𝜉, and 𝑍 = 𝜉, 

respectively in (2.14), then we get 

𝑊0(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

𝑛 − 1
[𝑆(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] (2.15) 

𝑊0(𝑋, 𝜉)𝑍 = 0 (2.16) 

𝑊0(𝑋, 𝑌)𝜉 =
(𝑛 − 5)(𝑐 − 1)

4(𝑛 − 1)
[𝜂(𝑋)𝑌 − 𝜂(𝑋)𝜂(𝑌)𝜉] (2.17) 

Definition 2.2. Let 𝑀 be a paracontact manifold. If its Ricci tensor 𝑆 of type (0,2) is of the form 

𝑆(𝑋, 𝑌) = 𝑎𝑔(𝑋, 𝑌) + 𝑏𝜂(𝑋)𝜂(𝑌) (2.18) 

then 𝑀 is called 𝜂-Einstein manifold, where 𝑎, 𝑏 are smooth functions on 𝑀. Moreover, if 𝑏 = 0, then the 

manifold is called Einstein.  

Definition 2.3. Let (𝑀, 𝑔) be a semi-Riemannian manifold and the two-dimensional subspace 𝛱 of the tangent 

space 𝑇𝑝(𝑀). If 𝐾(𝑋𝑝, 𝑌𝑝) is constant for each 𝑝 ∈ 𝑀 and 𝑋𝑝, 𝑌𝑝 ∈ 𝑇𝑝(𝑀), then 𝑀 is called a real space form, 

where 𝐾(𝑋𝑝, 𝑌𝑝) is the section curvature of the 𝛱 plane. 

3. Normal Paracontact Metric Space Forms on 𝑾𝟎-Curvature Tensor 

In this section, the characterization of normal paracontact metric space form under special curvature conditions 

created by 𝑊0-curvature tensor with Riemann, Ricci, concircular curvature tensors will be given. State and 

prove the following theorems. 

Theorem 3.1. Let 𝑀 be a 𝑛-dimensional normal paracontact metric space form. If 𝑀 is 𝑊0-flat, then 𝑀 is an 

Einstein manifold. 

Proof. 

Assume that manifold 𝑀 is 𝑊0-flat. From (2.14), we can write 

𝑊0(𝑋, 𝑌)𝑍 = 0 

for each 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀). Then, from (2.14), we obtain 

𝑅(𝑋, 𝑌)𝑍 =
1

𝑛 − 1
[𝑆(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] (3.1) 

for each 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀). If we choose 𝑍 = 𝜉 in (3.1) and using (2.10) and (2.12), we obtain 

𝜂(𝑋)𝑄𝑌 = (𝑛 − 1)𝜂(𝑋)𝑌 (3.2) 
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If we choose 𝑋 = 𝜉 in (3.2) and take inner product both sides of the last equation by 𝑍 ∈ 𝜒(𝑀), then we get 

𝑆(𝑌, 𝑍) = (𝑛 − 1)𝑔(𝑌, 𝑍) 

It is clear from the last equation that 𝑀 is Einstein manifold. ◻ 

Theorem 3.2. Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 is 𝑊0-semisymmetric, 

then 𝑀 is an Einstein manifold.  

Proof. 

Assume that 𝑀 is 𝑊0-semisymmetric. This means 

(𝑅(𝑋, 𝑌) ⋅ 𝑊0)(𝑈, 𝑉, 𝑍) = 0 

for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). Therefore, we can write 

𝑅(𝑋, 𝑌)𝑊0(𝑈, 𝑉)𝑍 − 𝑊0(𝑅(𝑋, 𝑌)𝑈, 𝑉)𝑍 − 𝑊0(𝑈, 𝑅(𝑋, 𝑌)𝑉)𝑍 − 𝑊0(𝑈, 𝑉)𝑅(𝑋, 𝑌)𝑍 = 0 (3.3) 

If we choose 𝑋 = 𝜉 in (3.3) and make use of (2.8), we get 

𝑔(𝑌, 𝑊0(𝑈, 𝑉)𝑍)𝜉 − 𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 − 𝑔(𝑌, 𝑈)𝑊0(𝜉, 𝑉)𝑍

+𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 − 𝑔(𝑌, 𝑉)𝑊0(𝑈, 𝜉)𝑍 + 𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

−𝑔(𝑌, 𝑍)𝑊0(𝑈, 𝑉)𝜉 + 𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0

 (3.4) 

If we use (2.15)-(2.17) in (3.4), we obtain  

𝑔(𝑌, 𝑊0(𝑈, 𝑉)𝑍)𝜉 − 𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑔(𝑉, 𝑍)𝜉

−𝐴𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 + 𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 + 𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

−𝐴𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 + 𝐴𝑔(𝑌, 𝑍)𝜂(𝑈)𝜂(𝑉)𝜉 + 𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0,

 (3.5) 

where 𝐴 =
(𝑛−5)(𝑐−1)

4(𝑛−1)
. If we choose 𝑈 = 𝜉 in (3.5) and use (2.15), we get 

𝑊0(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑉, 𝑍)𝑌 − 𝐴𝑔(𝑌, 𝑍)𝑉 = 0 (3.6) 

Putting (2.14) in (3.6), we have 

𝑅(𝑌, 𝑉)𝑍 −
1

𝑛 − 1
𝑆(𝑉, 𝑍)𝑌 +

1

𝑛 − 1
𝑔(𝑌, 𝑍)𝑄𝑉 + 𝐴𝑔(𝑉, 𝑍)𝑌 − 𝐴𝑔(𝑌, 𝑍)𝑉 = 0 (3.7) 

If we choose 𝑍 = 𝜉 in (3.5) and use (2.10) and (2.12), we get 

1

𝑛 − 1
𝜂(𝑌)𝑄𝑉 + 𝐴𝜂(𝑉)𝑌 − 𝐴𝜂(𝑌)𝑉 = 0 (3.8) 

In (3.8), if we choose 𝑌 = 𝜉, and take inner product both sides of the equation by 𝑍 ∈ 𝜒(𝑀), we then have 

𝑆(𝑉, 𝑍) =
(𝑛 − 5)(𝑐 − 1) + 4(𝑛 − 1)

4
𝑔(𝑉, 𝑍) −

(𝑛 − 5)(𝑐 − 1)

4
𝜂(𝑉)𝜂(𝑍) 

◻ 
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Theorem 3.3. Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 satisfies the curvature 

condition 𝑊0 ⋅ 𝑅 = 0, then 𝑀 is a real space form with constant scalar curvature.  

Proof. 

Assume that 

(𝑊0(𝑋, 𝑌) ⋅ 𝑅)(𝑈, 𝑉, 𝑍) = 0 

for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). Therefore, we can write 

𝑊0(𝑋, 𝑌)𝑅(𝑈, 𝑉)𝑍 − 𝑅(𝑊0(𝑋, 𝑌)𝑈, 𝑉)𝑍

−𝑅(𝑈, 𝑊0(𝑋, 𝑌)𝑉)𝑍 − 𝑅(𝑈, 𝑉)𝑊0(𝑋, 𝑌)𝑍 = 0
 (3.9) 

If we choose 𝑋 = 𝜉 in (3.9) and make use of (2.15), we get 

−𝐴𝑔(𝑌, 𝑅(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑅(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑅(𝜉, 𝑉)𝑍

−𝐴𝜂(𝑈)𝑅(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑌, 𝑉)𝑅(𝑈, 𝜉)𝑍 − 𝐴𝜂(𝑉)𝑅(𝑈, 𝑌)𝑍

+𝐴𝑔(𝑌, 𝑍)𝑅(𝑈, 𝑉)𝜉 − 𝐴𝜂(𝑍)𝑅(𝑈, 𝑉)𝑌 = 0

 (3.10) 

If we use (2.8)-(2.10) in (3.10), we obtain  

−𝐴𝑔(𝑌, 𝑅(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑅(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑔(𝑉, 𝑍)𝜉

−𝐴𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 − 𝐴𝜂(𝑈)𝑅(𝑌, 𝑉)𝑍 − 𝐴𝑔(𝑌, 𝑉)𝑔(𝑈, 𝑍)𝜉

+𝐴𝑔(𝑌, 𝑉)𝜂(𝑍)𝑈 − 𝐴𝜂(𝑉)𝑅(𝑈, 𝑌)𝑍 − 𝐴𝜂(𝑍)𝑅(𝑈, 𝑉)𝑌

+𝐴𝑔(𝑌, 𝑍)𝜂(𝑉)𝑈 − 𝐴𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 = 0

 (3.11) 

If we choose 𝑈 = 𝜉 in (3.11) and use (2.8), we get 

−𝐴[𝑅(𝑌, 𝑉)𝑍 − 𝑔(𝑉, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑉] = 0 (3.12) 

◻ 

Theorem 3.4. Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 satisfies the curvature 

condition 𝑊0 ⋅ 𝑊0 = 0, then 𝑀 is an 𝜂-Einstein manifold.  

Proof. 

Assume that  

(𝑊0(𝑋, 𝑌) ⋅ 𝑊0)(𝑈, 𝑉, 𝑍) = 0 

for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). Therefore, we can write 

𝑊0(𝑋, 𝑌)𝑊0(𝑈, 𝑉)𝑍 − 𝑊0(𝑊0(𝑋, 𝑌)𝑈, 𝑉)𝑍 − 𝑊0(𝑈, 𝑊0(𝑋, 𝑌)𝑉)𝑍 − 𝑊0(𝑈, 𝑉)𝑊0(𝑋, 𝑌)𝑍 = 0 (3.13) 
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If we choose 𝑋 = 𝜉 in (3.13) and make use of (2.15), we get 

−𝐴𝑔(𝑌, 𝑊0(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑊0(𝜉, 𝑉)𝑍

−𝐴𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑌, 𝑉)𝑊0(𝑈, 𝜉)𝑍 − 𝐴𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

+𝐴𝑔(𝑌, 𝑍)𝑊0(𝑈, 𝑉)𝜉 − 𝐴𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0

 (3.14) 

If we use (2.15)-(2.17) in (3.14), we obtain 

−𝐴𝑔(𝑌, 𝑊0(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 − 𝐴2𝑔(𝑌, 𝑈)𝑔(𝑉, 𝑍)𝜉

+𝐴2𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 − 𝐴𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 − 𝐴𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

+𝐴2𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 − 𝐴2𝑔(𝑌, 𝑍)𝜂(𝑈)𝜂(𝑉)𝜉 − 𝐴𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0

 (3.15) 

If we choose 𝑈 = 𝜉 in (3.15) and make the necessary adjustments using (2.15), we get 

−𝐴{𝑊0(𝑌, 𝑉)𝑍 + 𝐴[𝑔(𝑉, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝑉]} = 0 (3.16) 

Putting (2.14) in (3.16) and if we choose 𝑍 = 𝜉, we obtain 

−𝐴 [𝐴𝜂(𝑉)𝑌 − (𝐴 + 1)𝜂(𝑌)𝑉 +
1

𝑛 − 1
𝜂(𝑌)𝑄𝑉] = 0 (3.17) 

If we choose 𝑌 = 𝜉 in (3.17), then we take inner product both sides of the equation by 𝑍 ∈ 𝜒(𝑀), we have 

𝑆(𝑉, 𝑍) =
(𝑛 − 5)(𝑐 − 1) + 4(𝑛 − 1)

4
𝑔(𝑉, 𝑍) −

(𝑛 − 5)(𝑐 − 1)

4
𝜂(𝑉)𝜂(𝑍) 

◻ 

Corollary 3.1. Let 𝑀 be the n-dimensional normal paracontact metric space form. If 𝑀 satisfies the curvature 

condition 𝑊0 ⋅ 𝑊0 = 0, then 𝑀 is an Einstein manifold if and only if 𝑀 is a real space form with constant 

scalar curvature 𝑐 = 1.  

Definition 3.1. Let 𝑀 be an 𝑛-dimensional Riemannian manifold. The curvature tensor defined as  

𝑍(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
𝑟

𝑛(𝑛 − 1)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] (3.18) 

is called the concircular curvature tensor.  

For the 𝑛-dimensional normal paracontact metric space form, if we choose 𝑋 = 𝜉, 𝑌 = 𝜉,  and 𝑍 = 𝜉 in (3.18), 

respectively, then we get 

𝑍(𝜉, 𝑌)𝑍 = [1 −
𝑟

𝑛(𝑛 − 1)
] [𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍)𝑌] (3.19) 

𝑍(𝑋, 𝜉)𝑍 = [1 −
𝑟

𝑛(𝑛 − 1)
] [−𝑔(𝑋, 𝑍)𝜉 + 𝜂(𝑍)𝑌] (3.20) 
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𝑍(𝑋, 𝑌)𝜉 = [1 −
𝑟

𝑛(𝑛 − 1)
] [𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌] (3.21) 

Theorem 3.5. Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 satisfies the curvature 

condition 𝑊0 ⋅ 𝑍 = 0, then 𝑀 is a real space form with constant scalar curvature.  

Proof.  

Assume that  

(𝑊0(𝑋, 𝑌) ⋅ 𝑍)(𝑈, 𝑉, 𝑍) = 0 

for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). Therefore, we can write 

𝑊0(𝑋, 𝑌)𝑍(𝑈, 𝑉)𝑍 − 𝑍(𝑊0(𝑋, 𝑌)𝑈, 𝑉)𝑍 − 𝑍(𝑈, 𝑊0(𝑋, 𝑌)𝑉)𝑍 − 𝑍(𝑈, 𝑉)𝑊0(𝑋, 𝑌)𝑍 = 0 (3.22) 

If we choose 𝑋 = 𝜉 in (3.22) and make use of (2.15), we get 

−𝐴𝑔(𝑌, 𝑍(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑍(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑍(𝜉, 𝑉)𝑍

−𝐴𝜂(𝑈)𝑍(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑌, 𝑉)𝑍(𝑈, 𝜉)𝑍 − 𝐴𝜂(𝑉)𝑍(𝑈, 𝑌)𝑍

+𝐴𝑔(𝑌, 𝑍)𝑍(𝑈, 𝑉)𝜉 − 𝐴𝜂(𝑍)𝑍(𝑈, 𝑉)𝑌 = 0

 (3.23) 

If we use (3.19)-(3.21) in (3.23), we obtain  

−𝐴𝑔(𝑌, 𝑍(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑍(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝐵𝑔(𝑌, 𝑈)𝜂𝑔(𝑉, 𝑍)𝜉

−𝐴𝐵𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 − 𝐴𝜂(𝑈)𝑍(𝑌, 𝑉)𝑍 − 𝐴𝐵𝑔(𝑌, 𝑉)𝑔(𝑈, 𝑍)𝜉

+𝐴𝐵𝑔(𝑌, 𝑉)𝜂(𝑍)𝑈 − 𝐴𝜂(𝑉)𝑍(𝑈, 𝑌)𝑍 + 𝐴𝐵𝑔(𝑌, 𝑍)𝜂(𝑉)𝑈

−𝐴𝐵𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 − 𝐴𝜂(𝑍)𝑍(𝑈, 𝑉)𝑌 = 0

 (3.24) 

 where 𝐵 = [1 −
𝑟

𝑛(𝑛−1)
]. If we choose 𝑈 = 𝜉 in (3.24) and make the necessary adjustments using (3.19), we 

get 

−𝐴{𝑍(𝑌, 𝑉)𝑍 + 𝐵[𝑔(𝑌, 𝑍)𝑉 − 𝑔(𝑉, 𝑍)𝑌]} = 0 (3.25) 

If we substitute the (3.18) in (3.25) and we make the necessary arrangements, we obtain 

−𝐴[𝑅(𝑌, 𝑉)𝑍 − 𝑔(𝑉, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑉] = 0 

◻ 

Theorem 3.6. Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 satisfies the curvature 

condition 𝑊0 ⋅ 𝑆 = 0, then 𝑀 is an Einstein manifold.  

Proof. 

Assume that  

(𝑊0(𝑋, 𝑌) ⋅ 𝑆)(𝑈, 𝑉) = 0 

for every 𝑋, 𝑌, 𝑈, 𝑉 ∈ 𝜒(𝑀). Therefore, we can write 
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𝑆(𝑊0(𝑋, 𝑌)𝑈, 𝑉) + 𝑆(𝑈, 𝑊0(𝑋, 𝑌)𝑉) = 0 (3.26) 

If we choose 𝑋 = 𝜉 in (3.26) and make use of (2.15), we get  

−𝐴(𝑛 − 1)𝑔(𝑌, 𝑈)𝜂(𝑉) + 𝐴𝜂(𝑈)𝑆(𝑌, 𝑉)

−𝐴(𝑛 − 1)𝑔(𝑌, 𝑉)𝜂(𝑈) + 𝐴𝜂(𝑉)𝑆(𝑈, 𝑌) = 0
 (3.27) 

If we choose 𝑈 = 𝜉 in (3.27), we have 

(𝑛 − 5)(𝑐 − 1)

4(𝑛 − 1)
[𝑆(𝑌, 𝑉) − (𝑛 − 1)𝑔(𝑌, 𝑉)] = 0 

◻ 

4. Conclusion 

In this article, normal paracontact metric space forms are investigated on 𝑊0-curvature tensor. 

Characterizations of normal paracontact space forms are obtained on 𝑊0-curvature tensor. Special curvature 

conditions established with the help of Riemann, Ricci, concircular curvature tensors are discussed on 𝑊0-

curvature tensor. Through these curvature conditions, important characterizations of normal paracontact metric 

space forms are obtained. 
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Abstract − This paper aims to present work on contact pseudo-slant submanifolds of para-Sasakian manifolds. The study includes 

the definitions and some results on type 1, type 2, and type 3 contact pseudo-slant submanifolds. The results were interpreted by 

taking into account the parallelism and geodesicity of the tensors reduced to the submanifold. Additionally, minimal anti-invariant 

and invariant submanifolds were evaluated for the type 1, type 2, and type 3 cases of the tensors reduced to the submanifold. 
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1. Introduction 

The differential geometry of slant submanifolds has shown an increasing development since Chen [1] defined 

slant submanifolds in complex manifolds as a natural generalization of both invariant and anti-invariant 

submanifolds. Since then, many research articles have appeared on the existence of these submanifolds in 

different known spaces. The slant submanifolds of an almost contact metric manifolds were defined and 

studied by Lotta [2]. After, these submanifolds were studied by Cabrerizo et al. [3] in the setting of Sasakian 

manifolds. 

The notion of semi-slant submanifolds of an almost Hermitian manifold was introduced by Papagiuc [4]. 

Hemi-slant submanifolds were first introduced by Carrizo [5], and he called them pseudo-slant submanifolds. 

Recently, there have been many studies conducted on this subject [6-9]. Finally, Chanyal [10] has studied slant 

submanifolds on an almost paracontact metric manifold. 

In this paper, we study pseudo-slant submanifolds of a para-Sasakian (p-Sasakian) manifold. In Section 2, we 

review basic formulas and definitions for a p-Sasakian manifold and its submanifolds, which will be used later. 

In Section 3, we recall the definition and some basic results of a contact pseudo-slant submanifold of almost 

paracontact metric manifold. We obtain some results for these submanifolds in the setting of a p-Sasakian 

manifolds. We also research the geodetic states of the distributions. 

2. Preliminaries 

Let 𝑀̃ be an 𝑛-dimensional contact manifold with contact form 𝜂, i.e., 𝜂 ∧ 𝑑𝜂 ≠ 0. It is well known that a 

contact manifold admits a vector field 𝜉 called the characteristic vector field, shuch that 𝜂(𝜉) = 1 and 
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𝑑𝜂(𝑋, 𝜉) = 0, for every 𝑋 ∈ Γ(𝑇𝑀̃). Furthermore, 𝑀̃ admits a Rieman metric 𝑔 and a vector field 𝜙 of type 

(1,1) shuch that  

𝜙2𝑋 = 𝑋 − 𝜂(𝑋)𝜉, 𝜂(𝑋) = 𝑔(𝑋, 𝜉), 𝑔(𝑋, 𝜙𝑌) = 𝑑𝜂(𝑋, 𝑌) (2.1) 

We then say that (𝜙, 𝜉, 𝜂, 𝑔) is a contact metric structure. A contact metric is said to be a Sasakian if  

(∇̃𝑋𝜙)𝑌 = 𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋 (2.2) 

in which case  

∇̃𝑋𝜉 = 𝜙𝑋, Ȓ(X, Y)ξ = 𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌 (2.3) 

We provide a structure similar to Sasakian but not having contact. 

An 𝑛-dimensional diferentiable manifold is said to admit an almost paracontact Rieman structure (𝜙, 𝜉, 𝜂, 𝑔), 

where 𝜙 of type (1,1) tensor field 𝜉 is a vector field, 𝜂 ia a 1-form and 𝑔 is a Rieman metric on 𝑀̃ such that  

𝜙𝜉 = 0, 𝜂(𝜙𝑋) = 0, 𝜂(𝜉) = 1, 𝜂(𝑋) = 𝑔(𝑋, 𝜉) (2.4) 

𝜙2𝑋 = 𝑋 − 𝜂(𝑋)𝜉, 𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌) (2.5) 

for any vector fields 𝑋, 𝑌 on 𝑀̃. The equation 𝜂(𝜉) = 1 is equivalent to |𝜂| ≡ 1, and then 𝜉 is just the metric 

dual of 𝜂. If (𝜙, 𝜉, 𝜂, 𝑔) satisfy the equations  

𝑑𝜂 = 0, ∇̃𝑋𝜉 = 𝜙𝑋 (2.6) 

(∇̃𝑋𝜙)𝑌 = −𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋 + 2𝜂(𝑌)𝜂(𝑌) (2.7) 

then 𝑀̃ is called a  p-Sasakian manifold or briefly, a p-Sasakian, especially, a  p-Sasakian manifold 𝑀̃ is called 

a special  p-Sasakian manifold or briefly a sp-Sasakian manifold if 𝑀̃ admits a 1-form 𝜂 satisfiying  

(∇̃𝑋𝜂)𝑌 = −𝑔(𝑋, 𝑌) + 𝜂(𝑌)𝜂(𝑋) 

where ∇̃ is the Levi-Civita connections of 𝑔. 

Let 𝑀 denotes an immersed submanifold of a p-Sasakian manifold 𝑀̃. Considering the non degenerate metric 

induced on 𝑀 by the same symbol 𝑔 as on 𝑀̃. Further, the Gauss and Weingarten formulas are respectively 

given as, 

∇̃𝑋𝑌 = ∇𝑋𝑌 + 𝜎(𝑋, 𝑌) (2.8) 

and 

∇̃𝑋𝑉 = −𝐴𝑉𝑋 + ∇𝑋
 ⊥𝑉 (2.9) 

for all 𝑋, 𝑌 ∈ Γ(𝑇𝑀) and 𝑉 ∈ Γ(𝑇⊥𝑀) where, 

i. 𝑋, 𝑌 ∈ Γ(𝑇𝑀) (tangent bundle) and 𝑉 ∈ Γ(𝑇⊥𝑀) (normal bundle), 

ii. Induced Levi-Civita connection 𝛻 on 𝑀, 

iii. Normal connection ∇⊥ on Γ(𝑇⊥𝑀)  

iv. Second fundamental form 𝜎 on 𝑀, 
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v. Shape operator 𝐴𝑉 associated with the normal section 𝑉. 

Moreover, the second fundamental form 𝜎 and shape operator 𝐴𝑉 are related by 

𝑔(𝐴𝑉𝑋, 𝑌) = 𝑔(𝜎(𝑋, 𝑌), 𝑉) (2.10) 

for all 𝑋, 𝑌 ∈ Γ(𝑇𝑀) and 𝑉 ∈ Γ(𝑇⊥𝑀). 

The mean curvature vector 𝐻 of 𝑀 is given by 

𝐻 =
1

𝑚
∑

𝑛

𝑖=1

𝜎(𝑒𝑖 , 𝑒𝑖) (2.11) 

where 𝑚 is the dimension of 𝑀 and {𝑒1, 𝑒2, . . . , 𝑒𝑚} is a local orthonormal frame of 𝑀. 

A submanifold 𝑀 of an paracontact metric manifold 𝑀̃ is said to be totally umbilical if  

𝜎(𝑋, 𝑌) = 𝑔(𝑋, 𝑌)𝐻 (2.12) 

where 𝐻 is the mean curvature vector. A submanifold 𝑀 is said to be totally geodesic if 𝜎(𝑋, 𝑌) = 0, for each 

𝑋, 𝑌 ∈ Γ(𝑇𝑀) and 𝑀 is said to be minimal if 𝐻 = 0. 

Let 𝑀 be a submanifold of an almost paracontact metric manifold 𝑀̃. Then, for any 𝑋 ∈ Γ(𝑇𝑀), we can write 

𝜙𝑋 = 𝑇𝑋 + 𝑁𝑋 (2.13) 

where 𝑇𝑋 is the tangential component and 𝑁𝑋 is the normal component of 𝜙𝑋. 

Similary, for 𝑉 ∈ Γ(𝑇⊥𝑀), we can write 

𝜙𝑉 = 𝑡𝑉 + 𝑛𝑉 (2.14) 

where 𝑡𝑉 is the tangential component and 𝑛𝑉 is the normal component of 𝜙𝑉. 

Furthermore, for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀), we have 𝑔(𝑇𝑋, 𝑌) = −𝑔(𝑋, 𝑇𝑌), 𝑔(𝑁𝑋, 𝑌) = −𝑔(𝑋, 𝑁𝑌), and 𝑉, 𝑈 ∈

Γ(𝑇⊥𝑀), we get 𝑔(𝑈, 𝑛𝑉) = −𝑔(𝑛𝑈, 𝑉). These relations show that 𝑁 and 𝑛 are also skew-symmetric tensor 

fields. Moreover, for any 𝑋 ∈ Γ(𝑇𝑀) and 𝑉 ∈ Γ(𝑇⊥𝑀), we have 𝑔(𝑁𝑋, 𝑉) = −𝑔(𝑋, 𝑡𝑉), which gives the 

relation between 𝑁 and 𝑡. 

Thus, by using (2.1), (2.13), and (2.14), we obtain 

𝑇2 = 𝐼 − 𝜂 ⊗ 𝜉 − 𝑡𝑁, 𝑁𝑇 + 𝑛𝑁 = 0 (2.15) 

and 

𝑇𝑡 + 𝑡𝑛 = 0, 𝑁𝑇 + 𝑛2 = 𝐼 (2.16) 

where the covariant derivatives of the tensor field 𝑇, 𝑁, 𝑡, and 𝑛 are, respectively, defined by 

(∇𝑋𝑇)𝑌 = ∇𝑋𝑇𝑌 − 𝑇∇𝑋𝑌 (2.17) 

(∇𝑋𝑁)𝑌 = ∇𝑋
⊥𝑁𝑌 − 𝑁∇𝑋𝑌 (2.18) 

(∇𝑋𝑡)𝑉 = ∇𝑋𝑡𝑉 − 𝑡∇𝑋
⊥𝑉 (2.19) 

and 
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(∇𝑋𝑛)𝑉 = ∇𝑋
⊥𝑛𝑉 − 𝑛∇𝑋

⊥𝑉 (2.20) 

for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀) and for any 𝑉 ∈ Γ(𝑇⊥𝑀). 

By direct calculations, we obtain the following formulas 

(∇𝑋𝑇)𝑌 = 𝐴𝑁𝑌𝑋 + 𝑡𝜎(𝑋, 𝑌) + 𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋 (2.21) 

and 

(∇𝑋𝑁)𝑌 = 𝑛𝜎(𝑋, 𝑌) − 𝜎(𝑋, 𝑇𝑌) (2.22) 

for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀), 

Similary, we obtain 

(∇𝑋𝑡)𝑉 = 𝐴𝑛𝑉𝑋 − 𝑇𝐴𝑉𝑋 (2.23) 

and 

(∇𝑋𝑛)𝑉 = −𝑁𝐴𝑉𝑋 − 𝜎(𝑡𝑉, 𝑋) (2.24) 

for any 𝑋 ∈ Γ(𝑇𝑀) and for any 𝑉 ∈ Γ(𝑇⊥𝑀). 

Lemma 2.1. If 𝑀 is an immersed submanifold of a p-Sasakian manifold 𝑀̃ with 𝜉 ∈ Γ(𝑇𝑀), then 

∇𝑋𝜉 = 𝑇𝑋 (2.25) 

and 

𝜎(𝑋, 𝜉) = 𝑁𝑋 (2.26) 

𝐴𝑉𝜉 = −𝑡𝑉 (2.27) 

𝑋 ∈ Γ(𝑇𝑀) and 𝑉 ∈ Γ(𝑇⊥𝑀). 

Proof.  

In (2.8), if 𝑌 = 𝜉 is written, we have  

∇̃𝑋𝜉 = ∇𝑋𝜉 + 𝜎(𝑋, 𝜉) 

Using (2.13), the tangential and normal parts of the last equation give, respectively, us  

∇𝑋𝜉 = 𝑇𝑋 

and 

𝜎(𝑋, 𝜉) = 𝑁𝑋 

Besides, in (2.10), if 𝑌 = 𝜉 is written and from (2.26), we have  

𝑔(𝐴𝑉𝑋, 𝜉) = 𝑔(𝑁𝑋, 𝑉) = −𝑔(𝑋, t𝑉) ◻ 

Definition 2.2. [2] Let 𝑀 be a submanifold of a p-Sasakian manifold 𝑀̃. For each non-zero vector 𝑋 tangent 

to 𝑀 at 𝑥, the angle 𝜃(𝑥), 𝜃(𝑥) ∈ [0,
𝜋

2
], between 𝜙𝑋 and 𝑇𝑥𝑀 is called the slant angle or the Wirtinger angle 

of 𝑀. If the slant angle is constant, then the submanifold is also called the slant submanifold. If 𝜃 = 0 the 
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submanifold is invariant submanifold. If 𝜃 =
𝜋

2
, then it is called anti-invariant submanifold. If 𝜃(𝑥) ∈ (0,

𝜋

2
), 

then it is called proper-slant submanifold.  

We prove the following characterization theorem for slant submanifold. 

Theorem 2.3. [10] Let 𝑀 be a slant submanifold of an almost paracontact metric manifold (𝑀̃, 𝜙, 𝜉, 𝜂, 𝑔) such 

that 𝜉 ∈ 𝑇𝑀. Then,  

i. 𝑀 is slant of type 1 if and only if for any time like (space-like) vector field 𝑋 ∈ 𝜒(𝑀) − 〈𝜉〉, 𝑇𝑋 is time like 

(space-like), and there exists a constant 𝜆 ∈ (1, +∞) such that 

𝑇2 = 𝜆(𝐼 − 𝜂 ⊗ 𝜉) 

We write 𝜆 = cosh2𝜃, with 𝜃〉0. 

ii. 𝑀 is slant of type 2 if and only if for any time like (space-like) vector field 𝑋 ∈ 𝜒(𝑀) − 〈𝜉〉, 𝑇𝑋 is time like 

(space-like), and there exists a constant 𝜆 ∈ (0,1) such that 

𝑇2 = 𝜆(𝐼 − 𝜂 ⊗ 𝜉) 

We write 𝜆 = cos2𝜃, with 𝜃 ∈ (0,
Π

2
). 

iii. 𝑀 is slant of type 3 if and only if for any time like (space-like) vector field 𝑋 ∈ 𝜒(𝑀) − 〈𝜉〉, 𝑇𝑋 is time 

like (space-like), and there exists a constant 𝜆 ∈ (−∞, 0) such that 

𝑇2 = 𝜆(𝐼 − 𝜂 ⊗ 𝜉) 

We write 𝜆 = −sinh2𝜃, with 𝜃〉0. In each case 𝜃 is called the slant angle. 

Corollary 2.4. [10] Let 𝑀 be a slant submanifold of an almost paracontact metric manifold (𝑀̃, 𝜙, 𝜉, 𝜂, 𝑔) with 

slant angle 𝜃. Then, for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀), we have  

If 𝑀 is of type 1, then 

𝑔(𝑇𝑋, 𝑇𝑌) = −cosh2𝜃{𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)} (2.28) 

and  

𝑔(𝑁𝑋, 𝑁𝑌) = sinh2𝜃{𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)} (2.29) 

If 𝑀 is of type 2, then 

𝑔(𝑇𝑋, 𝑇𝑌) = −cos2𝜃{𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)} (2.30) 

and  

𝑔(𝑁𝑋, 𝑁𝑌) = −sin2𝜃{𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)} (2.31) 

If 𝑀 is of type 3, then 

𝑔(𝑇𝑋, 𝑇𝑌) = sinh2𝜃{𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)} (2.32) 

and  

𝑔(𝑁𝑋, 𝑁𝑌) = −cosh2𝜃{𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)} (2.33) 
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Proof. 

From the anti-symetry of 𝑇 and Theorem 2.3, we have 

𝑔(𝑇𝑋, 𝑇𝑌) = −𝑔(𝑇2𝑋, 𝑌) = −𝜆{𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)} = 𝜆{𝑔(𝜙𝑋, 𝜙𝑌)} 

(2.13) yields 

𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑇𝑋, 𝑇𝑌) + 𝑔(𝑁𝑋, 𝑁𝑌) 

from last two equations, we obtain 

𝑔(𝑁𝑋, 𝑁𝑌) = (1 − 𝜆)𝑔(𝜙𝑋, 𝜙𝑌) 

Hence, the corallary follows from the values of 𝜆 in the Theorem 2.3. ◻ 

3. Contact Pseudo-Slant Submanifolds of a Para-Sasakian Manifold 

Definition 3.1. [11] We say that 𝑀 is a contact pseudo-slant submanifold of an almost paracontact metric 

manifold 𝑀̃ if there exist two orthogonal distributions 𝐷𝜃 and 𝐷⊥ on 𝑀 such that 

i. 𝑇𝑀 admits the orthogonal direct decomposition 𝑇𝑀 = 𝐷⊥ ⊕ 𝐷𝜃, 𝜉 ∈ Γ(𝐷𝜃), 

ii. The distribution 𝐷⊥ is anti-invariant (totally-real), i.e., 𝜙𝐷⊥ ⊂ (𝑇⊥𝑀), 

iii. The distribution 𝐷𝜃 is a slant with slant angle 𝜃 ≠
𝜋

2
, that is, the angle between 𝐷𝜃 and 𝜙(𝐷𝜃) is a constant.  

From the definition, it is clear that if 𝜃 = 0, then the contac pseudo-slant submanifold is a semi-invariant 

submanifold, 𝜃 =
𝜋

2
 submaifold becomes an anti-invariant. 

We suppose that 𝑀 is a contact pseudo-slant submanifold of an almost paracontact metric manifold 𝑀̃. 

Furthermore, let 𝑑1 = dim(𝐷⊥) and 𝑑2 = dim (𝐷𝜃). We distinguish the following six cases. 

i. If 𝑑2 = 0, then 𝑀 is an anti-invariant submanifold. 

ii. If 𝑑1 = 0 and 𝜃 = 0, then 𝑀 is invariant submanifold. 

iii. If 𝑑1 = 0 and 𝜃 ∈ (0,
𝜋

2
), then 𝑀 is a proper slant submanifold. 

iv. If 𝜃 =
𝜋

2
 then, 𝑀 is an anti-invariant submanifold. 

v. If 𝑑2𝑑1 ≠ 0 and 𝜃 = 0, then 𝑀 is a semi-invariant submanifold. 

vi. If 𝑑2𝑑1 ≠ 0 and 𝜃 ∈ (0,
𝜋

2
), then 𝑀 is a contact pseudo-slant submanifold.  

If we denote the orthogonal complementary of 𝜑𝑇𝑀 in 𝑇⊥𝑀 by 𝜇, then the normal bundle 𝑇⊥𝑀 can be 

decomposed as follows:  

𝑇⊥𝑀 = 𝑁(𝐷⊥) ⊕ 𝑁(𝐷𝜃) ⊕ 𝜇 (3.1) 

Theorem 3.2. The necessary ond sufficient condition for submanifold 𝑀 of a p-Sasakian manifold 𝑀̃ to be a 

contact pseudo-slant submanifold is that ∃ a distribution 𝐷 on 𝑀 and a constant 𝜆 ∈ (−∞, +∞) satisfiying  

i. 𝐷 = {𝑋 ∈ Γ(𝑇𝑀): 𝑇2𝑋 = −𝜆𝑋} 

ii. 𝑇𝑋 = 0, for tangent vectorfield 𝑋 orthogonal to 𝐷 
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Further, 𝜆 can be cosh2 θ, cos2 𝜃, or − sinh2 𝜃 [10]. 

Proof. 

From Theorem 2.3 (i-iii), the proof of the theorem is obvious. ◻ 

Definition 3.3. A contact pseudo-slant submanifold 𝑀 of p-Sasakian manifold 𝑀̃ is said to be 𝐷𝜃-geodesic 

(resp. 𝐷⊥-geodesic) if 𝜎(𝑋, 𝑌) = 0, for 𝑋, 𝑌 ∈ Γ(𝐷𝜃) (resp. 𝜎(𝑍, 𝑊) = 0, for 𝑍, 𝑊 ∈ Γ(𝐷⊥). If for any 𝑋 ∈

Γ(𝐷𝜃) and 𝑍 ∈ Γ(𝐷⊥), 𝜎(𝑋, 𝑍) = 0, the 𝑀 is called mixed geodesic submanifold.  

Theorem 3.4. Let 𝑀 be a proper contact pseudo-slant submanifold of a p-Sasakian manifold 𝑀̃. If 𝑡 is parallel, 

then  

i. For type 2, 𝑀 is anti-invariant submanifold.  

ii. For type 3, 𝑀 is invariant submanifold.  

iii. 𝑀 is a mixed-geodesic submanifold. 

Proof. 

Consider (2.22) and (2.23) which gives the relation between 𝑡 and 𝑁. If 𝑡 is parallel, then 𝑁 is parallel, we 

obtain  

𝑛𝜎(𝑋, 𝑌) = 0 

for any 𝑋 ∈ Γ(𝐷𝜃) and 𝑌 ∈ Γ(𝐷⊥). Replacing 𝑋 by 𝑌 in (2.22) and taking into account to 𝑁 being parallel, we 

have  

𝑛𝜎(𝑌, 𝑇𝑋) − 𝜎(𝑌, 𝑇2𝑋) = cos2 𝜃 𝜎(𝑋, 𝑌) = sinh2 𝜃 𝜎(𝑋, 𝑌) = 0 

From type 2, we write  

cos2 𝜃 𝜎(𝑋, 𝑌) = 0 (𝜃 =
𝜋

2
 𝑀 is anti-invariant) 

From type 3, we write 

sinh2 𝜃 𝜎(𝑋, 𝑌) = 0 

Thus, 

2 sinh 𝜃 = 𝑒𝜃 − 𝑒−𝜃 = 0 (𝜃 = 0 𝑀 is invariant) 

Besides, for any 𝑋 ∈ Γ(𝐷𝜃) and 𝑌 ∈ Γ(𝐷⊥), 𝜎(𝑋, 𝑌) = 0, 𝑀 is a mixed geodesic submanifold. This proves 

our assertion. ◻ 

Theorem 3.5. Let 𝑀 be a proper contact pseudo-slant submanifold of a p-Sasakian manifold 𝑀̃. If 𝑁 is parallel, 

then either 𝑀 is a 𝐷⊥-geodesic or an anti-invariant submanifold of 𝑀̃.  

Proof. 

Consider (2.22) and (2.23) which gives the relation between 𝑡 and 𝑁. If 𝑡 is parallel, then 𝑁 is parallel, we 

obtain  

𝑇𝐴𝑁𝑌𝑍 = 0 

for any 𝑌, 𝑍 ∈ Γ(𝐷⊥). This implies that 𝑀 is either anti-invariant or 𝐴𝑁𝑌𝑍 = 0. Therefore, we obtain  

𝑔(𝜎(𝑍, 𝑊), 𝑁𝑌) = 0 

for any 𝑌, 𝑍, 𝑊 ∈ Γ(𝐷⊥). Moreover, by using (2.23), we conclude that  

𝑔(𝐴𝑛𝑉𝑍, 𝑌) − 𝑔(𝑇𝐴𝑉𝑍, 𝑌) = 𝑔(𝜎(𝑌, 𝑍), 𝑛𝑉) = 0 
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for any 𝑉 ∈ Γ(𝑇⊥𝑀). This tells us that 𝑀 is either 𝐷⊥-geodesic or it is an anti-invariant submanifold. ◻ 

Theorem 3.6. Let 𝑀 be a contact pseudo-slant submanifold of a p-Sasakian manifold 𝑀̃. If 𝑁 is parallel on 

𝐷𝜃, then either 𝑀 is a 𝐷𝜃-geodesic submanifold or 𝜎(𝑋, 𝑌) is an eigenvector of 𝑛2 with eigenvalues are 

cosh2 θ, cos2 𝜃, or − sinh2 𝜃, for type 1, type 2, and type 3, respectively. 

Proof. 

For all 𝑌, 𝑍 ∈ Γ(𝐷𝜃). From (2.22), we have 

𝑛𝜎(𝑍, 𝑌) − 𝜎(𝑍, 𝑇𝑌) = 0 (3.2) 

Besides, since 𝐷𝜃 is slant distribution, we get 

𝑛𝜎(𝑍, 𝑌 − 𝜂(𝑌)𝜉) − 𝜎(𝑍, 𝑇(𝑌 − 𝜂(𝑌)𝜉)) = 0 

From (2.4) and (2.13), we get 

𝑛𝜎(𝑍, 𝑌 − 𝜂(𝑌)𝜉) − 𝜎(𝑍, 𝑇𝑌) = 0 (3.3) 

Applying 𝑛 to (3.3), we have 

𝑛2𝜎(𝑍, 𝑌 − 𝜂(𝑌)𝜉) − 𝑛𝜎(𝑍, 𝑇𝑌) = 0 

Moreover, by interchanging of 𝑌 and 𝑇𝑌 in (3.2), we have  

𝑛𝜎(𝑍, 𝑇𝑌) − 𝜎(𝑍, 𝑇2𝑌) = 0 

Hence, using Theorem 2.3, we obtain 

𝑛2𝜎(𝑍, 𝑌 − 𝜂(𝑌)𝜉) = 𝑛𝜎(𝑍, 𝑇𝑌) 

 = 𝜎(𝑍, 𝑇2𝑌) 

 = cosh2 θ 𝜎(𝑍, 𝑌 − 𝜂(𝑌)𝜉) 

 = cos2 𝜃 𝜎(𝑍, 𝑌 − 𝜂(𝑌)𝜉) 

 = − sinh2 𝜃 𝜎(𝑍, 𝑌 − 𝜂(𝑌)𝜉) 

This implies that either 𝜎 = 0 on 𝐷𝜃 or 𝜎 in an eigenvector of 𝑛2 with eigenvalues cosh2 θ, cos2 𝜃, or 

− sinh2 𝜃.◻ 

Theorem 3.7. Let 𝑀 be a totally umbilical proper contact pseudo-slant submanifold of a p-Sasakian manifold 

𝑀̃. If 𝑡 is parallel, then either 𝑀 is a minimal or an anti-invariant and invariant submanifold of 𝑀̃.  

Proof. 

For all 𝑌 ∈ Γ(𝐷⊥) and 𝑋 ∈ Γ(𝐷𝜃). Consider (2.22) and (2.23) which gives the relation between 𝑡 and 𝑁. If 𝑡 

is parallel then 𝑁 is parallel, we obtain 

𝑛𝜎(𝑋, 𝑌) − 𝜎(𝑋, 𝑇𝑌) = 0 

Replacing 𝑋 by 𝑇𝑋 in above equation, we get  

𝑛𝜎(𝑇𝑋, 𝑌) − 𝜎(𝑇𝑋, 𝑇𝑌) = 0 

For 𝑌 ∈ Γ(𝐷⊥), 𝑇𝑌 = 0. Thus, 

𝑛𝜎(𝑇𝑋, 𝑌) = 0 

Since 𝑀 is totally umbilical, from (2.12), we have  
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𝑛𝑔(𝑇𝑋, 𝑌)𝐻 = 0 

Replacing 𝑋 by 𝑇𝑋 in above equation and from Theorem 2.3, we obtain 

𝑛𝑔(𝑇2𝑋, 𝑌)𝐻 = −𝑛𝑔(𝑇𝑋, 𝑇𝑌)𝐻 

 = −𝑛 cosh2 θ 𝑔(𝑋, 𝑌)𝐻 

 = −𝑛 cos2 𝜃 𝑔(𝑋, 𝑌)𝐻 

 = 𝑛 sinh2 𝜃 𝑔(𝑋, 𝑌)𝐻 

 = 0 

Hence, from type 2 and type 3, we have either 𝜃 =
𝜋

2
 (𝑀 is anti invariant), 𝜃 = 0 (𝑀 is invariant), or 𝐻 = 0 

(𝑀 is minimal). ◻ 

4. Conclusion 

In this article, interesting results have been obtained regarding the contact pseudo-slant submanifolds of para-

Sasakian manifolds, taking into account the geodesic and parallelism situations of the tensors. These situations 

can be investigated on other contact metric manifolds. 
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differential equations 

Faruk Muritala1 , AbdulAzeez Kayode Jimoh2 , Muideen Osun Ogunniran3,* , Abdulmalik 

Abidemi Oyedeji4 , Jafaar Olasunkanmi Lawal5  

1,2,4Department of Mathematics, Kwara State University, Malete, Nigeria 
1Department of Data Science, Kennesaw State University, Georgia, USA 

3Department of Mathematical Sciences, Osun State University, Osogbo, Nigeria 
5Department of Applied Mathematics, Federal University of Technology, Minna, Nigeria 

Abstract − Conventionally, the most used method of solving fourth-order initial value problems of ordinary differential is to first 

reduce to a system of first-order differential equations. This approach affects the effectiveness and convergence of the numerical 

method due to the transformation. This paper comprises the derivation, analysis, and implementation of a new hybrid block method 

for direct solution of fourth-order equations. The method is derived by collocation and interpolation of an assumed basis function. 

The basic properties of the block method, including zero stability, error constants, consistency, order, and convergence, were 

analyzed. From the analysis, the block method derived was found to be zero-stable, consistent, and convergent. Errors were 

computed for the proposed method, and they were proven to produce approximations that agree with exact solutions and as such 

this shows improvement with those of existing works. 

Keywords: Hybrid methods, block method, linear stability, errors 

Subject Classification (2020): 65L05, 65L70 

1. Introduction 

Differential Equations are among the essential tools used in producing models in engineering, mathematics, 

physics, aeronautics, elasticity, astronomy, dynamics, biology, chemistry, medicine, environmental sciences, 

social sciences, and banking. We study several differential equations in calculus to get closed-form solutions, 

but not all differential equations possess finite solutions. It is not easy to get even if they possess closed-form 

solutions. In such situations, depending on the need, numerical solutions of the differential equations are also 

sought [1,2]. In general, equations arising from modeling physical phenomena do not have analytical or exact 

solutions. Only a few can be solved analytically; hence, developing numerical methods becomes necessary. 

Numerical methods play a key role in providing approximate solutions to differential equations due to the 

difficulty in obtaining the exact solutions. Many numerical techniques, as found in [3-5], have been developed 

and implemented. Implementing the numerical method in the predictor-corrector approach has some setbacks, 

including lengthy computational time due to more function evaluations needed per step and computational 

burden which may affect the method’s accuracy in terms of error [6]. Numerical methods are necessary tools 

that provide solutions despite the complexities of problems. This study seeks to derive Hybrid Block Linear 
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Multi-Step Method for the direct solution of general fourth-order initial value problem of ordinary differential 

equations of the form: 

𝑦𝑖𝑣(𝑥) = 𝑓(𝑥, 𝑦′, 𝑦′′, 𝑦′′′) 

𝑦(𝑥0) = 𝜙0,    𝑦
′(𝑥0) = 𝜙1,    𝑦

′′(𝑥0) = 𝜙2, and 𝑦′′′(𝑥0) = 𝜙3 
(1.1) 

where 𝑓:ℝ𝑛+1 ⟶ ℝ𝑛 is continuous, 𝑥0 is the initial point, 𝑦 ∈ ℝ is an 𝑛-dimensional vector, 𝑥 is a scalar 

variable and a set of equally spaced points on the integration interval defined by; 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 <

⋯ < 𝑥𝑛+𝑘 < 𝑥𝑁 with a specified positive integer step number 𝑘 > 0. According to Awoyemi [1], Continuous 

Linear Multi-step Methods (CLMMs) have greater advantages over the discrete methods since they give better 

error estimates and provide simplified form, allowing easy solution approximation at all interior points of the 

integration interval. Block methods for approximating the numerical solution have been proposed by scholars 

for the solution of initial value problems using different polynomial trial functions ranging from power series, 

Lagrange polynomial, and Chebychev polynomial. Among these methods are in [4,6]. In particular, fourth-

order differential equations arise in many physical problems, such as in ship dynamics, deflection of beams, 

control theory, and mechanics. Therefore, fourth-order equations have attracted significant interest from 

researchers. Thereby, theoretical and numerical studies dealing with (1.1) have recently appeared in the 

literature. 

2. Specification and Derivation of the Numerical Scheme 

We consider a power series of a single variable 𝑥 as an approximate solution to (1.1) as 

𝑦(𝑥) = ∑  

𝑡+𝑐−1

𝑗=0

𝛼𝑗𝑥
𝑗 (2.1) 

where 𝛼𝑗 ∈ ℜ, 𝑗 ∈ {0,1, … , 𝑡 + 𝑐 − 1}, 𝑦 ∈ 𝐶𝑚, 𝑡 is the interpolation points, and 𝑐 is the collocation points. 

The derivatives of (2.1) are given as: 

𝑦′(𝑥) = ∑  

𝑡+𝑐−1

𝑗=0

 𝑗𝛼𝑗𝑥
𝑗−1 (2.2) 

𝑦′′(𝑥) = ∑  

𝑡+𝑐−1

𝑗=0

 𝑗(𝑗 − 1)𝛼𝑗𝑥
𝑗−2 (2.3) 

𝑦′′′(𝑥) = ∑  

𝑡+𝑐−1

𝑗=0

 𝑗(𝑗 − 1)(𝑗 − 2)𝛼𝑗𝑥
𝑗−3  (2.4) 

𝑦(𝑖𝑣)(𝑥) = ∑  

𝑡+𝑐−1

𝑗=0

 𝑗(𝑗 − 1)(𝑗 − 2)(𝑗 − 3)𝛼𝑗𝑥
𝑗−4 (2.5) 

From (1.1) and (2.2), we have 

𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′, 𝑦′′′) = ∑  

𝑡+𝑐−1

𝑗=0

𝑗(𝑗 − 1)(𝑗 − 2)(𝑗 − 3)𝛼𝑗𝑥
𝑗−4 (2.6) 
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such that 𝛼𝑗 ∈ ℝ are parameters to be determined, 𝑐 ∈ {0,
1

10
, 1,

11

10
,
19

10
, 2} are points of collocation, and 𝑡 ∈

{0,
1

10
,
11

10
,
19

10
} are points of interpolation. Collocating (2.2) at 𝑥 = 𝑥𝑛+𝑖 such that 𝑖 ∈ {0,

1

10
, 1,

11

10
,
19

10
, 2} 

interpolating (2.2) as well at 𝑥 = 𝑥𝑛+𝑖 such that 𝑖 ∈ {0,
1

10
,
11

10
,
19

10
} and evaluating at the end point 𝑥 = 𝑥𝑛+𝑖 

such that 𝑖 = 2 gives a system of nonlinear equations that were solved and then substituted into (2.1), which 

yields a continuous linear multi-step method in the form: 

𝑦(𝑥) = ∑  

𝑘−1

𝑗=0

𝛼𝑗(𝑥)𝑦𝑛+𝑗 + ℎ4 (∑  

𝑘

𝑗=0

 𝛽𝑗(𝑥)𝑓𝑛+𝑗 + 𝛽𝑤(𝑥)𝑓𝑛+𝑤 + 𝛽𝑣(𝑥)𝑓𝑛+𝑣 + 𝛽𝑢(𝑥)𝑓𝑛+𝑢) (2.7) 

where the numerical solution of the initial value problem is approximated to be equivalent to the true solution 

𝑦(𝑥), 𝑤 =
1

10
, 𝑣 =

11

10
, 𝑢 =

19

10
, 𝛼𝑗, and 𝛽𝑗 are constants, 𝑦𝑛+𝑗 = 𝑦(𝑥𝑛 + 𝑗ℎ), and 

𝑓𝑛+𝑗 = 𝑓(𝑥𝑛 + 𝑗ℎ, 𝑦𝑛
′ + 𝑗ℎ, 𝑦𝑛

′′ + 𝑗ℎ, 𝑦𝑛
′′′ + 𝑗ℎ) 

Substituting the obtained coefficient and evaluating the resulting method (2.7) produces the continuous linear 

multi-step method of the form: 

𝑦(𝑥) = 𝑎0𝑦0 + 𝑎 1
10

𝑦 1
10

+ 𝑎11
10

𝑦11
10

+ 𝑎19
10

𝑦19
10

+ 𝛽0𝑓0 + 𝛽 1
10

𝑦 1
10

+ 𝛽1𝑓1 + 𝛽11
10

𝑦11
10

+ 𝛽19
10

𝑦19
10

+ 𝛽2𝑓2 (2.8) 

Evaluating (2.8) at the non-interpolation point (evaluating point) 𝑥 = 𝑥𝑛+1 and 𝑥 = 𝑥𝑛+2 gives, respectively, 

the discrete schemes below: 

𝑦𝑛+1 = −
81

209
𝑦𝑛 +

1

2
𝑦

𝑛+
1
10

+
81

88
𝑦

𝑛+
11
10

−
5

152
𝑦

𝑛+
19
10

−
58941

76000000
ℎ4𝑓𝑛 +

368459

273600000
ℎ4𝑓

𝑛+
1
10

 

(2.9) 

  +
213557

36000000
ℎ4𝑓𝑛+1 −

21501

6400000
ℎ4𝑓

𝑛+
11
10

+
145063

218880000
ℎ4𝑓

𝑛+
19
10

−
8199

19000000
ℎ4𝑓𝑛+2 

and 

𝑦𝑛+2 = −
9

11
𝑦𝑛 + 𝑦

𝑛+
1
10

−
19

44
𝑦

𝑛+
11
10

+
5

4
𝑦

𝑛+
19
10

−
8963

4000000
ℎ4𝑓𝑛 +

81283

21600000
ℎ4𝑓

𝑛+
1
10

 

(2.10) 

  +
255683

27000000
ℎ4𝑓𝑛+1 +

45391

28800000
ℎ4𝑓

𝑛+
11
10

+
70571

17280000
ℎ4𝑓

𝑛+
19
10

−
86477

36000000
ℎ4𝑓𝑛+2 

Finding the first derivative of (2.8) and evaluating all the collocating points 𝑥 = 𝑥𝑛, 𝑥 = 𝑥
𝑛+

1

10

, 𝑥 = 𝑥𝑛+1, 

𝑥 = 𝑥
𝑛+

11

10

, 𝑥 = 𝑥
𝑛+

19

10

, and 𝑥 = 𝑥𝑛+2 and let 𝑟𝑛+𝑗 = 𝑦𝑛+𝑗
′  such that 𝑗 ∈ {0,

1

10
, 1,

11

10
,
19

10
, 2} gives the following 

discrete schemes: 

𝑟𝑛 = 
1

34128864000000ℎ
(−390277440000000𝑦𝑛 + 396274032000000𝑦

𝑛+
1
10

− 7368732000000𝑦
𝑛+

11
10

 

(2.11)   +1372140000000𝑦
𝑛+

19
10

+ 110860639956ℎ4𝑓𝑛 − 218693892340ℎ4𝑓
𝑛+

1
10

− 593503880992ℎ4𝑓𝑛+1 

  +426421129365ℎ4𝑓
𝑛+

11
10

−66216430225ℎ4𝑓
𝑛+

19
10

+ 43926910236ℎ4𝑓𝑛+2) 
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𝑟
𝑛+

1
10

 = −
1

94802400000ℎ
(816480000000𝑦𝑛 − 800553600000𝑦

𝑛+
1
10

− 19391400000𝑦
𝑛+

11
10

 

(2.12)   +3465000000𝑦
𝑛+

19
10

+ 265118103ℎ4𝑓𝑛 − 506277640ℎ4𝑓
𝑛+

1
10

− 1452235246ℎ4𝑓𝑛+1 

  +1036749915ℎ4𝑓
𝑛+

11
10

−161328475ℎ4𝑓
𝑛+

19
10

+ 106955343ℎ4𝑓𝑛+2) 

𝑟𝑛+1 = 
1

1264032000000ℎ
(4898880000000𝑦𝑛 − 6390384000000𝑦

𝑛+
1
10

+ 1163484000000𝑦
𝑛+

11
10

 

(2.13)   +328020000000𝑦
𝑛+

19
10

+ 9440623548ℎ4𝑓𝑛 − 16443847420ℎ4𝑓
𝑛+

1
10

 

  −71846823136ℎ4𝑓𝑛+1 +43138143495ℎ4𝑓
𝑛+

11
10

− 7747315675ℎ4𝑓
𝑛+

19
10

+ 5064247188ℎ4𝑓𝑛+2) 

𝑟
𝑛+

11
10

 = 
1

71101800000ℎ
(272160000000𝑦𝑛 − 347608800000𝑦

𝑛+
1
10

+ 46862550000𝑦
𝑛+

11
10

 

(2.14)   +28586250000𝑦
𝑛+

19
10

+ 563697981ℎ4𝑓𝑛 − 976068280ℎ4𝑓
𝑛+

1
10

− 4303171642ℎ4𝑓𝑛+1 

  +2284734705ℎ4𝑓
𝑛+

11
10

− 501523825ℎ4𝑓
𝑛+

19
10

+ 325265061ℎ4𝑓𝑛+2) 

𝑟
𝑛+

19
10

 = −
1

118503000000ℎ
(816480000000𝑦𝑛 − 1000692000000𝑦

𝑛+
1
10

+ 460545750000𝑦
𝑛+

11
10

 

(2.15)   −276333750000𝑦
𝑛+

19
10

+ 2172127671ℎ4𝑓𝑛 

  −473460525ℎ4𝑓
𝑛+

11
10

− 3589256275ℎ4𝑓
𝑛+

19
10

+ 2155609071ℎ4𝑓𝑛+2) 

𝑟𝑛+2 = −
1

11376288000000ℎ
(108319680000000𝑦𝑛 − 132091344000000𝑦

𝑛+
1
10

 

(2.16) 

  +54166644000000𝑦
𝑛+

11
10

− 30394980000000𝑦
𝑛+

19
10

+ 303775046388ℎ4𝑓𝑛 

  −508773529220ℎ4𝑓
𝑛+

1
10

− 1179138420416ℎ4𝑓𝑛+1 − 330876154455ℎ4𝑓
𝑛+

11
10

 

  −598023427925ℎ4𝑓
𝑛+

19
10

+ 345412673628ℎ4𝑓𝑛+2) 

Finding the second derivative of (2.8) and evaluating all the collocating points 𝑥 = 𝑥𝑛, 𝑥 = 𝑥
𝑛+

1

10

, 𝑥 = 𝑥𝑛+1, 

𝑥 = 𝑥
𝑛+

11

10

, 𝑥 = 𝑥
𝑛+

11

10

, and 𝑥 = 𝑥𝑛+2 and let 𝑠𝑛+𝑗 = 𝑦𝑛+𝑗
′′  such that 𝑗 ∈ {0,

1

10
, 1,

11

10
,
19

10
, 2} gives the following 

discrete schemes: 

𝑠𝑛 = −
1

284407200000ℎ2
(−8436960000000𝑦𝑛 + 9480240000000𝑦

𝑛+
1
10

− 1292760000000𝑦
𝑛+

11
10

 

(2.17)   +249480000000𝑦
𝑛+

19
10

+ 20917549323ℎ4𝑓𝑛 − 42632273200ℎ4𝑓
𝑛+

1
10

− 110678017846ℎ4𝑓𝑛+1 

  +79914551475ℎ4𝑓
𝑛+

11
10

− 12388620475ℎ4𝑓
𝑛+

19
10

+ 8222376723ℎ4𝑓𝑛+2) 
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𝑠
𝑛+

1
10

 = −
1

213305400000ℎ2
(−5715360000000𝑦𝑛 + 6399162000000𝑦

𝑛+
1
10

− 824134500000𝑦
𝑛+

11
10

 

(2.18)   +140332500000𝑦
𝑛+

19
10

+ 9941764959ℎ4𝑓𝑛 − 18346830920ℎ4𝑓
𝑛+

1
10

− 56496792638ℎ4𝑓𝑛+1 

  +39989691495ℎ4𝑓
𝑛+

11
10

− 6239749175ℎ4𝑓
𝑛+

19
10

+ 4133232279ℎ4𝑓𝑛+2) 

𝑠𝑛+1 = 
1

853221600000ℎ2
(816480000000𝑦𝑛 − 1939140000000𝑦

𝑛+
11
10

+ 1122660000000𝑦
𝑛+

19
10

 

(2.19)   +6842497761ℎ4𝑓𝑛 − 11187319000ℎ4𝑓
𝑛+

1
10

− 63806750722ℎ4𝑓𝑛+1 

  +7077591675ℎ4𝑓
𝑛+

11
10

− 9746416075ℎ4𝑓
𝑛+

19
10

+ 6117758361ℎ4𝑓𝑛+2) 

𝑠
𝑛+

11
10

 = 
1

426610800000ℎ2
(−816480000000𝑦𝑛 + 1422036000000𝑦

𝑛+
1
10

− 1260441000000𝑦
𝑛+

11
10

 

(2.20)   +654885000000𝑦
𝑛+

19
10

+ 500908617ℎ4𝑓𝑛 − 542479960ℎ4𝑓
𝑛+

1
10

 

  +842757806ℎ4𝑓𝑛+1 − 20192751315ℎ4𝑓
𝑛+

11
10

− 3020740525ℎ4𝑓
𝑛+

19
10

+ 1792783377ℎ4𝑓𝑛+2) 

𝑠
𝑛+

19
10

 = −
1

426610800000ℎ2
(10614240000000𝑦𝑛 − 12798324000000𝑦

𝑛+
1
10

+ 3587409000000𝑦
𝑛+

11
10

 

(2.21)   −1403325000000𝑦
𝑛+

19
10

+ 32936727627ℎ4𝑓𝑛 − 54572970760ℎ4𝑓
𝑛+

1
10

− 83172019414ℎ4𝑓𝑛+1 

  −87056974665ℎ4𝑓
𝑛+

11
10

−80228037175ℎ4𝑓
𝑛+

19
10

+ 45278532387ℎ4𝑓𝑛+2) 

𝑠𝑛+2 = −
1

853221600000ℎ2
(23677920000000𝑦𝑛 − 28440720000000𝑦

𝑛+
1
10

+7756560000000𝑦
𝑛+

11
10

 

(2.22)   −2993760000000𝑦
𝑛+

19
10

+ 76992556509ℎ4𝑓𝑛 − 126928542400ℎ4𝑓
𝑛+

1
10

− 146034445018ℎ4𝑓𝑛+1 

  −253898837775ℎ4𝑓
𝑛+

11
10

− 220541306425ℎ4𝑓
𝑛+

19
10

+ 116527553109ℎ4𝑓𝑛+2) 

Finding the third derivative of (2.8) and evaluating all the collocating points 𝑥 = 𝑥𝑛, 𝑥 = 𝑥
𝑛+

1

10

, 𝑥 = 𝑥𝑛+1, 

𝑥 = 𝑥
𝑛+

11

10

, 𝑥 = 𝑥
𝑛+

10

10

, and 𝑥 = 𝑥𝑛+2 and let 𝑡𝑛+𝑗 = 𝑦𝑛+𝑗
′′  such that 𝑗 ∈ {0,

1

10
, 1,

11

10
,
19

10
, 2} gives the following 

discrete schemes: 

𝑡𝑛 = 
1

85322160000ℎ3
(−2449440000000𝑦𝑛 + 2844072000000𝑦

𝑛+
1
10

− 581742000000𝑦𝑛+11
10  

(2.23)   +187110000000𝑦
𝑛+

19
10

+ 20341524573ℎ4𝑓𝑛 − 56174813860ℎ4𝑓
𝑛+

1
10

− 105707500426ℎ4𝑓𝑛+1 

  +79470524610ℎ4𝑓
𝑛+

11
10

− 12149227750ℎ4𝑓
𝑛+

19
10

+ 8094818853ℎ4𝑓𝑛+2) 
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𝑡
𝑛+

1
10

 = 
1

85322160000ℎ3
(−2449440000000𝑦𝑛 + 2844072000000𝑦

𝑛+
1
10

− 581742000000𝑦
𝑛+

11
10

 

(2.24)   +187110000000𝑦
𝑛+

19
10

+ 24211867707ℎ4𝑓𝑛 − 51427648360ℎ4𝑓
𝑛+

1
10

− 106372925494ℎ4𝑓𝑛+1 

  +80086291335ℎ4𝑓
𝑛+

11
10

− 12261672775ℎ4𝑓
𝑛+

19
10

+ 8171629587ℎ4𝑓𝑛+2) 

𝑡𝑛+1 = −
1

85322160000ℎ3
(2449440000000𝑦𝑛 − 2844072000000𝑦

𝑛+
1
10

+ 581742000000𝑦
𝑛+

11
10

 

(2.25) 

  −187110000000𝑦
𝑛+

10
10

+ 5853875427ℎ4𝑓𝑛 − 10122186140ℎ4𝑓
𝑛+

1
10

 

𝑡
𝑛+

11
10

 = −
1

85322160000ℎ3
(2449440000000𝑦𝑛 − 2844072000000𝑦

𝑛+
1
10

+ 581742000000𝑦
𝑛+

11
10

 

(2.26)   −187110000000𝑦
𝑛+

19
10

+ 5827792293ℎ4𝑓𝑛 − 10083031640ℎ4𝑓
𝑛+

1
10

− 66904794506ℎ4𝑓𝑛+1 

  +44593228665ℎ4𝑓
𝑛+

11
10

− 3677327225ℎ4𝑓
𝑛+

19
10

+ 2514430413ℎ4𝑓𝑛+2) 

𝑡
𝑛+

19
10

 = −
1

85322160000ℎ3
(2449440000000𝑦𝑛 − 2844072000000𝑦

𝑛+
1
10

+ 581742000000𝑦
𝑛+1

11
10

 

(2.27)   −187110000000𝑦
𝑛+

19
10

+ 11143839141ℎ4𝑓𝑛 − 17818020440ℎ4𝑓
𝑛+

1
10

+ 20572961398ℎ4𝑓𝑛+1 

  −80086291335ℎ4𝑓
𝑛+

11
10

− 56983996025ℎ4𝑓
𝑛+

19
10

+ 27184077261ℎ4𝑓𝑛+2) 

𝑡𝑛+2 = −
1

85322160000ℎ3
(2449440000000𝑦𝑛 − 2844072000000𝑦

𝑛+
1
10

+ 581742000000𝑦
𝑛+

11
10

 

(2.28)   +187110000000𝑦
𝑛+

10
10

+ 11092955427ℎ4𝑓𝑛 − 17745186140ℎ4𝑓
𝑛+

1
10

 

  +20034220426ℎ4𝑓𝑛+1 − 79470524610ℎ4𝑓
𝑛+

11
10

− 61770772250ℎ4𝑓
𝑛+

10
10

+ 23339661147ℎ4𝑓𝑛+2) 

Solving the resulting system for the unknown variables 𝑦𝑛+𝑗, 𝑟𝑛+𝑗, 𝑠𝑛+𝑗, and 𝑡𝑛+𝑗 such that 𝑗 ∈

{
1

10
, 1,

11

10
,
19

10
, 2} gives the discrete schemes which are combined to form the required method below: 

𝑦
𝑛+

1
10

 = 
1637

51710400000
ℎ4𝑓𝑛+2 −

4927

106375680000
ℎ4𝑓

𝑛+
19
10

+
301157

1197504000000
ℎ4𝑓

𝑛+
11
10

−
949

3499200000
ℎ4𝑓𝑛+1 

(2.29) 

  +
4774487

4653936000000
ℎ4𝑓

𝑛+
1
10

+
100337

31600800000
ℎ4𝑓𝑛 +

1

6000
ℎ3𝑡𝑛 +

1

200
ℎ2𝑠𝑛 +

1

10
ℎ𝑟𝑛 + 𝑦𝑛 

𝑦𝑛+1 = −
71

23085
ℎ4𝑓𝑛+2 +

1325

290871
ℎ4𝑓

𝑛+
19
10

−
1145

37422
ℎ4𝑓

𝑛+
11
10

+
4315

122472
ℎ4𝑓𝑛+1 +

3535

83106
ℎ4𝑓

𝑛+
1
10

 

(2.30) 

  −
2759

395010
ℎ4𝑓𝑛 +

1

6
ℎ3𝑡𝑛 +

1

2
ℎ2𝑠𝑛 + ℎ𝑟𝑛 + 𝑦𝑛 
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𝑦
𝑛+

11
10

 = −
2570535011

517104000000
ℎ4𝑓𝑛+2 +

288764443

39191040000
ℎ4𝑓

𝑛+
19
10

−
5483098423

108864000000
ℎ4𝑓

𝑛+
11
10

+
511981129

8748000000
ℎ4𝑓𝑛+1 

(2.31) 

  +
290459826877

4653936000000
ℎ4𝑓

𝑛+
1
10

−
5168273

432000000
ℎ4𝑓𝑛 +

1331

6000
ℎ3𝑡𝑛 +

121

200
ℎ2𝑠𝑛 +

11

10
ℎ𝑟𝑛 + 𝑦𝑛 

𝑦
𝑛+

19
10

 = −
1141481639

19440000000
ℎ4𝑓𝑛+2 +

17212667359

195955200000
ℎ4𝑓

𝑛+
19
10

−
696137901157

1197504000000
ℎ4𝑓

𝑛+
11
10

+
228690027541

306180000000
ℎ4𝑓𝑛+1 

(2.32) 

  +
121063908407

244944000000
ℎ4𝑓

𝑛+
1
10

−
3467972131

23760000000
ℎ4𝑓𝑛 +

6859

6000
ℎ3𝑡𝑛 +

361

200
ℎ2𝑠𝑛 +

19

10
ℎ𝑟𝑛 + 𝑦𝑛 

𝑦𝑛+2 = −
11902

161595
ℎ4𝑓𝑛+2 +

4600

41553
ℎ4𝑓

𝑛+
19
10

−
1880

2673
ℎ4𝑓

𝑛+
11
10

+
70256

76545
ℎ4𝑓𝑛+1 +

172960

290871
ℎ4𝑓

𝑛+
1
10

 

(2.33) 

  −
35456

197505
ℎ4𝑓𝑛 +

4

3
ℎ3𝑡𝑛 + 2ℎ2𝑠𝑛 + 2ℎ𝑟𝑛 + 𝑦𝑛 

𝑟
𝑛+

1
10

 = 
1182947

10032000000
ℎ3𝑓𝑛 −

164531

13608000000
ℎ3𝑓𝑛+1 +

80891

57456000000
ℎ3𝑓𝑛+2 +

2600291

51710400000
ℎ3𝑓

𝑛+
1
10

 

(2.34) 

  +
149111

13305600000
ℎ3𝑓

𝑛+
11
10

−
85223

41368320000
ℎ3𝑓

𝑛+
19
10

+
1

200
𝑡𝑛ℎ2 +

1

10
𝑠𝑛ℎ + 𝑟𝑛 

𝑟𝑛+1 = −
14549

351120
ℎ3𝑓𝑛 +

6493

34020
ℎ3𝑓𝑛+1 −

239

15120
ℎ3𝑓𝑛+2 +

1175

6804
ℎ3𝑓

𝑛+
1
10

−
775

4752
ℎ3𝑓

𝑛+
11
10

 

(2.35) 

  +
12125

517104
ℎ3𝑓

𝑛+
19
10

+
1

2
𝑡𝑛ℎ2 + 𝑠𝑛ℎ + 𝑟𝑛 

𝑟
𝑛+

11
10

 = −
124817187

2128000000
ℎ3𝑓𝑛 +

3787758469

13608000000
ℎ3𝑓𝑛+1 −

61038329

2736000000
ℎ3𝑓𝑛+2 +

11692463651

51710400000
ℎ3𝑓

𝑛+
1
10

 

(2.36) 

  −
94664713

403200000
ℎ3𝑓

𝑛+
11
10

+
1370060857

41368320000
ℎ3𝑓

𝑛+
19
10

+
121

200
𝑡𝑛ℎ2 +

11

10
𝑠𝑛ℎ + 𝑟𝑛 

𝑟
𝑛+

19
10

 = −
1153759249

3696000000
ℎ3𝑓𝑛 +

21767386309

13608000000
ℎ3𝑓𝑛+1 −

410641471

3024000000
ℎ3𝑓𝑛+2 +

365811047

388800000
ℎ3𝑓

𝑛+
1
10

 

(2.37) 

  −
15379050889

13305600000
ℎ3𝑓

𝑛+
11
10

+
89914631

435456000
ℎ3𝑓

𝑛+
19
10

+
361

200
𝑡𝑛ℎ2 +

19

10
𝑠𝑛ℎ + 𝑟𝑛 

𝑟𝑛+2 = −
2631

7315
ℎ3𝑓𝑛 +

2212

1215
ℎ3𝑓𝑛+1 −

979

5985
ℎ3𝑓𝑛+2 +

34520

32319
ℎ3𝑓

𝑛+
1
10

−
890

693
ℎ3𝑓

𝑛+
11
10

+
8150

32319
ℎ3𝑓

𝑛+
10
10

 

(2.38) 

  +2𝑡𝑛ℎ2 + 2𝑠𝑛ℎ + 𝑟𝑛 

𝑠
𝑛+

1
10

 = 
14317

4620000
ℎ2𝑓𝑛 −

3383

8505000
ℎ2𝑓𝑛+1 +

221

4788000
ℎ2𝑓𝑛+2 +

2523209

1292760000
ℎ2𝑓

𝑛+
1
10

+
40853

110880000
ℎ2𝑓

𝑛+
11
10

 

(2.39) 

  −
3677

54432000
ℎ2𝑓

𝑛+
19
10

+
1

10
𝑡𝑛ℎ + 𝑠𝑛 

𝑠𝑛+1 = −
5507

35112
ℎ2𝑓𝑛 +

5273

6804
ℎ2𝑓𝑛+1 −

563

9576
ℎ2𝑓𝑛+2 +

16010

32319
ℎ2𝑓

𝑛+
1
10

−
445

693
ℎ2𝑓

𝑛+
11
10

+
2825

32319
ℎ2𝑓

𝑛+
19
10

 

(2.40) 

  +𝑡𝑛ℎ + 𝑠𝑛 

 



59 

 

Muritala et al. / JAUIST / 4(1) (2023) 52-71  

𝑠
𝑛+

11
10

 = 
−

199529

1064000
ℎ2𝑓𝑛 +

33191147

34020000
ℎ2𝑓𝑛+1 −

3411353

47880000
ℎ2𝑓𝑛+2 +

740819959

1292760000
ℎ2𝑓

𝑛+
1
10

−
7972327

10080000
ℎ2𝑓

𝑛+
11
10

 
(2.41) 

  +
109617167

1034208000
ℎ2𝑓

𝑛+
19
10

+
11

10
𝑡𝑛ℎ + 𝑠𝑛 

𝑠
𝑛+

19
10

 = −
21096479

46200000
ℎ2𝑓𝑛 +

367374899

170100000
ℎ2𝑓𝑛+1 −

3244307

12600000
ℎ2𝑓𝑛+2 +

83618069

68040000
ℎ2𝑓

𝑛+
1
10

−
142440853

110880000
ℎ2𝑓

𝑛+
11
10

 

(2.42) 

  +
22591741

54432000
ℎ2𝑓

𝑛+
10
10

+
19

10
𝑡𝑛ℎ + 𝑠𝑛 

𝑠𝑛+2 = −
38

77
ℎ2𝑓𝑛 +

3844

1701
ℎ2𝑓𝑛+1 −

356

1197
ℎ2𝑓𝑛+2 +

42520

32319
ℎ2𝑓

𝑛+
1
10

+
850

1701
ℎ2𝑓

𝑛+
19
10

+ 𝑠𝑛 −
890

693
ℎ2𝑓

𝑛+
11
10

 

(2.43) 

  +2𝑡𝑛ℎ 

𝑡
𝑛+

1
10

 = 
1137667

25080000
ℎ𝑓𝑛 −

37903

4860000
ℎ𝑓𝑛+1 +

18473

20520000
ℎ𝑓𝑛+2 +

41101

738720
ℎ𝑓

𝑛+
1
10

+
6859

950400
ℎ𝑓

𝑛+
11
10

 

(2.44) 

  −
19471

14774400
ℎ𝑓

𝑛+
19
10

+ 𝑡𝑛 

𝑡𝑛+1 = −
35

114
ℎ𝑓𝑛 +

959

486
ℎ𝑓𝑛+1 −

64

513
ℎ𝑓𝑛+2 +

7175

9234
ℎ𝑓

𝑛+
1
10

−
325

216
ℎ𝑓

𝑛+
11
10

+
6875

36936
ℎ𝑓

𝑛+
19
10

+ 𝑡𝑛 (2.45) 

𝑡
𝑛+

11
10

 = −
233101

760000
ℎ𝑓𝑛 +

9832097

4860000
ℎ𝑓𝑛+1 −

94501

760000
ℎ𝑓𝑛+2 +

573661

738720
ℎ𝑓

𝑛+
1
10

−
4653

3200
ℎ𝑓

𝑛+
11
10

 

(2.46) 

  +
2740529

14774400
ℎ𝑓

𝑛+
19
10

+ 𝑡𝑛 

𝑡
𝑛+

19
10

 = −
487103

1320000
ℎ𝑓𝑛 +

4849313

4860000
ℎ𝑓𝑛+1 −

446557

1080000
ℎ𝑓𝑛+2 +

168587

194400
ℎ𝑓

𝑛+
1
10

+
6859

950400
ℎ𝑓

𝑛+
11
10

+
630059

777600
ℎ𝑓

𝑛+
19
10

 

(2.47) 

  +𝑡𝑛 

𝑡𝑛+2 = −
7

19
ℎ𝑓𝑛 +

244

243
ℎ𝑓𝑛+1 −

7

19
ℎ𝑓𝑛+2 +

4000

4617
ℎ𝑓

𝑛+
1
10

+
4000

4617
ℎ𝑓

𝑛+
19
10

+ 𝑡𝑛 (2.48) 

2.1. Order and Error Constant of the Block Methods 

The linear operator associated with the methods is defined as: 

𝐿[𝑦(𝑥), ℎ] = ∑  

𝑘

𝑗=0

[𝛼𝑗𝑦(𝑥 + 𝑗ℎ) − ℎ4𝛽𝑗𝑦
𝑖𝑣(𝑥 + 𝑗ℎ)] (2.49) 

where the function 𝑦(𝑥) is assumed to have continuous derivatives of sufficiently high order. Therefore, 

expanding (2.49) in the Taylor series about the point 𝑥 to obtain the expression 

𝐿[𝑦(𝑥), ℎ] = 𝐶0𝑦(𝑥) + ℎ𝐶1𝑦
′(𝑥) + ℎ2𝐶2𝑦

′′(𝑥) + ⋯+ ℎ𝑝+4𝐶𝑝+4𝑦
𝑝+4(𝑥) (2.50) 

and 
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𝐶0 = ∑  

𝑘

𝑗=0

 𝛼𝑗 

𝐶1 = ∑  

𝑘

𝑗=0

 𝑗𝛼𝑗 

𝐶2 =
1

2!
∑  

𝑘

𝑗=0

  𝑗2𝛼𝑗 

⋮ 

𝐶𝑞 =
1

𝑞!
(∑  

𝑘

𝑗=0

  𝑗𝑞𝑞(𝑞 − 1)(𝑞 − 2)(𝑞 − 3)𝛼𝑗 ∑ 

𝑘

𝑗=1

 𝛽𝑗𝑗
𝑞−4) ,    𝑞 ∈ {0,1,2,3,⋯ , 𝑝 + 4} (2.51) 

In the sense of (2.49), we say that the methods are of order 𝑝 and error constant 𝐶𝑝+4 if 

𝐶0 = 𝐶1 = 𝐶2 = 𝐶3 = ⋯ = 𝐶𝑝 = 𝐶𝑝+1 = 𝐶𝑝+2 = 𝐶𝑝+3 = 0, 𝐶𝑝+4 ≠ 0 

Considering (2.30) 

𝑦𝑛+1 = −
71

23085
ℎ4𝑓𝑛+2 +

1325

290871
ℎ4𝑓

𝑛+
19
10

−
1145

37422
ℎ4𝑓

𝑛+
11
10

+
4315

122472
ℎ4𝑓𝑛+1 +

3535

83106
ℎ4𝑓

𝑛+
1
10

 

−
2759

395010
ℎ4𝑓𝑛 +

1

6
ℎ3𝑡𝑛 +

1

2
ℎ2𝑠𝑛 + ℎ𝑟𝑛 + 𝑦𝑛 

and expanding in Taylor’s series about 𝑥𝑛, and collecting the coefficient of the like powers of ℎ gives where 

𝐷 =
𝑑

𝑑𝑥
 

−𝑦𝑛(𝑥 + ℎ) = −
487103

1320000
ℎ𝑓𝑛 +

4849313

4860000
ℎ𝑓𝑛+1 −

446557

1080000
ℎ𝑓𝑛+2 +

168587

194400
ℎ𝑓

𝑛+
1
10

+
6859

950400
ℎ𝑓

𝑛+
11
10

+
630059

777600
ℎ𝑓

𝑛+
19
10

 

  −
1

720
𝐷6(𝑦𝑛)(𝑥)ℎ6 −

1

5040
𝐷7(𝑦𝑛)(𝑥)ℎ7 −

1

40320
𝐷8(𝑦𝑛)(𝑥)ℎ8 −

1

362880
𝐷9(𝑦𝑛)(𝑥)ℎ9 −

1

3628800
𝐷10(𝑦𝑛)(𝑥)ℎ10 + 𝑂(ℎ11) 

1

6
𝐷3(𝑦𝑛)(𝑥)ℎ3 =

1

6
𝐷3(𝑦𝑛)(𝑥)ℎ3 

1

2
𝐷2(𝑦𝑛)(𝑥)ℎ2 =

1

2
𝐷2(𝑦𝑛)(𝑥)ℎ2 

𝐷1(𝑦𝑛)(𝑥)ℎ1 = 𝐷1(𝑦𝑛)(𝑥)ℎ1 

−2759

395010
𝐷4(𝑦𝑛+0ℎ)(𝑥)ℎ4 =

−2759

395010
𝐷4(𝑦𝑛)(𝑥)ℎ4 

3535

83106
𝐷4(𝑦𝑛) (𝑥 +

ℎ

10
)ℎ4 = 

3535

83106
𝐷4(𝑦𝑛)(𝑥)ℎ4 +

707

166212
𝐷5(𝑦𝑛)(𝑥)ℎ5 +

707

3324240
𝐷6(𝑦𝑛)(𝑥)ℎ6 +

707

99727200
𝐷7(𝑦𝑛)(𝑥)ℎ7 

  +
707

3989088000
𝐷8(𝑦𝑛)(𝑥)ℎ8 +

707

199454400000
𝐷9(𝑦𝑛)(𝑥)ℎ9 +

707

11967264000000
𝐷10(𝑦𝑛)(𝑥)ℎ10 + 𝑂(ℎ11) 

4315

122472
𝐷4(𝑦𝑛)(𝑥 + ℎ)ℎ4 = 

4315

122472
𝐷4(𝑦𝑛)(𝑥)ℎ4 +

4315

122472
𝐷5(𝑦𝑛)(𝑥)ℎ5 +

4315

244944
𝐷6(𝑦𝑛)(𝑥)ℎ6 +

4315

734832
𝐷7(𝑦𝑛)(𝑥)ℎ7 

  +
4315

2939328
𝐷8(𝑦𝑛)(𝑥)ℎ8 +

863

2939328
𝐷9(𝑦𝑛)(𝑥)ℎ9 +

863

17635968
𝐷10(𝑦𝑛)(𝑥)ℎ10 + 𝑂(ℎ11) 
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−1145

37422
𝐷4(𝑦𝑛) (𝑥 +

11ℎ

10
) ℎ4 = 

−1145

37422
𝐷4(𝑦𝑛)(𝑥)ℎ4 +

−229

6804
𝐷5(𝑦𝑛)(𝑥)ℎ5 +

−2519

136080
𝐷6(𝑦𝑛)(𝑥)ℎ6 +

−27709

4082400
𝐷7(𝑦𝑛)(𝑥)ℎ7 

  +
−304799

163296000
𝐷8(𝑦𝑛)(𝑥)ℎ8 +

−3352789

8164800000
𝐷9(𝑦𝑛)(𝑥)ℎ9 +

−36880679

489888000000
𝐷10(𝑦𝑛)(𝑥)ℎ10 + 𝑂(ℎ11) 

1325

290871
𝐷4(𝑦𝑛) (𝑥 +

11ℎ

10
) ℎ4 = 

1325

290871
𝐷4(𝑦𝑛)(𝑥)ℎ4 +

265

30618
𝐷5(𝑦𝑛)(𝑥)ℎ5 +

1007

122472
𝐷6(𝑦𝑛)(𝑥)ℎ6 +

19133

3674160
𝐷7(𝑦𝑛)(𝑥)ℎ7 

  +
363527

146966400
𝐷8(𝑦𝑛)(𝑥)ℎ8 +

6907013

7348320000
𝐷9(𝑦𝑛)(𝑥)ℎ9 +

131233247

440899200000
𝐷10(𝑦𝑛)(𝑥)ℎ10 + 𝑂(ℎ11) 

−71

23085
𝐷4(𝑦𝑛) (𝑥 +

11ℎ

10
) ℎ4 = 

−71

23085
𝐷4(𝑦𝑛)(𝑥)ℎ4 +

−142

23085
𝐷5(𝑦𝑛)(𝑥)ℎ5 +

−142

23085
𝐷6(𝑦𝑛)(𝑥)ℎ6 +

−284

69255
𝐷7(𝑦𝑛)(𝑥)ℎ7 

  +
−142

69255
𝐷8(𝑦𝑛)(𝑥)ℎ8 +

−284

346275
𝐷9(𝑦𝑛)(𝑥)ℎ9 +

−284

1038825
𝐷10(𝑦𝑛)(𝑥)ℎ10 + 𝑂(ℎ11) 

and 

𝑦𝑛(𝑥 + 𝑜ℎ) = 𝑦𝑛 

Applying (2.30) and collecting the coefficients of like terms of ℎ, we have 

𝐶0 = −1 + 1 = 0 

𝐶1 = −1 + 1 = 0 

𝐶2 = −
1

2
+

1

2
= 0 

𝐶3 = −
1

6
+

1

6
= 0 

𝐶4 =
−1

24
−

2759

395010
+

3535

83106
+

4315

122472
−

1145

37422
+

1325

290871
−

71

23085
= 0 

𝐶5 =
−1

120
+

707

166212
+

4315

122472
−

229

6804
+

265

30618
−

142

23085
= 0 

𝐶6 = −
1

720
+

707

3324240
+

4315

244944
−

2519

136080
+

1007

122472
−

142

23085
= 0 

𝐶7 = −
1

5040
+

707

99727200
+

4315

734832
−

27709

4082400
+

19133

3674160
−

284

69255
= 0 

𝐶8 = −
1

40320
+

707

3989088000
+

4315

2939328
−

304799

163296000
+

363527

146966400
−

142

69255
= 0 

𝐶9 = −
1

362880
+

707

199454400000
+

863

2939328
−

3352789

8164800000
+

6907013

7348320000
−

284

346275
= 0 

and 

𝐶10 =
−12857

5443200000
= 𝐶𝑝+4 
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which implies 

𝑝 + 4 = 10 

such that 

𝑝 = 6 

The method is of order 𝑝 = 6 with an error constant 𝐶10 = 𝐶𝑝+4 =
−12857

5443200000
. This procedure will be adopted 

for other schemes derived. The orders and error constants of the schemes are presented in Table 1. 

Table 1. Order and error constant of the derived schemes 

Schemes Order Error Constant 

𝑦
𝑛+

1
10

 = 
1637

51710400000
ℎ4𝑓𝑛+2 −

4927

106375680000
ℎ4𝑓

𝑛+
19
10

+
30157

1197504000000
ℎ4𝑓

𝑛+
11
10

 

  −
949

3499200000
ℎ4𝑓𝑛+1 +

4774487

4653936000000
ℎ4𝑓

𝑛+
1
10

+
100337

31600800000
ℎ4𝑓𝑛 +

1

6000
𝑡𝑛ℎ3 

  
+

1

200
𝑠𝑛ℎ2 +

1

10
𝑟𝑛ℎ + 𝑦𝑛 

 

6 
3228263

1088640
∗ 10−11 

𝑦
𝑛+

11
10

 = −
2570535011

517104000000
ℎ4𝑓𝑛+2 +

288764443

39191040000
ℎ4𝑓

𝑛+
19
10

−
5483098423

108864000000
ℎ4𝑓

𝑛+
11
10

 

  +
511981129

8748000000
ℎ4𝑓𝑛+1 +

290495826877

4653936000000
ℎ4𝑓

𝑛+
1
10

−
5168273

432000000
ℎ4𝑓𝑛 +

1331

6000
𝑡𝑛ℎ3 

  
+

121

200
𝑠𝑛ℎ2 +

11

10
𝑟𝑛ℎ + 𝑦

𝑛
 

 

6 
−411546021227

1088640
∗ 10−11 

𝑦
𝑛+

19
10

 = −
1141481639

19440000000
ℎ4𝑓𝑛+2 +

17212667359

195955200000
ℎ4𝑓

𝑛+
19
10

−
696137901157

1197504000000
ℎ4𝑓

𝑛+
11
10

 

  +
228690027541

306180000000
ℎ4𝑓𝑛+1 +

121063908407

244944000000
ℎ4𝑓

𝑛+
1
10

−
3467972131

23760000000
ℎ4𝑓𝑛 +

6859

6000
𝑡𝑛ℎ3 

  
+

361

200
𝑠𝑛ℎ2 +

19

10
𝑟𝑛ℎ + 𝑦𝑛 

 

6 
−4543267774051

1088640
∗ 10−11 

𝑦𝑛+2 = −
11902

161595
ℎ4𝑓𝑛+2 +

4600

41553
ℎ4𝑓

𝑛+
19
10

−
1880

2673
ℎ4𝑓

𝑛+
11
10

+
70256

76545
ℎ4𝑓𝑛+1 +

172960

290871
ℎ4𝑓

𝑛+
1
10

 

  −
35456

197505
ℎ4𝑓𝑛 + 4/3ℎ3𝑡𝑛 + 2ℎ2𝑠𝑛 + 2ℎ𝑟𝑛 + 𝑦𝑛 

 

6 
−2189

42525000
 

2.2. Consistency 

A linear multi-step method is said to be consistent if the order 𝑝 ≥ 1 and obeys the following axioms: 

i. 𝑎0 + 𝑎1 + 𝑎2 + ⋯+ 𝑎𝑘 = 0 

ii. 𝜌(1) = 𝜌′(1) = 𝜌′′(1) = 0 

iii. 𝜌𝑖𝑣(𝑟) = 4! 𝜎(𝑟) 

where 𝜌(𝑟) = ∑𝑗=0
𝑘  𝑎𝑗𝑟

𝑗 and 𝜎(𝑟) = ∑𝑗=0
𝑘  𝛽𝑗𝑟

𝑗. Considering (2.33), 

𝑦𝑛+2 = −
9

11
𝑦𝑛 + 𝑦

𝑛+
1
10

−
19

44
𝑦

𝑛+
11
10

+
5

4𝑦
𝑛+

19
10

−
8963

4000000
ℎ4𝑓𝑛 +

81283

21600000
ℎ4𝑓

𝑛+
1
10

 

+
255683

27000000
ℎ4𝑓𝑛+1 +

45391

28800000
ℎ4𝑓

𝑛+
11
10

+
70571

17280000
ℎ4𝑓

𝑛+
19
10

−
86477

36000000
ℎ4𝑓𝑛+2 
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we have 

i.  

∑𝑎𝑗

4

𝑗=0

= 𝑎0 + 𝑎 1
10

+ 𝑎1 + 𝑎11
10

+ 𝑎19
10

+ 𝑎2 =
9

11
+ 1 + 0 +

19

44
−

5

4
− 1 = 0 

ii.  

𝜌(𝑟) =
9

11
+ 1𝑟

1
10 + 0𝑟1 +

19

44
𝑟

11
10 −

5

4
𝑟

19
10 − 1𝑟2 

𝜌(1) =
9

11
+ 1(1)

1
10 + 0(1)1 +

19

44
(1)

11
10 −

5

4
(1)

19
10 − 1(1)2 = 0 

𝜌′(𝑟) = 2𝑟 −
1

10
𝑟−

9
10 +

19

40
𝑟

1
10 −

19

8
𝑟

9
10 

𝜌′(1) = 2(1) −
1

10
(1)−

9
10 +

19

40
(1)

1
10 −

19

8
(1)

9
10 = 0 

iii. For the LHS 

𝜌𝑖𝑣(𝑟) =
4959

10000
𝑟−

39
10 +

3249

40000
𝑟−

29
10 −

1881

8000
𝑟−

21
10 

and 

𝜌𝑖𝑣(1) =
4959

10000
(1)−

39
10 +

3249

40000
(1)−

29
10 −

1881

8000
(1)−

21
10 =

171

500
 

and for the RHS 

𝜎(𝑟) = ∑𝛽𝑗𝑟
𝑗

4

𝑗=0

= 𝛽0𝑟
0 + 𝛽1/10𝑟

1
10 + 𝛽1𝑟

1 + 𝛽11
10

𝑟
11
10 + 𝛽19

10
𝑟

19
10 + 𝛽2𝑟

2 

𝜎(𝑟) =
−8963

4000000
𝑟0 +

81283

21600000
𝑟

1
10 +

255683

27000000
𝑟1 +

45391

28800000
𝑟

11
10 +

70571

17280000
𝑟

19
10 +

−86477

36000000
𝑟2 

𝜎(1) =
−8963

4000000
(1)0 +

81283

21600000
(1)

1
10 +

255683

27000000
(1)1 +

45391

28800000
(1)

11
10 +

70571

17280000
(1)

19
10 +

−86477

36000000
(1)2 =

57

4000
 

then 

4! 𝜎(1) = 24 ∗
57

4000
=

171

500
 

and 

𝐿𝐻𝑆 = 𝑅𝐻𝑆 

This implies that 𝜌4(𝑟) = 4! 𝜎(𝑟) for the principal root, 𝑟 = 1, and also since the order 𝑝 = 6, hence it satisfies 

𝑝 ≥ 1. Therefore, the derived schemes are consistent. Hence, the method is consistent. 

2.3. Zero Stability of the Blocks 

A numerical method is said to be zero-stable if the roots 𝑧 ∈ {1,2,3,⋯ ,𝑁} of the characteristics polynomial 

𝑝(𝑧) = det(𝑧𝐴0 − 𝐴′), satisfies |𝑧| ≤ 1, and the roots |𝑧| = 1 have multiplicity not exceeding the order of the 

differential equation, which is 4. Moreover, as ℎ𝛾 → 0𝑝(𝑧) = 𝑧𝑟−𝛾(𝜆 − 1), where 𝛾 is the order of the 

differential equation. From the resulting schemes, we have that 

(

 
 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1)

 
 

(

 
 

𝑦𝑛+1/10

𝑦𝑛+1

𝑦𝑛+11/10

𝑦𝑛+19/10

𝑦𝑛+2 )

 
 

 = 

(

 
 

0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1)

 
 

(

 
 

𝑦𝑛−1/10

𝑦𝑛−1

𝑦𝑛−11/10

𝑦𝑛−19/10

𝑦𝑛 )

 
 

+ ℎ

(

 
 

0 0 0 0 1/10
0 0 0 0 1
0 0 0 0 11/10
0 0 0 0 19/10
0 0 0 0 2 )

 
 

(

 
 

𝑟𝑛−1/10

𝑟𝑛−1

𝑟𝑛−11/10

𝑟𝑛−19/10

𝑟𝑛 )
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  +ℎ2

(

 
 

0 0 0 0 1/200
0 0 0 0 1/2
0 0 0 0 121/200
0 0 0 0 361/200
0 0 0 0 2 )

 
 

(

 
 

𝑠𝑛−1/10

𝑠𝑛−1

𝑠𝑛−11/10

𝑠𝑛−19/10

𝑠𝑛 )

 
 

+ ℎ3

(

 
 

0 0 0 0 1/6000
0 0 0 0 1/6
0 0 0 0 1331/6000
0 0 0 0 6859/6000
0 0 0 0 4/3 )

 
 

(

 
 

𝑡𝑛−1/10

𝑡𝑛−1

𝑡𝑛−11/10

𝑡𝑛−19/10

𝑡𝑛 )

 
 

 

  +ℎ4

(

 
 

0 0 0 0 100337/31600800000
0 0 0 0 −2759/395010
0 0 0 0 −5168273/432000000
0 0 0 0 −3467972131/23760000000
0 0 0 0 −35456/197505 )

 
 

(

  
 

𝑓𝑛−1/10

𝑓𝑛−1

𝑓𝑛−11/10

𝑓𝑛−19/10

𝑓𝑛 )

  
 

 

  +ℎ4

(

 
 
 
 
 
 
 
 

4774487

465393600000
−

949

3499200000

301157

1197504000000
−

4927

106375680000

1637

51710400000
3535

83106

4315

122472
−

1145

3742

1325

29071
−

71

23085
290459826877

4653936000000

511981129

8748000000
−

5483098423

108864000000

288764443

39191040000
−

2570535011

517104000000
121063908407

244944000000

228690027541

306180000000
−

696137901157

1197504000000

17212667359

195955200000
−

1141481639

19440000000
172960

290871

70256

76545
−

1880

2673

4600

41553
−

11902

161595 )

 
 
 
 
 
 
 
 

(

  
 

𝑓𝑛+1/10

𝑓𝑛+1

𝑓𝑛+11/10

𝑓𝑛+19/10

𝑓𝑛+2 )

  
 

 

which is expressed in the form 

𝐴0𝑌𝑁 = 𝐴′𝑌𝑁−1 + ℎ𝐴′′𝑌𝑁−1
′ + ℎ2𝐵′𝑌𝑁−1

′′ + ℎ3𝐵′′𝑌𝑁−1
′′′ + ℎ4(𝐸0𝐹𝑁 + 𝐸′𝐹𝑁−1) (2.52) 

where 

𝑌𝑁 =

(

 
 
 

𝑦
𝑛+

1
10

𝑦𝑛+1

𝑦
𝑛+

11
10

𝑦
𝑛+

19
10

𝑦𝑛+2 )

 
 
 

, 𝑌𝑁−1 =

(

 
 
 

𝑦
𝑛−

1
10

𝑦𝑛−1

𝑦
𝑛−

11
10

𝑦
𝑛−

19
10

𝑦𝑛 )

 
 
 

, 𝑌𝑁−1
′ =

(

 
 
 

𝑟
𝑛−

1
10

𝑟𝑛−1

𝑟
𝑛−

11
10

𝑟
𝑛−

19
10

𝑟𝑛 )

 
 
 

, 𝑌𝑁−1
′′ =

(

 
 
 

𝑠
𝑛−

1
10

𝑠𝑛−1

𝑠
𝑛−

11
10

𝑠
𝑛−

19
10

𝑠𝑛 )

 
 
 

, 𝑌𝑁−1
′′′ =

(

 
 
 
 

𝑡
𝑛−

1
10

𝑡𝑛−1

𝑡
𝑛−

11
10

𝑡
𝑛−

19
10

𝑡𝑛 )

 
 
 
 

, 

𝐹𝑁 =

(

 
 
 
 

𝑓
𝑛−

1
10

𝑓𝑛−1

𝑓
𝑛−

11
10

𝑓
𝑛−

19
10

𝑓𝑛 )

 
 
 
 

, 𝐹𝑁−1 =

(

 
 
 
 

𝑓
𝑛+

1
10

𝑓𝑛+1

𝑓
𝑛+

11
10

𝑓
𝑛+

19
10

𝑓𝑛+2 )

 
 
 
 

, 

𝐴0 =

(

 
 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1)

 
 

, 𝐴′ =

(

 
 

0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1)

 
 

, 𝐴′′ =

(

 
 
 
 
 

0 0 0 0
1

10
0 0 0 0 1

0 0 0 0
11

10

0 0 0 0
19

10
0 0 0 0 2 )

 
 
 
 
 

, 

𝐵′ =

(

 
 
 
 
 
 

0 0 0 0
1

200

0 0 0 0
1

2

0 0 0 0
121

200

0 0 0 0
361

200
0 0 0 0 2 )

 
 
 
 
 
 

, 𝐵′′ =

(

 
 
 
 
 
 
 
 

0 0 0 0
1

6000

0 0 0 0
1

6

0 0 0 0
1331

6000

0 0 0 0
6859

6000

0 0 0 0
4

3 )

 
 
 
 
 
 
 
 

, 
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𝐸0 =

(

 
 

0 0 0 0 100337/31600800000
0 0 0 0 −2759/395010
0 0 0 0 −5168273/432000000
0 0 0 0 −3467972131/23760000000
0 0 0 0 −35456/197505 )

 
 

 

and 

𝐸′

(

 
 
 
 
 
 
 
 

4774487

4653936000000
−

949

3499200000

301157

1197504000000
−

4927

106375680000

1637

51710400000
3535

83106

4315

122472
−

1145

37422

1325

290871
−

71

23085
290459826877

4653936000000

511981129

8748000000
−

5483098423

108864000000

288764443

39191040000
−

2570535011

517104000000
121063908407

244944000000

228690027541

306180000000
−

696137901157

1197504000000

17212667359

195955200000
−

1141481639

19440000000
172960

290871

70256

76545
−

1880

2673

4600

41553
−

11902

161595 )

 
 
 
 
 
 
 
 

 

From the condition that, 

𝑝(𝑧) = det(𝑧𝐴0 − 𝐴′) 

= det

[
 
 
 
 

𝑧

(

 
 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1)

 
 

−

(

 
 

0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1)

 
 

]
 
 
 
 

 

= det

[
 
 
 
 

(

 
 

𝑧 0 0 0 0
0 𝑧 0 0 0
0 0 𝑧 0 0
0 0 0 𝑧 0
0 0 0 0 𝑧)

 
 

−

(

 
 

0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1)

 
 

]
 
 
 
 

 

= det

(

 
 

𝑧 0 0 0 −1
0 𝑧 0 0 −1
0 0 𝑧 0 −1
0 0 0 𝑧 −1
0 0 0 0 𝑧 − 1)

 
 

 

= |
|

𝑧 0 0 0 −1
0 𝑧 0 0 −1
0 0 𝑧 0 −1
0 0 0 𝑧 −1
0 0 0 0 𝑧 − 1

|
| 

= 𝑧 (𝑧 |
𝑧 0 −1
0 𝑧 −1
0 0 𝑧 − 1

| − 1 |
0 𝑧 0
0 0 𝑧
0 0 0

|) − 1(−𝑧 |
0 𝑧 0
0 0 𝑧
0 0 0

|) 

= 𝑧 (𝑧(𝑧2(𝑧 − 1))) 

= 𝑧4(𝑧 − 1) 

Hence, 𝑧1,2,3,4,5 = 0,0,0,0,1. Therefore, the new methods are zero-stable since |𝑧| = 1, i.e., simple, and the 

magnitude of other roots are zeros |𝑧| = 0. 

2.4. Convergence 

A linear multi-step method is said to be convergent if it is consistent and zero-stable (or if it satisfies the root 

conditions). Since our methods are zero-stable and consistent, then the methods are convergent. 
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3. Numerical Scheme Implementation and Results 

3.1. Numerical Experiments 

This subsection tests the accuracy of the proposed methods with some numerical problems and compares the 

results with the existing methods. Error is defined as 

 Error = max
𝑎≤𝑥≤𝑏

 |𝑦(𝑥) − 𝑦𝑁(𝑥)|,  𝑁 ≥ 1,2,3, … (2.53) 

where 𝑦(𝑥) is the exact solution and 𝑦𝑁(𝑥)(𝑁 ≥ 1) are the approximate solutions. The following examples 

are considered: 

Example 3.1. Consider 𝑦𝑖𝑣 − 4𝑦′′ = 0 with initial conditions 𝑦′′′(0) = 16, 𝑦′′(0) = 0, 𝑦′(0) = 3, 𝑦(0) =

1, and ℎ = 0.003125. Then, the exact solution is 

𝑦(𝑥) = 𝑒2𝑥 − 𝑒−2𝑥 − 𝑥 + 1 

Example 3.2. Consider 𝑦𝑖𝑣 = 𝑥, 𝑡 ∈ [0,1] with initial conditions, 𝑦′′′(0) = 0, 𝑦′′(0) = 0, 𝑦′(0) = 1, 𝑦(0) =

0, and ℎ =
1

10
. Then, the exact solution is 

𝑦(𝑥) =
𝑥5

120
+ 𝑥 

Example 3.3. Consider 𝑦𝑖𝑣 = cos 𝑥 − sin 𝑥 with initial conditions 𝑦′′′(0) = 7, 𝑦′′(0) = −1, 𝑦′(0) = −1, 

𝑦(0) = 0, and ℎ =
1

320
. Then, the exact solution is 

𝑦(𝑥) = cos 𝑥 − sin 𝑥 + 𝑥3 − 1 

Table 2 shows the exact result, the computed result from the proposed schemes using power series (PPSS), 

and the result in [3]. Table 3 shows errors in the proposed scheme and [3] for Example 3.1. 

Table 2. Numerical results for Example 3.1 

𝑋 Exact PPSS [3] 

0 1 1.00000 1.000000 

0.003125 1.0093750813803672792 1.0093750813803672792 1.009375081380367264 

0.006250 1.0187506510467529486 1.0187506510467529486 1.018750651046752800 

0.009375 1.0281271973042491331 1.0281271973042491331 1.028127197304248000 

0.012500 1.0375052084960961721 1.0375052084960961721 1.037505208496096000 

0.015625 1.0468851730227585890 1.0468851730227585891 1.046885173022758387 

0.018750 1.0562675793610032975 1.0562675793610032975 1.056267579361001125 

0.021875 1.0656529160829807860 1.0656529160829807861 1.065652916082977682 

0.025000 1.0750416718753100306 1.0750416718753100306 1.075041671875305141 

0.028125 1.0844343355581678774 1.0844343355581678774 1.084434335558156293 

0.031250 1.0938313961043836435 1.0938313961043836434 1.093831396104360521 

0.034375 1.1032333426585396797 1.1032333426585396797 1.1032333426585396797 

0.037500 1.1126406645560786435 1.1126406645560786435 1.1126406645560786435 

⋮ ⋮ ⋮ ⋮ 

0.31250 2.0204845289132321645 2.0204845289132321645 2.0204845289132321645 

0.62500 3.5788381606016512758 3.5788381606016512756 3.5788381606016512756 

1 7.2537208156940375353 7.2537208156940375326 7.2537208156940375326 
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Table 3. Comparison of errors with numerical results of Example 3.1 

𝑛 𝑥 PPSS Error Error [3] 

1 0.003125 0.0000E + 00 1.5000E − 17 

2 0.006250 0.0000E + 00 1.4900E − 16 

3 0.009375 0.0000E + 00 1.1330E − 15 

4 0.012500 0.0000E + 00 1.7200E − 16 

5 0.015625 1.0000E − 20 2.0200E − 16 

6 0.018750 0.0000E + 00 2.1720E − 15 

7 0.021875 1.0000E − 20 3.1040E − 15 

8 0.025000 0.0000E + 00 4.8900E − 15 

9 0.028125 0.0000E + 00 1.1584E − 14 

10 0.031250 1.0000E − 20 2.3123E − 14 

11 0.034375 0.0000E + 00 - 

12 0.037500 0.0000E + 00 - 

13 0.31250 0.0000E + 00 - 

14 0.62500 2.1000E − 98 - 

15 1 2.7000E − 18 - 

Table 4 shows the exact and computed results from the proposed schemes using power series (PPSS) for 

Example 3.2. Table 5 shows errors in the proposed scheme and [7] for Example 3.2. 

Table 4. Numerical results for Example 3.2 

𝑥 Exact Solutions PPSS 

0.1 0.100000083333333333 0.10000008333333333333 

0.2 0.200002666666666667 0.20000266666666666667 

0.3 0.300020250000000000 0.30002025000000000000 

0.4 0.400085333333333333 0.40008533333333333333 

0.5 0.500260416666666667 0.50026041666666666667 

0.6 0.600648000000000000 0.60064800000000000000 

0.7 0.701400583333333333 0.70140058333333333333 

0.8 0.802730666666666667 0.80273066666666666667 

0.9 0.904920750000000000 0.90492075000000000000 

1.0 1.008333333333333333 1.00833333333333333333 

 

Table 5. Comparison of errors with numerical results of Example 3.2 

𝑛 [7] [8] [9] PPSS Error 

1 1.658E − 13 7.000E − 10 0.000E − 00 0.000E − 00 

2 3.316E − 12 8.999E − 10 0.000E − 00 0.000E − 00 

3 7.183E − 12 2.999E − 09 0.000E − 00 0.000E − 00 

4 6.649E − 11 5.100E − 09 0.000E − 00 0.000E − 00 

5 9.906E − 11 7.799E − 09 0.000E − 00 0.000E − 00 

6 3.217E − 11 1.180E − 08 0.000E − 00 0.000E − 00 

7 2.432E − 10 1.240E − 08 0.000E − 00 0.000E − 00 

8 3.202E − 10 1.410E − 08 2.000E − 18 0.000E − 00 

9 2.540E − 10 1.880E − 08 2.000E − 18 0.000E − 00 

10 2.020E − 10 2.600E − 08 1.000E − 17 0.000E − 00 
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Table 6 shows the exact result, the computed result from the proposed schemes using power series (PPSS), 

and the result in [3]. Table 7 shows errors in the proposed scheme and [3] for Example 3.3. 

Table 6. Numerical results for Example 3.3 

𝑥 Exact PPSS [3] 

0 0 0.00000 - 

1

320
 -0.00312984720468769600 -0.00312984720468769600 -0.00312984720468770183 

2

320
 -0.00626924635577210114 -0.00626924635577210114 -0.00626924635577214781 

3

320
 -0.00941798368752841945 -0.00941798368752841944 -0.00941798368752885697 

4

320
 -0.01257584533946248273 -0.01257584533946248273 -0.0125758453394627160 

5

320
 -0.01574261735661109244 -0.01574261735661109244 -0.0157426173566113317 

6

320
 -0.01891808568984328399 -0.01891808568984328399 -0.0189180856898435642 

7

320
 -0.02210203619616251069 -0.02210203619616251069 -0.0221020361961631824 

8

320
 -0.02529425463900974441 -0.02529425463900974441 -0.025294254639010215 

9

320
 -0.02849452668856748983 -0.02849452668856748983 -0.0284945266885679628 

10

320
 -0.03170263792206470950 -0.03170263792206470950 -0.00312984720468770183 

 

Table 7. Comparison of errors with numerical results of Example 3.3 

𝑥 PPSS Error Error [3] 

0 0 - 

1

320
 0.0000E + 00 5.8350E − 18 

2

320
 0.0000E + 00 4.6712E − 17 

3

320
 1.0000E − 20 4.3748E − 16 

4

320
 0.0000E + 00 2.3340E − 16 

5

320
 0.0000E + 00 2.3920E − 16 

6

320
 0.0000E + 00 2.8020E − 16 

7

320
 0.0000E + 00 6.7177E − 16 

8

320
 0.0000E + 00 4.6706E − 16 

9

320
 0.0000E + 00 5.1408E − 16 

10

320
 1.0000E − 20 5.8350E − 18 
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Figures 1-3 present the behavior of the exact solutions compared with the PPSS for Example 3.1-3.3, 

respectively. 

 

 
Figure 1. The behavior of the exact solution compared with the PPSS for Example 3.1 

 

 

Figure 2. The behavior of the exact solution compared with the PPSS for Example 3.2 

 

 

Figure 3. The behavior of the exact solution compared with the PPSS for Example 3.3 
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4. Conclusion 

We have incorporated off-step points for collocation and interpolation to develop a more accurate Two-step 

Block Hybrid Linear Multi-step method for the numerical solution of initial value problems of fourth-order 

differential equations. In developing the numerical method with two steps (𝑘 = 2), we used three off-step 

points at interpolation and collocation points. The order and error constants were obtained using the method 

employed by [6]. The Two-step Block Hybrid Linear Multi-step method has six orders of accuracy. Moreover, 

the zero stability of the Block Hybrid Method was analyzed using the concept of [6], and the method was zero 

stable. Hence, block hybrid methods are convergent. The method was used to solve some problems adapted 

from [3], and the computed result and the exact solution were compared with the solution from [3]. Errors 

were computed, and the proposed method produced approximations closer to the exact solution than the 

reviewed work. The introduction of three off-step points at both collocation and interpolation has proven to 

produce more accurate results than the literature results by those who used one off-step point at both collocation 

and interpolation. Therefore, introducing more off-step points at both collocation and interpolation in 

developing block methods results in a better approximation. 
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