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Pseudoparallel invariant submanifolds of Kenmotsu manifolds 

Nurnisa Karaman1 , Mehmet Atçeken2,*  

1,2Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, Aksaray, Türkiye 

Abstract − In this paper, we consider pseudoparallel invariant submanifolds, a particular class of invariant submanifolds of 

Kenmotsu manifolds, on 𝑊8 curvature tensor and investigate some of their basic characterizations, such as 𝑊8 pseudoparallel, 𝑊8-

2 pseudoparallel, 𝑊8-Ricci generalized pseudoparallel, and 𝑊8-2 Ricci generalized pseudoparallel. Moreover, we present some 

relations between these pseudoparallel invariant submanifolds and semi-parallel invariant submanifolds. We finally discuss the need 

for further research. 

Keywords: Kenmotsu manifold, pseudoparallel invariant submanifold, 2-pseudoparallel invariant submanifolds 

Subject Classification (2020): 53C15, 53D10 

1. Introduction 

In 1972, Kenmotsu [1] studied a class of contact Riemannian manifolds and called them Kenmotsu manifolds. 

He proved that if a Kenmotsu manifold satisfies the condition 𝑅(𝑎1, 𝑎2)⋅𝑅 = 0, then the manifold has negative 

curvature −1, where 𝑅 is the Riemannian curvature tensor of (1,3)-type and 𝑅(𝑎1, 𝑎2) denotes the derivation 

of the tensor algebra at each point of the tangent space. Then, the properties of Kenmotsu manifolds have been 

studied by several authors, such as Haseeb [2], Wang and Liu [3], Wang and Wang [4], Özgür and De [5], 

Tripathi and Gupta [6], Singh et al. [7], Parakasha and Hadimani [8], De and De [9], and De and Pathak [10]. 

Afterward, the geometry of submanifolds has been examined on different manifolds, and many essential 

properties have been obtained [11–13]. 

The curvature tensor is one of the most important concepts used to learn the characterization of a manifold. 

The properties of manifolds, important for mathematics, physics, and engineering, are handled with the help 

of curvature tensors. One of the essential geometrical manifolds is the Kenmotsu manifolds. Kenmotsu 

manifolds are one-dimensional versions of complex manifolds. If an almost contact metric manifold satisfies 

the condition 

(𝛻𝑎1𝜑)𝑎2 = 𝑔(𝜑𝑎1, 𝑎2)𝜉 − 𝜂(𝑎2)𝜑𝑎1 

Then, the manifold is called a Kenmotsu manifold. 

In this article, pseudoparallel invariant submanifolds for Kenmotsu manifolds are investigated. The Kenmotsu 

manifold is considered on the 𝑊8-curvature tensor. Submanifolds of these manifolds with properties, such as 

𝑊8-pseudoparallel, 𝑊8-2 pseudoparallel, 𝑊8-Ricci generalized pseudoparallel, and 𝑊8-2 Ricci generalized 

pseudoparallel has been investigated. 

 

ISSN: 2717-8900 https://doi.org/10.54559/jauist.1312261 
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2. Preliminaries 

This section provides some basic properties to be required in the following sections. Let 𝑀 be a (2𝑛 + 1)-

dimensional differentiable manifold. If it admits a tensor field 𝜑 of type (1,1), a vector field 𝜉, and a 1-form 

𝜂 satisfying the following conditions: 

𝜑2𝑎1 = −𝑎1 + 𝜂(𝑎1)𝜉 and 𝜂(𝜉) = 1 (2.1) 

for all 𝑎1, 𝑎2, 𝜉 ∈ 𝜒(𝑀), then (𝜑, 𝜉, 𝜂) is called almost contact structure and (𝑀, 𝜑, 𝜉, 𝜂) is called almost contact 

manifold. If there is a 𝑔 metric on the (2𝑛 + 1)-dimensional, almost contact manifold satisfying 

𝑔(𝑎1, 𝜉) = 𝜂(𝑎1) (2.2) 

and  

𝑔(𝜑𝑎1, 𝜑𝑎2) = 𝑔(𝑎1, 𝑎2) − 𝜂(𝑎1)𝜂(𝑎2) (2.3) 

for all 𝑎1, 𝑎2 ∈ 𝜒(𝑀), then (𝜑, 𝜉, 𝜂, 𝑔) is called an almost contact metric structure and (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) is called 

an almost contact metric manifold. 

On a (2𝑛 + 1)-dimensional manifold 𝑀, we have 

𝑔(𝜑𝑎1, 𝑎2) = −𝑔(𝑎1, 𝜑𝑎2) 

for all 𝑎1, 𝑎2 ∈ 𝜒(𝑀), that is, 𝜑 is an anti-symmetric tensor field according to the 𝑔 metric. The transformation 

Φ defined as  

Φ(𝑎1, 𝑎2) = 𝑔(𝑎1, 𝜙𝑎2) 

for all 𝑎1, 𝑎2 ∈ 𝜒(𝑀), is called the fundamental 2-form of the (𝜑, 𝜉, 𝜂, 𝑔) almost contact metric structure where  

𝜂 ∧ Φ𝑛 ≠ 0 

Let 𝑀 be a (2𝑛 + 1)-dimensional almost contact metric manifold given the structure (𝜑, 𝜉, 𝜂, 𝑔). If 𝑑𝜂 =

0 and 𝑑Φ = 2𝜂 ∧ Φ on an almost contact metric manifold 𝑀, then 𝑀 is called an almost Kenmotsu manifold. 

Let 𝑀 be (2𝑛 + 1)-dimensional almost contact metric manifold providing the structure (𝜑, 𝜉, 𝜂, 𝑔). If it 

satisfies the following conditions: 

{
 
 

 
 
𝜑2𝑎1 = −𝑎1 + 𝜂(𝑎1)𝜉, 𝜑𝜉 = 0

𝜂(𝜑𝑎1) = 0, 𝜂(𝑎1) = 𝑔(𝑎1, 𝜉)𝜂(𝜉) = 1

(∇𝑎1𝜑)𝑎2 = 𝑔(𝜑𝑎1, 𝑎2)𝜉 − 𝜂(𝑎2)𝜑𝑎1

 (2.4) 

for all 𝑎1, 𝑎2, 𝜉 ∈ 𝜒(𝑀), then 𝑀 is called the Kenmotsu manifold. 

Lemma 2.1. [1] Let 𝑀 be a (2𝑛 + 1)-dimensional Kenmotsu manifold. In this case, the following equations 

are obtained. 

∇𝑎1𝜉 = −𝑎1 + 𝜂(𝑎1)𝜉 (2.5) 

(∇𝑎1𝜂)𝑎2 = 𝑔(𝑎1, 𝑎2) − 𝜂(𝑎1)𝜂(𝑎2) (2.6) 

𝑅(𝑎1, 𝑎2)𝜉 = 𝜂(𝑎1)𝑎2 − 𝜂(𝑎2)𝑎1 (2.7) 
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𝑅(𝜉, 𝑎1)𝑎2 = −𝑔(𝑎1, 𝑎2)𝜉 + 𝜂(𝑎2)𝑎1 (2.8) 

𝑅(𝑎1, 𝜉)𝑎2 = 𝑔(𝑎1, 𝑎2)𝜉 − 𝜂(𝑎2)𝑎1 (2.9) 

𝑆(𝑎1, 𝜉) = −2𝑛𝜂(𝑎1) (2.10) 

and 

𝑄𝜉 = −2𝑛𝜉 (2.11) 

where ∇, 𝑅, 𝑆, and 𝑄 are Levi-Civita connections on 𝑀, Riemann tensor, Ricci tensor, and Ricci operator, 

respectively. 

Definition 2.2. [6] Let 𝑀 be a (2𝑛 + 1)-dimensional semi-Riemannian manifold. Then, the 𝑊8-curvature 

tensor is defined as  

𝑊8(𝑎1, 𝑎2)𝑎3 = 𝑅(𝑎1, 𝑎2)𝑎3 −
1

2𝑛
[𝑆(𝑎2, 𝑎3)𝑎1 − 𝑆(𝑎1, 𝑎3)𝑎2] (2.12) 

for all 𝑎1, 𝑎2, 𝑎3 ∈ 𝜒(𝑀). 

If we choose 𝑎1 = 𝜉, 𝑎2 = 𝜉, and 𝑎3 = 𝜉 in (2.12) for (2𝑛 + 1)-dimensional Kenmotsu manifold respectively, 

we get 

𝑊8(𝜉, 𝑎2)𝑎3 = −𝑔(𝑎2, 𝑎3)𝜉 + 𝜂(𝑎3)𝑎2 − 𝜂(𝑎2)𝑎3 −
1

2𝑛
𝑆(𝑎2, 𝑎3)𝜉 (2.13) 

𝑊8(𝑎1, 𝜉)𝑎3 = 𝑔(𝑎1, 𝑎3)𝜉 − 𝜂(𝑎1)𝑎3 (2.14) 

and 

𝑊8(𝑎1, 𝑎2)𝜉 = 𝜂(𝑎1)𝑎2 +
1

2𝑛
𝑆(𝑎1, 𝑎2)𝜉 (2.15) 

Let 𝑀̃ be immersed submanifold of a Kenmotsu manifold 𝑀(𝜙, 𝜉, 𝜂, 𝑔). Moreover, let the tangent and normal 

subspaces of 𝑀̃ in 𝑀(𝜙, 𝜉, 𝜂, 𝑔) be Γ(𝑇𝑀̃) and Γ(𝑇⊥𝑀̃), respectively. Then, Gauss and Weingarten formulas 

for Γ(𝑇𝑀̃) and Γ(𝑇⊥𝑀̃) are  

▽𝑎1 𝑎2 =▽̃𝑎1 𝑎2 + 𝜎(𝑎1, 𝑎2) (2.16) 

and 

▽𝑎1 𝑎5 = −𝐴𝑎5𝑎1 +▽̃𝑎1
⊥ 𝑎5 (2.17) 

respectively, for all 𝑎1, 𝑎2 ∈ Γ(𝑇𝑀̃) and 𝑎5 ∈ Γ(𝑇
⊥𝑀̃), where ▽̃ and ▽̃⊥ are the connections on 𝑀̃ and 

Γ(𝑇⊥𝑀̃), respectively, 𝜎 and 𝐴 are the second fundamental form and the shape operator of 𝑀̃. There is a 

relation 

𝑔(𝐴𝑎5𝑎1, 𝑎2) = 𝑔(𝜎(𝑎1, 𝑎2), 𝑎5) 

between the second basic form and shape operator defined as above. The covariant derivative of the second 

fundamental form 𝜎 is defined as 

(∇𝑎1𝜎)(𝑎2, 𝑎3) =▽̃𝑎1
⊥ 𝜎(𝑎2, 𝑎3) − 𝜎(▽̃𝑎1 𝑎2, 𝑎3) − 𝜎(𝑎2,▽̃𝑎1 𝑎3) (2.18) 

Specifically, if ∇𝜎 = 0, 𝑀̃ is said to be a parallel second fundamental form. 
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Let 𝑅̃ be Riemann curvature tensor of 𝑀̃. In this case, the Gauss equation can be expressed as 

 𝑅(𝑎1, 𝑎2)𝑎3 = 𝑅̃(𝑎1, 𝑎2)𝑎3 + 𝐴𝜎(𝑎1,𝑎3)𝑎2 − 𝐴𝜎(𝑎2,𝑎3)𝑎1 + (∇𝑎1𝜎)(𝑎2, 𝑎3) − (∇𝑎2𝜎)(𝑎1, 𝑎3) 

for all 𝑎1, 𝑎2, 𝑎3 ∈ Γ(𝑇𝑀̃), where 

(∇̃𝑎1𝜎)(𝑎2, 𝑎3) − (∇̃𝑎2𝜎)(𝑎1, 𝑎3) = 0 

then it is called a curvature-invariant submanifold. Let 𝑀̃ be a Riemannian manifold, 𝑇 be (0, 𝑘)-type tensor 

field and 𝐴 be (0,2)-type tensor field. In this case, Tachibana tensor field 𝑄(𝐴, 𝑇) is defined as 

𝑄(𝐴, 𝑇)(𝑋1,⋯ , 𝑋𝑘; 𝑎1, 𝑎2) = −𝑇((𝑎1 ∧𝐴 𝑎2)𝑋1,⋯ , 𝑋𝑘) −⋯ − 𝑇(𝑋1,⋯ , 𝑋𝑘−1, (𝑎1 ∧𝐴 𝑎2)𝑋𝑘) (2.19) 

where 

(𝑎1 ∧𝐴 𝑎2)𝑎3 = 𝐴(𝑎2, 𝑎3)𝑎1 − 𝐴(𝑎1, 𝑎3)𝑎2, 𝑘 ≥ 1, 𝑋1, 𝑋2, ⋯ , 𝑋𝑘 , 𝑎1, 𝑎2 ∈ Γ(𝑇𝑀̃) (2.20) 

Definition 2.3. [5] A submanifold of a Riemannian manifold (𝑀, 𝑔) is said to be pseudoparallel, 2-

pseudoparallel, Ricci-generalized pseudoparallel, and 2-Ricci generalized pseudoparallel if 

𝑅 ⋅ 𝜎 and 𝑄(𝑔, 𝜎)

𝑅 ⋅ ∇𝜎 and 𝑄(𝑔, ∇𝜎)

𝑅 ⋅ 𝜎 and 𝑄(𝑆, 𝜎)

𝑅 ⋅ ∇𝜎 and 𝑄(𝑆, ∇𝜎)

 

are linearly dependent, respectively. 

3. Pseudoparallel Invariant Submanifolds of Kenmotsu Manifold 

Let 𝑀̃ be the immersed submanifold of a (2𝑛 + 1)-dimensional Kenmotsu manifold 𝑀(𝜙, 𝜉, 𝜂, 𝑔). If 

𝜙(𝑇𝑎1𝑀) ⊂ 𝑇𝑎1𝑀 in every 𝑎1 point, the 𝑀̃ manifold is called an invariant submanifold. We note that all of the 

properties of an invariant submanifold inherit the ambient manifold. Throughout this paper, let 𝑀̃ be an 

invariant submanifold of the Kenmotsu manifold 𝑀(𝜙, 𝜉, 𝜂, 𝑔). Therefore, for all 𝑎1, 𝑎2 ∈ Γ(𝑇𝑀̃),  

𝜎(𝜙𝑎1, 𝑎2) = 𝜎(𝑎1, 𝜙𝑎2) = 𝜙𝜎(𝑎1, 𝑎2) (3.1) 

and 

𝜎(𝑎1, 𝜉) = 0 (3.2) 

Lemma 3.1. Let 𝑀̃ be the invariant submanifold of the (2𝑛 + 1)-dimensional Kenmotsu manifold 

𝑀(𝜙, 𝜉, 𝜂, 𝑔). The second fundamental form σ of 𝑀̃ is parallel if and only if 𝑀̃ is the total geodesic 

submanifold.  

Consider the invariant submanifolds of the Kenmotsu manifold on the 𝑊8-curvature tensor. 

Definition 3.2. Let 𝑀̃ be the invariant submanifold of the (2𝑛 + 1)-dimensional Kenmotsu manifold 

𝑀(𝜙, 𝜉, 𝜂, 𝑔). If 𝑊8 ⋅ 𝜎 and 𝑄(𝑔, 𝜎) are linearly dependent, 𝑀̃ is called 𝑊8-pseudoparallel submanifold.  

In this mean, it can be said that there is a function 𝑘1 on the set 𝑀1 = {𝑥 ∈ 𝑀̃ | 𝜎(𝑥) ≠ 𝑔(𝑥)} such that 

𝑊8 ⋅ 𝜎 = 𝑘1𝑄(𝑔, 𝜎) 
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If 𝑘1 = 0 specifically, 𝑀̃ is called a 𝑊8-semi-parallel submanifold. 

Theorem 3.3. Let 𝑀̃ be an invariant submanifold of a (2𝑛 + 1)-dimensional Kenmotsu manifold 

𝑀(𝜙, 𝜉, 𝜂, 𝑔). If 𝑀̃ is 𝑊8-pseudoparallel submanifold, then 𝑀̃ is either a total geodesic or 𝑘1 = −1.  

Proof.  

Assume that 𝑀̃ is a 𝑊8-pseudoparallel submanifold. Thus, for all 𝑎1, 𝑎2, 𝑎4, 𝑎5 ∈ Γ(𝑇𝑀̃), 

(𝑊8(𝑎1, 𝑎2) ⋅ 𝜎)(𝑎4, 𝑎5) = 𝑘1𝑄(𝑔, 𝜎)(𝑎4, 𝑎5; 𝑎1, 𝑎2) (3.3) 

From (3.3), it is clear that 

𝑅⊥(𝑎1, 𝑎2)𝜎(𝑎4, 𝑎5) − 𝜎(𝑊8(𝑎1, 𝑎2)𝑎4, 𝑎5) − 𝜎(𝑎4,𝑊8(𝑎1, 𝑎2)𝑎5) = −𝑘1 {𝜎 ((𝑎1 ∧𝑔 𝑎2)𝑎4, 𝑎5) + 𝜎(𝑎4, (𝑎1 ∧𝑔 𝑎2)𝑎5)} 

That is, we can write 

𝑅⊥(𝑎1, 𝑎2)𝜎(𝑎4, 𝑎5) − 𝜎(𝑊8(𝑎1, 𝑎2)𝑎4, 𝑎5) − 𝜎(𝑎4,𝑊8(𝑎1, 𝑎2)𝑎5) = 

−𝑘1{𝑔(𝑎2, 𝑎4)𝜎(𝑎1, 𝑎5) − 𝑔(𝑎1, 𝑎4)𝜎(𝑎2, 𝑎5) + 𝑔(𝑎2, 𝑎5)𝜎(𝑎4, 𝑎1)−𝑔(𝑎1, 𝑎5)𝜎(𝑎4, 𝑎2)} 
(3.4) 

If we choose 𝑎5 = 𝜉 in (3.4) and make use of (2.15) and (3.2), then 

𝜂(𝑎1)𝜎(𝑎4, 𝑎2) = 𝑘1[𝜂(𝑎2)𝜎(𝑎4, 𝑎1) − 𝜂(𝑎1)𝜎(𝑎4, 𝑎2)] (3.5) 

If we choose 𝑎1 = 𝜉 in (3.5), we obtain 

(𝑘1 + 1)𝜎(𝑎4, 𝑎2) = 0 

□ 

Corollary 3.4. Let 𝑀̃ be an pseudoparallel invariant submanifold of a (2𝑛 + 1)-dimensional Kenmotsu 

manifold 𝑀(𝜙, 𝜉, 𝜂, 𝑔). Then, 𝑀̃ is 𝑊8-semi-parallel if and only if 𝑀̃ is totally geodesic.  

Definition 3.5. Let 𝑀̃ be the invariant submanifold of a (2𝑛 + 1)-dimensional Kenmotsu manifold 

𝑀(𝜙, 𝜉, 𝜂, 𝑔). If 𝑊8 ⋅ ∇𝜎 and 𝑄(𝑔, ∇𝜎) are linearly dependent, then 𝑀̃ is called 𝑊8-2 pseudoparallel 

submanifold.  

In this case, there is a function 𝑘2 on the set 𝑀2 = {𝑥 ∈ 𝑀̃ | ∇𝜎(𝑥) ≠ 𝑔(𝑥)} such that 

𝑊8 ⋅ ∇𝜎 = 𝑘2𝑄(𝑔, ∇𝜎) 

If 𝑘2 = 0 specifically, 𝑀̃ is called a 𝑊8-2 semiparallel submanifold. 

Theorem 3.6. Let 𝑀̃ be an invariant submanifold of a (2𝑛 + 1)-dimensional Kenmotsu manifold 

𝑀(𝜙, 𝜉, 𝜂, 𝑔). If 𝑀̃ is 𝑊8-2 pseudoparallel submanifold, then 𝑀̃ is either a total geodesic submanifold or 𝑘2 =

−1. 

Proof.  

Assume that 𝑀̃ is a 𝑊8-2 pseudoparallel submanifold. Therefore,  

(𝑊8(𝑎1, 𝑎2) ⋅ ∇𝜎)(𝑎4, 𝑎5, 𝑎3) = 𝑘2𝑄(𝑔, ∇𝜎)(𝑎4, 𝑎5, 𝑎3; 𝑎1, 𝑎2) (3.6) 

for all 𝑎1, 𝑎2, 𝑎4, 𝑎5, 𝑎3 ∈ Γ(𝑇𝑀̃). If we choose 𝑎1 = 𝑎3 = 𝜉 in (3.6), then 
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𝑅⊥(𝜉, 𝑎2)(∇𝑎4𝜎)(𝑎5, 𝜉) − (∇𝑊8(𝜉,𝑎2)𝑎4𝜎)(𝑎5, 𝜉) − (∇𝑎4𝜎)(𝑊8(𝜉, 𝑎2)𝑎5, 𝜉) − (∇𝑎4𝜎)(𝑎5,𝑊8(𝜉, 𝑎2)𝜉) = 

−𝑘2 {(∇(𝜉∧𝑔𝑎2)𝑎4𝜎) (𝑎5, 𝜉) + (∇𝑎4𝜎) ((𝜉 ∧𝑔 𝑎2)𝑎5, 𝜉) + (∇𝑎4𝜎)(𝑎5, (𝜉 ∧𝑔 𝑎2)𝜉)} 
(3.7) 

Calculate all the expressions in (3.7). Thus, by using (2.18) and taking into account Lemma 3.1, we can write 

𝑅⊥(𝜉, 𝑎2)(∇𝑎4𝜎)(𝑎5, 𝜉) = 𝑅
⊥(𝜉, 𝑎2){▽̃𝑎4

⊥ 𝜎(𝑎5, 𝜉)−𝜎(▽̃𝑎4 𝑎5, 𝜉) − 𝜎(𝑎5,▽̃𝑎4 𝜉)} 

 
(3.8)  = −𝑅⊥(𝜉, 𝑎2)𝜎(𝑎5, −𝑎4 + 𝜂(𝑎4)𝜉) 

 
 = 𝑅⊥(𝜉, 𝑎2)𝜎(𝑎5, 𝑎4) 

secondly, 

(∇𝑊8(𝜉,𝑎2)𝑎4𝜎)(𝑎5, 𝜉) =▽̃𝑊8(𝜉,𝑎2)𝑎4
⊥ 𝜎(𝑎5, 𝜉) − 𝜎(▽̃𝑊8(𝜉,𝑎2)𝑎4 𝑎5, 𝜉) − 𝜎(𝑎5,▽̃𝑊8(𝜉,𝑎2)𝑎4 𝜉) 

 
(3.9)  = −𝜎(𝑎5, −𝑊8(𝜉, 𝑎2)𝑎4 + 𝜂(𝑊8(𝜉, 𝑎2)𝑎4)𝜉) 

 
 = 𝜂(𝑎4)𝜎(𝑎5, 𝑎2) − 𝜂(𝑎2)𝜎(𝑎5, 𝑎4) 

Moreover, 

(∇𝑎4𝜎)(𝑊8(𝜉, 𝑎2)𝑎5, 𝜉) 

 
 

=▽̃𝑎4
⊥ 𝜎(𝑊8(𝜉, 𝑎2)𝑎5, 𝜉) − 𝜎(▽̃𝑎4 𝑊8(𝜉, 𝑎2)𝑎5, 𝜉) − 𝜎(𝑊8(𝜉, 𝑎2)𝑎5,▽̃𝑎4 𝜉) 

(3.10)  = −𝜎 (−𝑔(𝑎2, 𝑎5)𝜉 + 𝜂(𝑎5)𝑎2 − 𝜂(𝑎2)𝑎5 −
1

2𝑛
𝑆(𝑎2, 𝑎5)𝜉, −𝑎4 + 𝜂(𝑎4)𝜉) 

 = 𝜂(𝑎5)𝜎(𝑎2, 𝑎4) − 𝜂(𝑎2)𝜎(𝑎5, 𝑎4) 

 
(∇𝑎4𝜎)(𝑎5,𝑊8(𝜉, 𝑎2)𝜉) 

 
 

= (∇𝑎4𝜎)(𝑎5, 𝑎2 − 𝜂(𝑎2)𝜉) 

(3.11) 
 = (∇𝑎4𝜎)(𝑎5, 𝑎2) − (∇𝑎4𝜎)(𝑎5, 𝜂(𝑎2)𝜉) 

 = (∇𝑎4𝜎)(𝑎5, 𝑎2) − ∇̃𝑎4
⊥ 𝜎(𝑎5, 𝜂(𝑎2)𝜉) + 𝜎(∇̃𝑎4𝑎5, 𝜂(𝑎2)𝜉) + 𝜎(𝑎5, ∇̃𝑎4𝜂(𝑎2)𝜉) 

 = (∇𝑎4𝜎)(𝑎5, 𝑎2) − 𝜂(𝑎2)𝜎(𝑎5, 𝑎4) 

 
(∇(𝜉∧𝑔𝑎2)𝑎4𝜎) (𝑎5, 𝜉) 

 

=▽̃(𝜉∧𝑔𝑎2)𝑎4

⊥ 𝜎(𝑎5, 𝜉) − 𝜎 (▽̃(𝜉∧𝑔𝑎2)𝑎4
𝑎5, 𝜉) − 𝜎 (𝑎5,▽̃(𝜉∧𝑔𝑎2)𝑎4

𝜉) 
(3.12) 

 = −𝜂(𝑎4)𝜎(𝑎5, 𝑎2) 

 
(∇𝑎4𝜎) ((𝜉 ∧𝑔 𝑎2)𝑎5, 𝜉) 

 

=▽̃𝑎4
⊥ 𝜎 ((𝜉 ∧𝑔 𝑎2)𝑎5, 𝜉) − 𝜎(▽̃𝑎4 (𝜉 ∧𝑔 𝑎2)𝑎5, 𝜉) − 𝜎 ((𝜉 ∧𝑔 𝑎2)𝑎5,▽̃𝑎4 𝜉) 

(3.13)  = −𝜎(𝑔(𝑎2, 𝑎5)𝜉 − 𝑔(𝜉, 𝑎5)𝑎2,−𝑎4 + 𝜂(𝑎4)𝜉) 
 

 = −𝜂(𝑎5)𝜎(𝑎2, 𝑎4) 

and 

(∇𝑎4𝜎)(𝑎5, (𝜉 ∧𝑔 𝑎2)𝜉) 
 

= (∇𝑎4𝜎)(𝑎5, 𝜂(𝑎2)𝜉 − 𝑎2) 

(3.14)  = (∇𝑎4𝜎)(𝑎5, 𝜂(𝑎2)𝜉) − (∇𝑎4𝜎)(𝑎5, 𝑎2) 

 = 𝜂(𝑎2)𝜎(𝑎5, 𝑎4) − (∇𝑎4𝜎)(𝑎5, 𝑎2) 

 



78 

 

Karaman and Atçeken / JAUIST / 4(2) (2023) 72-81  

If we substitute (3.8)-(3.14) in (3.7), we have 

𝑅⊥(𝜉, 𝑎2)𝜎(𝑎5, 𝑎4) − 𝜂(𝑎4)𝜎(𝑎5, 𝑎2) − 𝜂(𝑎5)𝜎(𝑎2, 𝑎4) + 3𝜂(𝑎2)𝜎(𝑎5, 𝑎4) − (∇𝑎4𝜎)(𝑎5, 𝑎2) = 

−𝑘2{−𝜂(𝑎5)𝜎(𝑎4, 𝑎2) − 𝜂(𝑎4)𝜎(𝑎2, 𝑎5) + 𝜂(𝑎2)𝜎(𝑎5, 𝑎4)−(∇𝑎4𝜎)(𝑎5, 𝑎2)} 
(3.15) 

If we choose 𝑎5 = 𝜉 in (3.5) and use, 

(∇𝑎4𝜎)(𝜉, 𝑎2) = 𝜎(𝑎4, 𝑎2) 

we get 

[𝑘2 + 1]𝜎(𝑎2, 𝑎4) = 0 

which proves the assertions. 

□ 

Corollary 3.7. Let 𝑀̃ be an invariant pseudoparallel submanifold of a (2𝑛 + 1)-dimensional Kenmotsu 

manifold 𝑀(𝜙, 𝜉, 𝜂, 𝑔). Then, 𝑀̃ is 𝑊8-2 semi-parallel if and only if 𝑀̃ is totally geodesic.  

Definition 3.8. Let 𝑀̃ be the invariant submanifold of a (2𝑛 + 1)-dimensional Kenmotsu manifold 

𝑀(𝜙, 𝜉, 𝜂, 𝑔). If 𝑊8 ⋅ 𝜎 and 𝑄(𝑆, 𝜎) are linearly dependent, 𝑀̃ is called 𝑊8-Ricci generalized pseudoparallel 

submanifold.  

In this case, there is a function 𝑘3 on the set 𝑀3 = {𝑥 ∈ 𝑀̃ | 𝜎(𝑥) ≠ 𝑆(𝑥)} such that 

𝑊8 ⋅ 𝜎 = 𝑘3𝑄(𝑆, 𝜎) 

If 𝑘3 = 0 specifically, 𝑀̃ is called a 𝑊8-Ricci generalized semiparallel submanifold. 

Theorem 3.9. Let 𝑀̃ be the invariant submanifold of a (2𝑛 + 1)-dimensional Kenmotsu manifold 

𝑀(𝜙, 𝜉, 𝜂, 𝑔). If 𝑀̃ is 𝑊8-Ricci generalized pseudoparallel submanifold, then 𝑀̃ is either a total geodesic or 

𝑘3 =
1

2𝑛
.  

Proof.  

Assume that 𝑀̃ is a 𝑊8-Ricci generalized pseudoparallel submanifold. Therefore, we have 

(𝑊8(𝑎1, 𝑎2) ⋅ 𝜎)(𝑎4, 𝑎5) = 𝑘3𝑄(𝑆, 𝜎)(𝑎4, 𝑎5; 𝑎1, 𝑎2) 

that is 

𝑅⊥(𝑎1, 𝑎2)𝜎(𝑎4, 𝑎5) − 𝜎(𝑊8(𝑎1, 𝑎2)𝑎4, 𝑎5) − 𝜎(𝑎4,𝑊8(𝑎1, 𝑎2)𝑎5) = 

−𝑘3{𝜎((𝑎1 ∧𝑆 𝑎2)𝑎4, 𝑎5)+𝜎(𝑎4, (𝑎1 ∧𝑆 𝑎2)𝑎5)} 
(3.16) 

for all 𝑎1, 𝑎2, 𝑎4, 𝑎5 ∈ Γ(𝑇𝑀̃). If we choose 𝑎1 = 𝑎5 = 𝜉 in (3.6), we get 

−𝜎(𝑎4,𝑊8(𝜉, 𝑎2)𝜉) = 𝑘3𝑆(𝜉, 𝜉)𝜎(𝑎4, 𝑎2) (3.17) 

If we use (2.10) and (2.15) in (3.7), we have 

(1 − 2𝑛𝑘3)𝜎(𝑎4, 𝑎2) = 0 

□ 

Corollary 3.10. Let 𝑀̃ be an invariant pseudoparallel submanifold of a (2𝑛 + 1)-dimensional Kenmotsu 

manifold 𝑀(𝜙, 𝜉, 𝜂, 𝑔). Then, 𝑀̃ is 𝑊8-Ricci generalized semi-parallel if and only if 𝑀̃ is totally geodesic.  
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Definition 3.11. Let 𝑀̃ be an invariant pseudoparallel submanifold of a (2𝑛 + 1)-dimensional Kenmotsu 

manifold 𝑀(𝜙, 𝜉, 𝜂, 𝑔). If 𝑊8 ⋅▽̃ 𝜎 and 𝑄(𝑆,▽̃ 𝜎) are linearly dependent, 𝑀̃ is called 𝑊8-2 Ricci generalized 

pseudoparallel submanifold.  

Then, there is a function 𝑘4 on the set 𝑀4 = {𝑥 ∈ 𝑀̃ | ∇𝜎(𝑥) ≠ 𝑆(𝑥)} such that 

𝑊8 ⋅ ∇𝜎 = 𝑘4𝑄(𝑆, ∇𝜎) 

If specifically, 𝑘4 = 0, 𝑀 is called a 𝑊8-2 Ricci generalized semiparallel submanifold. 

Theorem 3.12. Let 𝑀̃ be an invariant pseudoparallel submanifold of a (2𝑛 + 1)-dimensional Kenmotsu 

manifold 𝑀(𝜙, 𝜉, 𝜂, 𝑔). If 𝑀̃ is 𝑊8-2 Ricci generalized pseudoparallel submanifold, then 𝑀̃ is either a total 

geodesic or 𝑘4 =
1

2𝑛
. 

Proof.  

Assume that 𝑀̃ is a 𝑊8-2 Ricci generalized pseudoparallel submanifold. Thus, we can write 

(𝑊8(𝑎1, 𝑎2) ⋅ ∇𝜎)(𝑎4, 𝑎5, 𝑎3) = 𝑘4𝑄(𝑆, ∇𝜎)(𝑎4, 𝑎5, 𝑎3; 𝑎1, 𝑎2) (3.18) 

 for all 𝑎1, 𝑎2, 𝑎4, 𝑎5, 𝑎3 ∈ Γ(𝑇𝑀̃). If we choose 𝑎1 = 𝑎5 = 𝜉 in (3.18), we can write 

𝑅⊥(𝜉, 𝑎2)(∇𝑎4𝜎)(𝜉, 𝑎3) − (∇𝑊8(𝜉,𝑎2)𝑎4𝜎)(𝜉, 𝑎3) − (∇𝑎4𝜎)(𝑊8(𝜉, 𝑎2)𝜉, 𝑎3) − (∇𝑎4ℎ)(𝜉,𝑊8(𝜉, 𝑎2)𝑎3)

= −𝑘4{(∇(𝜉∧𝑆𝑎2)𝑎4𝜎)(𝜉, 𝑎3) + (∇𝑎4𝜎)((𝜉 ∧𝑆 𝑎2)𝜉, 𝑎3)+(▽̃𝑎4 𝜎)(𝜉, (𝜉 ∧𝑆 𝑎2)𝑎3)} 
(3.19) 

Calculate all the expressions in (3.9). Firstly, making use of (2.18), (3.1), and Lemma 3.1, we can write 

𝑅⊥(𝜉, 𝑎2)(∇𝑎4𝜎)(𝜉, 𝑎3) 

 

= 𝑅⊥(𝜉, 𝑎2){▽̃𝑎4
⊥ 𝜎(𝜉, 𝑎3)−𝜎(▽̃𝑎4 𝑎3, 𝜉) − 𝜎(𝑎3,▽̃𝑎4 𝜉)} 

(3.20) 

 = 𝑅⊥(𝜉, 𝑎2)𝜎(𝑎3, 𝑎4) 

For the same reason, we can write 

(∇𝑊8(𝜉,𝑎2)𝑎4𝜎)(𝜉, 𝑎3) 

 

=▽̃𝑊8(𝜉,𝑎2)𝑎4
⊥ 𝜎(𝜉, 𝑎3) − 𝜎(▽̃𝑊8(𝜉,𝑎2)𝑎4 𝜉, 𝑎3) − 𝜎(𝜉,▽̃𝑊8(𝜉,𝑎2)𝑎4 𝑎3) 

(3.21) 

 = 𝜂(𝑎4)𝜎(𝑎2, 𝑎3) − 𝜂(𝑎2)𝜎(𝑎3, 𝑎4) 

 
(∇𝑎4𝜎)(𝑊8(𝜉, 𝑎2)𝜉, 𝑎3) 

 

= (∇𝑎4𝜎)(𝑎2 + 𝜂(𝑎2)𝜉, 𝑎3) (3.22) 

 = (∇𝑎4𝜎)(𝑎2, 𝑎3) − 𝜂(𝑎2)𝜎(𝑎4, 𝑎3) 

 
(∇𝑎4𝜎)(𝜉,𝑊8(𝜉, 𝑎2)𝑎3) 

 

=▽̃𝑎4
⊥ 𝜎(𝜉,𝑊8(𝜉, 𝑎2)𝑎3) − 𝜎(▽̃𝑎4 𝜉,𝑊8(𝜉, 𝑎2)𝑎3) − 𝜎(𝜉,▽̃𝑎4 𝑊8(𝜉, 𝑎2)𝑎3) 

(3.23) 

 = 𝜂(𝑎3)𝜎(𝑎4, 𝑎2) − 𝜂(𝑎2)𝜎(𝑎3, 𝑎4) 

 
(∇(𝜉∧𝑆𝑎2)𝑎4𝜎)(𝜉, 𝑎3) 

 

=▽̃(𝜉∧𝑆𝑎2)𝑎4
⊥ 𝜎(𝜉, 𝑎3) − 𝜎(▽̃(𝜉∧𝑆𝑎2)𝑎4 𝜉, 𝑎3) − 𝜎(𝜉,▽̃(𝜉∧𝑆𝑎2)𝑎4 𝑎3) 

(3.24) 

 = 2𝑛𝜂(𝑎4)𝜎(𝑎2, 𝑎3) 

   
(∇𝑎4𝜎)((𝜉 ∧𝑆 𝑎2)𝜉, 𝑎3) 

 
 

= (∇𝑎4ℎ)(𝑆(𝑎2, 𝜉)𝜉 − 𝑆(𝜉, 𝜉)𝑎2, 𝑎3) 

(3.25) 
 = (∇𝑎4ℎ)(−2𝑛𝜂(𝑎2)𝜉 + 2𝑛𝑎2, 𝑎3) 

 = −2𝑛{▽̃𝑎4
⊥ 𝜎(𝜂(𝑎2)𝜉, 𝑎3) − 𝜎(▽̃𝑎4 𝜂(𝑎2)𝜉, 𝑎3)−𝜎(𝜂(𝑎2)𝜉,▽̃𝑎4 𝑎3) + 2𝑛(∇𝑎4𝜎)(𝑎2, 𝑎3)} 

 = 2𝑛(∇𝑎4𝜎)(𝑎2, 𝑎3) − 2𝑛𝜂(𝑎2)𝜎(𝑎4, 𝑎3) 



80 

 

Karaman and Atçeken / JAUIST / 4(2) (2023) 72-81  

In the same way, we have 

(∇𝑎4𝜎)(𝜉, (𝜉 ∧𝑆 𝑎2)𝑎3) 

 

= (∇𝑎4𝜎)(𝜉, 𝑆(𝑎2, 𝑎3)𝜉 − 𝑆(𝜉, 𝑎3)𝑎2) 

(3.26)  = (∇𝑎4𝜎)(𝜉, 𝑆(𝑎2, 𝑎3)𝜉) + (▽̃𝑎4 𝜎)(𝜉, 2𝑛𝜂(𝑎3)𝑎2) 

 
 = 2𝑛𝜂(𝑎3)𝜎(𝑎4, 𝑎2) 

Consequently, we substitute (3.20)-(3.26) in (3.19), we obtain 

𝑅⊥(𝜉, 𝑎2)𝜎(𝑎3, 𝑎4) − 𝜂(𝑎4)𝜎(𝑎2, 𝑎3) + 3𝜂(𝑎2)𝜎(𝑎4, 𝑎3) − 𝜂(𝑎3)𝜎(𝑎4, 𝑎2) − (∇𝑎4𝜎)(𝑎2, 𝑎3) = 

−𝑘4{2𝑛𝜂(𝑎4)𝜎(𝑎2, 𝑎3) − 2𝑛𝜂(𝑎2)𝜎(𝑎4, 𝑎3) + 2𝑛𝜂(𝑎3)𝜎(𝑎4, 𝑎2)+2𝑛(∇𝑎4𝜎)(𝑎2, 𝑎3)} 
(3.27) 

If we choose 𝑎3 = 𝜉 in (3.27) and use 

(∇𝑎4𝜎)(𝑎2, 𝜉) = 𝜎(𝑎4, 𝑎2) 

we get 

[2𝑛𝑘4 − 1]𝜎(𝑎4, 𝑎2) = 0 

□ 

Corollary 3.13. Let 𝑀̃ be a pseudoparallel invariant submanifold of a (2𝑛 + 1)-dimensional Kenmotsu 

manifold 𝑀(𝜙, 𝜉, 𝜂, 𝑔). Then, 𝑀̃ is 𝑊8-2 Ricci generalized semi-parallel if and only if 𝑀̃ is totally geodesic.  

4. Conclusion 

This paper considered pseudoparallel invariant submanifolds of Kenmotsu manifolds on 𝑊8 curvature tensor 

and researched some basic characterizations, such as 𝑊8 pseudoparallel, 𝑊8-2 pseudoparallel, 𝑊8-Ricci 

generalized pseudoparallel, and 𝑊8-2 Ricci generalized pseudoparallel. In addition, the paper provided some 

relations between these pseudoparallel invariant submanifolds and semi-parallel invariant submanifolds. In 

future studies, pseudoparallel invariant submanifolds of Kenmotsu manifolds can also be characterized using 

other curvature tensors. Besides, this topic is worth studying on the other manifolds. 

Author Contributions 

All the authors equally contributed to this work. This paper is derived from the first author’s master’s thesis 

supervised by the second author. They all read and approved the final version of the paper. 

Conflict of Interest 

All the authors declare no conflict of interest. 

References 

[1] K. Kenmotsu, A class of contact Riemannian manifolds, Tohoku Mathematical Journal 24 (1) (1972) 93–

103. 

[2] A. Haseeb, Some results on projective curvature tensor in an 𝜀-Kenmotsu manifold, Palestine Journal of 

Mathematics 6 (Special Issue: II) (2017) 196–203. 

[3] Y. Wang, X. Liu, Second order parallel tensors on almost Kenmotsu manifolds satisfying the nullity 

distributions, Filomat 28 (4) (2014) 839–847. 



81 

 

Karaman and Atçeken / JAUIST / 4(2) (2023) 72-81  

[4] Y. Wang, W. Wang, An Einstein-like metric on almost Kenmotsu manifold, Filomat 31 (15) (2017) 4695–

4702. 

[5] C. Özgür, U. C. De, On the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica 

Pannonica 17 (2) (2006) 221–228. 

[6] M. M. Tripathi, P. Gupta, 𝜏-curvature tensor on a semi-Riemannian manifold, Journal of Advanced 

Mathematical Studies 4 (1) (2011) 117–129. 

[7] R. N. Singh, S. K. Pandey, G. Pandey, On 𝑊2-curvature tensor in a Kenmotsu manifold, Tamsui Oxford 

Journal of Information and Mathematical Sciences 29 (2) (2013) 129–141. 

[8] D. G. Prakasha, B. S. Hadimani, On the conharmonic curvature tensor of Kenmotsu manifolds with 

generalized Tanaka-Webster connection, Miskole Mathematical Notes 19 (1) (2018) 491–503. 

[9] U. C. De, G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian Journal of Pure and Applied 

Mathematics 35 (2) (2004) 159–165. 

[10] K. De, U. C. De, Conharmonic curvature tensor on Kenmotsu manifolds, Bulletin of the Transilvania 

University of Braşov Series III: Mathematics and Computer Science 6 (55) (1) (2013) 9–22. 

[11] M. Atçeken, T. Mert, Characterizations for totally geodesic submanifolds of a 𝐾-paracontact manifold, 

AIMS Mathematics 6 (7) (2021) 7320–7332. 

[12] P. Uygun, S. Dirik, M. Atçeken, T. Mert, Some characterizations invariant submanifolds of a (𝜅, 𝜇)-para 

contact space, Journal of Engineering Research and Applied Science 1 (11) (2022) 1967–1972. 

[13] T. Mert, M. Atçeken, A note on pseudoparallel submanifolds of Lorentzian para-Kenmotsu manifolds, 

Filomat 37 (15) (2023) 5095–5107.  



Journal of Amasya University the Institute of Sciences and Technology 4(2) (2023) 82-89 

 

*Corresponding Author 

 
1kaurangini@yahoo.com; 2huzaifamtahir1234@gmail.com; 3uabubakar@kustwudil.edu.ng 

Article History: Received: 22 Oct 2023 — Accepted: 27 Dec 2023 — Published: 31 Dec 2023 

Effect of fractional time derivatives to pressure-driven flow through the 

horizontal microchannel 

1Muhammad Lawan Kaurangini1 , Huzaifa Muhammad Tahir2 , Umar Muhammad Abubakar3,*  

1,2,3Department of Mathematics, Faculty of Computing and Mathematical Science, Aliko Dangote University of Science 

and Technology, Wudil, Nigeria 

Abstract − This research applies fractional time derivatives to fluid flow through a horizontal microchannel. It uses fractional time 

derivatives with the Laplace transform technique and method of undetermined coefficient to analyze and obtain solutions of the 

governing equations in the Laplace domain. To this end, the solutions are reversed in the time domain using Riemann-sum 

approximation methods. In order to obtain the solutions for the pressure-driven flow, the time factional derivative in the Caputo 

sense is employed. Here, the influence of each governing parameter is explained with a line graph. Results show that with the 

decreases in fractional order (𝛼), the velocity decreases within the interval 0 < 𝛼 < 1. The fluid velocity increases and decreases as 

the Knudsen number (𝑘𝑛) changes. Besides, transient wall-skin frictions for different times (𝑡) and Knudsen number (𝑘𝑛) with a 

fixed value of fractional order (𝛼) are observed. 

Keywords: Fractional time derivative, pressure-driven flow, Knudsen number, Laplace transform, Couette flow 

Subject Classification (2020): 76D55, 34A08 

1. Introduction 

Fractional calculus is a generalization of ordinary differential and integral of non-integer order 𝛼. It was first 

introduced by L’Hospital and Leibnitz in 1695 after they proposed what would happen if the ordinary 

derivative of integer order was changed to fractional order by L’Hospital. Then, Leibnitz first used the 

notation 𝑑(
1
2⁄ )𝑦 in 1697. Many mathematicians have suggested their interest in its application, as Lacroix 

1819 mentioned fractional derivatives in his text on differential and integral calculus. Euler and Fourier 

mentioned fractional derivatives but did not give any application or example. The first and popular 

definition, the Riemann-Liouville definition, was proposed by Riemann and Liouville, after which Caputo 

proposed a second popular definition called the Caputo Fractional Derivative. There are many definitions of 

Fractional calculus, such as Jumarie, Wely, Eudelyikober, Hadamard, and the Riesz fractional derivative 

(see, for example, Srivastava and Saxena [1] and Kaur [2]).   

In recent decades, many researchers have been devoted to its applications in science and engineering. 

Fractional calculus has been recognized as a practical modeling approach in fields such as electrical 

networks, electrochemistry, and viscoelastic deformation, solving linear, nonlinear partial fractional 

differential equations (see Farid et al. [3]). According to Ali et al. [4], Newtonian and non-Newtonian fluids 

depend on their deformation. Newtonian fluids are fluids that obey Newton’s law of viscosities. In contrast, 
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non-Newtonian fluids do not follow Newton’s law of viscosities, having many applications in fields such as 

industries, medical treatment, and engineering worldwide. 

A micro-channel is defined in Djordjevic [5] as a flow channel with a hydraulic diameter of less than 1 mm 

and characterized by the rarefaction effect, which includes the Knudsen number 𝑘𝑛 = 𝜆/𝑙, where 𝜆 is the 

mean free path of the molecules and l is the characteristic length scale (height h of the channel or the radius 

an of the tube), then the Knudsen number is the quantity that helps to know which fluid dynamic formula to 

use to model a situation in both statistical mechanics or continuum mechanics for the continuum hypothesis 

to be valid, the Knudsen number must be less than 0.1 for pressure driven. Saqib et al. [6] explain that the 

temperature and velocity fields can be reduced for any value of α between the interval 0 < 𝛼 < 1 with 

memory and heredity profile, which are more generally flexible and reliable, in the presence of variation in 

the thermal boundary layer when increasing volume fraction of carbon nanotubes (CNTs) the temperature 

profile increases and decreases with increases of fractional order α in both cases.  

Ellahia et al. [7] change more than one parameter in the channel and find that the fluid velocity decreases as 

𝛽 increases the fixed value of the channel length 𝐿. In the same paper, they also found that for a fixed value 

of 𝛽 and growing 𝐿, the velocity also increases. Farooq et al. [8] studied the generalized Couette flow by 

varying the various parameters of temperature distribution and velocity, where it was observed that as the 

fluid moved from a fixed plate to a movable plate, the velocity and temperature increased. Arif et al. [9] open 

channel for Couple Stress Fluid (CSF) using integral transform (Laplace and Fourier) for the comparative 

analysis of Caputo (C), Caputo-Fabrizio (CF), Atangana Baleanu (AB), and classical CSF where it is 

observed the velocity of the CSF of  C, CF has less influence of fluid dynamics than the velocity of the CSF 

concerning AB, which clearly shows that AB fractional derivatives has a better memory effect than C, CF 

and increasing the constant pressure gradient of CSF improves the velocity. Maitia et al. [10] discovered the 

impact of the Caputo-Fabrizio derivative of the fractional order model on blood flow, where they found that 

increasing the value of the fractional parameter value decreased velocity and temperature when memory 

counters average speed of blood flow medium effect to drive faster. The velocity profile improves as the 

stress jump coefficient increases. When the stress jump coefficient 𝛽 is close to zero, non-Newtonian 

characteristics become more effective, and 𝛽 approaches infinity, the model becomes a Newtonian when 

viscosity increases. Blood flow decreases with a decrease in 𝛽. In the same paper, they also find that the 

shear stress increases in the wall due to chemical reactions.  

The governing equation for this present study is in fractional order, focusing on pressure-driven flow through 

a horizontal channel with many applications in applied science and engineering, such as biological research, 

geophysical engineering, DNA sequencing for drug delivery, and micro-electro-mechanical systems 

(MECSs). In the presence of pressure gradient and upper plate motion of the boundary layer (generalized 

Couette flow), the steady and unsteady flow has been studied related to skin friction on the pressure gradient 

and dependence on the interface velocity (see Kaurangini and Jha [11]). 

2. Analytical Solution 

The governing equations [12] are derived from the classical equations and modified by replacing the 

ordinary time derivatives with the fractional calculus operators. This generalization allows us to define non-

integer order integrals or derivatives precisely. Figure 1 manifests the fluid flow in the microchannel is 

induced by pressure-driven flow.  
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Figure 1. Schematic diagram of pressure-driven flow 

The governing equation [12] for the flow is as follows: 

𝐷𝑡
𝛼𝑢(𝑦, 𝑡) =  𝛾

𝜕2𝑢(𝑦, 𝑡)

𝜕𝑦2
+ 𝑝 (2.1) 

with initial and boundary conditions and 𝐷𝑡
𝛼𝑢(𝑦, 𝑡) is the Caputo fractional derivative, 

𝑡 ≤ 0: 𝑢 = 0, for all 𝑦 (2.2) 

and  

𝑡 > 0: 𝑢(𝑦, 𝑡) =

{
 

 +𝛽𝑣𝑘𝑛
𝑑𝑢

𝑑𝑦
, 𝑦 = 0

−𝛽𝑣𝑘𝑛
𝑑𝑢

𝑑𝑦
, 𝑦 = 𝐻

 (2.3) 

with the analysis technique mentioned above, we have the following solution approach: 

Taking the Laplace transform of both sides of (2.1) together with (2.2), we have 

𝑑2𝑈(𝑦, 𝑠)

𝑑𝑦2
−
𝑠𝛼𝑈(𝑦, 𝑠)

𝛾
= −

𝑝

𝛾𝑠
 (2.4) 

Solving (2.4) by the method of undetermined coefficient to obtain the general solution, 

𝑈(𝑦, 𝑠) = 𝑐1 cosh𝑘1𝑦 + 𝑐2 sinh𝑘1𝑦 + 𝑘2 (2.5) 

Similarly, we apply the Laplace transform to (2.3), the boundary conditions become 

1

𝑠2
> 0:𝑈(𝑦, 𝑠) =

{
 

 +𝛽𝑣𝑘𝑛
𝑑

𝑑𝑦
𝑈(𝑦, 𝑠), 𝑦 = 0

−𝛽𝑣𝑘𝑛
𝑑

𝑑𝑦
𝑈(𝑦, 𝑠), 𝑦 = 𝐻

 (2.6) 

Using (2.5) on (2.6), we obtained the following solutions:  

𝑈(𝑦, 𝑠) = 𝑘7 cosh𝑘1𝑦 + 𝑘6 sinh𝑘1𝑦 + 𝑘2 (2.7) 

where 
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{
 
 
 
 
 

 
 
 
 
 

𝑘1 = (
𝑠𝛼

𝛾
)

1

2

𝑘2 =
𝑃

𝑠𝛼+1

𝑘3 = cosh𝑘1𝐻 + 𝛽𝑣𝑘𝑛𝑘1 sinh𝑘1𝐻  
𝑘4 = sinh𝑘1𝐻 + 𝛽𝑣𝑘𝑛𝑘1 cosh𝑘1𝐻

𝑘5 = 𝛽𝑣𝑘𝑛𝑘1𝑘3 + 𝑘4 

𝑘6 =
𝑘2(𝑘3 − 1)

𝑘5
𝑘7 = 𝛽𝑣𝑘𝑛𝑘1𝑘6 − 𝑘2

 (2.8) 

3. Skin Friction for Pressure Driven Flow 

From (2.7), the skin frictions at the wall of the channel are obtained 

𝜏̂0 =
𝑑𝑈(𝑦, 𝑠)

𝑑𝑦
|
𝑦=0

= (𝑘1𝑘7 sinh𝑘1𝑦 + 𝑘1𝑘6 cosh𝑘1𝑦)|𝑦=0 = 𝐾1𝐾6 (3.1) 

𝜏̂1 =
𝑑𝑈(𝑦, 𝑠)

𝑑𝑦
|
𝑦=1

= (𝑘1𝑘7 sinh𝑘1𝑦 + 𝑘1𝑘6 cosh𝑘1𝑦)|𝑦=1 = 𝑘1𝑘7 sinh𝑘1 + 𝑘1𝑘6 cosh𝑘1 (3.2) 

4. Results and Discussions 

4.1.  Numerical Results 

This was done to simulate numerical solutions for transient skin friction at different walls using the 

computational software MATLAB R2014a. We obtained the following results. 

Table 1. Transient skin frictions at the walls for different time 𝑡 and Knudsen number 𝑘𝑛 of Pressure driven flow 

 
𝛽𝑣 = 0.5, 𝑎 = 0.5 

𝑝 = 2, 𝛾 = 1, 𝑘𝑛 = 0.0 
 

𝛽𝑣 = 0.5, 𝑎 = 0.5 

𝑌 = 1, 𝑘𝑛 = 0.04 
 

𝛽𝑣 = 0.5, 𝑎 = 0.5, 𝑝 = 2 

𝑌 = 1, 𝑘𝑛 = 0.08 
 

t 𝜏0 𝜏1 𝜏0 𝜏1 𝜏0 𝜏1 

0.1 0.0140 −0.0140 0.0134 −0.0134 0.0129 −0.0129 

0.2 0.0310 −0.0310 0.0299 −0.0299 0.0289 −0.0289 

0.3 0.0487 −0.0487 0.0473 −0.0473 0.0460 −0.0460 

0.4 0.0670 −0.0670 0.0652 −0.0652 0.0636 −0.0636 

0.5 0.0856 −0.0856 0.0835 −0.0835 0.0815 −0.0815 

0.6 0.1044 −0.1044 0.1020 −0.1020 0.0998 −0.0998 

0.7 0.1234 −0.1234 0.1208 −0.1208 0.1183 −0.1183 

0.8 0.1425 −0.1425 0.1397 −0.1397 0.1370 −0.1370 

0.9 0.1618 −0.1618 0.1587 −0.1587 0.1558 −0.1558 

1.0 0.1812 −0.1812 0.1779 −0.1779 0.1747 −0.1747 
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4.2.  2D-Plots Presentation 

Figures 2-5 describe the velocity profiles for various parameters, such as fractional 𝛼, pressure 𝑝, Knudsen 

number 𝑘𝑛, and time 𝑡, caused by the pressure gradient. Figure 2 shows that the reduction of fractional order 

reduces the velocity of the fluid, which implies that the velocity can be slowed down by decreasing the 

fractional order. In addition, it shows the advantages of fractional derivatives over integer derivatives. Figure 

3 shows that the transient velocity increases with time, which implies that with a constant driving force, the 

velocity can increase as time goes on. Figure 4 shows that as the Knudsen number increased, the fluid 

velocity increased, indicating that enlarging the length scale allowed the mean free path to enlarge and the 

velocity to increase. Similarly, Figure 5 shows the velocity profiles for different Knudsen numbers 𝑘𝑛. 

Figure 6 depicts the variation of fractional order 𝛼 with velocity 𝑈, which that the velocity of the fluid 

decreases when the fractional order decreases with the interval of 0.3, and between 0.6 and 0.3, the velocity 

reduces unlike from 0.9 to 0.6, which clearly shows the effect of the fractional order. Figure 7 shows the 

variation of velocity 𝑈 with time 𝑡, which shows that increasing time makes velocity also increase and 

converge at both walls, which leads the velocity to decrease between 0.5 to 0.8, and as time goes on, the 

velocity will be steady. It should be noted that the fluid velocity slows down as the Knudsen number 

decreases. Table 1 shows that skin friction increases evenly on both walls but in opposite directions with 

increasing time and Knudsen number. 

 
Figure 2. Variation of fractional order 𝛼 against velocity 𝑈when the fluid flow as a result of pressure gradient 

 

Figure 3. Variation of time 𝑡 against velocity 𝑈 when the fluid flows as a result of pressure gradient 
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Figure 4. Variation of Knudsen number 𝑘𝑛 against velocity 𝑈 as a result of pressure gradient 

 

Figure 5. Variation of Knudsen number 𝑘𝑛 against velocity 𝑈 as a result of pressure gradient 

 

Figure 6. Variation of fractional order 𝛼 against velocity 𝑈 when the fluid flows as a result of pressure gradient 
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Figure 7. Variation of time 𝑡 against velocity 𝑈 when the fluid flows as a result of pressure gradient 

5. Conclusion 

In this paper, the effect of varying the governing parameters was considered to study the velocity profile 

induced by pressure-driven flow in the microchannel. The transient skin friction uniformly increases at both 

walls but in opposite directions. It has been discovered that the velocity of a fluid flow can be controlled by 

adjusting the fractional order (𝛼). The advantages of fractional derivatives over integer derivatives have been 

studied. It has been observed that the velocity can increase with a constant driven force as time goes on. 

Enlarging the length scale enlarged the mean free path and increased velocity. It can be seen that with a 

continuous decrease of the Knudsen number 𝑘𝑛, at 𝛽𝑣 = −0.5, the velocity increases but remains constant at 

𝛽𝑣 = 0.0 while at 𝛽𝑣 =  0.5, the velocity decreases. The results obtained from this study are significant for 

industries, as they contribute to a better comprehension of various applications such as oil reservoirs, nuclear 

reactors, groundwater flow, filtration, and geothermal systems. Furthermore, these findings present 

opportunities for further investigation through the inclusion of porous mediums, suction, and injection 

velocities. 

Abbreviations 

𝐷 fractional derivative 

𝛼 fractional order 

𝑡 time 

𝑢 velocity of fluid flow 

𝑦 dimensionless y coordinate 

𝑝 dimensionless pressure gradient 

𝑘𝑛 Knudsen number 

𝛽 stress jump coefficient 

𝜌 fluid density 

𝜆 molecular mean free path 

𝜐𝑓 kinematics viscosity of the fluid 

𝑦′ dimensional y-coordinate 

𝑢𝑓 dimensionless velocity in the clear fluid region 

𝑢𝑓
′  dimensional velocity in the clear fluid region 

𝑢𝑡 transient velocity 

𝛿𝑝′

𝛿𝑧′
 dimensional pressure gradient 

𝛽𝑣 dimensionless variable 
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1. Introduction 

Sequences and polynomials have a wide range of applications in applied mathematics and physics. Bivariate 

polynomials are widely used in theoretical physics for modeling physical processes. Catalani [1-3] defined 

generalized bivariate polynomials from which, by specifying initial conditions, the bivariate Fibonacci and 

Lucas polynomials are obtained, and many interesting identities are derived. Belbachir and Bencherif [4] 

generalized to bivariate Fibonacci and Lucas polynomials properties obtained for Chebyshev polynomials. 

They proved that the coordinates of the bivariate polynomials over an appropriate basis are families of integers 

satisfying remarkable recurrence relations. Tuğlu et al. [5] presented generalized bivariate Fibonacci and Lucas 

p-polynomials, which are general forms of the Fibonacci, Lucas, Pell, Jacobsthal, Pell-Lucas, Jacobsthal-Lucas 

sequences, as well as Fibonacci, Lucas, Pell, Jacobsthal, Pell-Lucas, Jacobsthal-Lucas, bivariate Fibonacci and 

Lucas, first and second type of Chebyshev polynomials, and many others. Halıcı and Akyüz [6] derived some 

identities and some sum formulas for the bivariate Pell polynomials using different matrices. Saba and 

Boussayoud [7] introduced a symmetric function to derive a new generating function of bivariate Pell Lucas 

polynomials, also derived new symmetric functions, and gave some interesting properties. This study defines 

the identities of bivariate Pell and bivariate Pell-Lucas polynomials. 

2. Preliminaries 

For 𝑛 ≥ 2, the bivariate Pell polynomials sequence [6] is defined by 

𝑃𝑛(𝑥, 𝑦) = 2𝑥𝑦𝑃𝑛−1(𝑥, 𝑦) + 𝑦𝑃𝑛−2(𝑥, 𝑦) (2.1) 
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Therefore, the first few bivariate Pell polynomials are 

{𝑃𝑛(𝑥, 𝑦)} = {0,1,2𝑥𝑦, 4𝑥
2𝑦2 + 𝑦, 8𝑥3𝑦3 + 4𝑥𝑦2, 16𝑥4𝑦4 + 12𝑥2𝑦3 + 𝑦2,⋯ } 

Binet’s formula, 

𝑃𝑛(𝑥, 𝑦) =
ℓ1
𝑛 − ℓ2

𝑛

ℓ1 − ℓ2
  

Generating function, 

𝑃𝑛(𝑥, 𝑦) =
𝑡

(1 − 2𝑥𝑦𝑡 − 𝑦𝑡2)
 

For 𝑛 ≥ 2, the bivariate Pell-Lucas polynomials sequence [6] is defined by 

𝑄𝑛(𝑥, 𝑦) = 2𝑥𝑦𝑄𝑛−1(𝑥, 𝑦) + 𝑦𝑄𝑛−2(𝑥, 𝑦) (2.2) 

Therefore, the first few bivariate Pell-Lucas polynomials are 

{𝑄𝑛(𝑥, 𝑦)} = {2,2𝑥𝑦, 4𝑥
2𝑦2 + 2𝑦, 8𝑥3𝑦3 + 6𝑥𝑦2, 16𝑥4𝑦4 + 16𝑥2𝑦3 + 2𝑦2,⋯ } 

Binet’s formula, 

𝑄𝑛(𝑥, 𝑦) = ℓ1
𝑛 + ℓ2

𝑛 

Generating function, 

𝑄𝑛(𝑥, 𝑦) =
2 + 2𝑥𝑦𝑡(𝑥 − 1)

(1 − 2𝑥𝑦𝑡 − 𝑦𝑡2)
 

The characteristic equation of recurrence relations (2.1) and (2.2) is 

𝑡2 − 2𝑥𝑦𝑡 − 𝑦 = 0 

where 𝑥 ≠ 0, 𝑦 ≠ 0, and 𝑥2𝑦2 + 𝑦 ≠ 0. This equation has two real roots: ℓ1 = 𝑥𝑦 + √𝑥
2𝑦2 + 𝑦 and ℓ2 =

𝑥𝑦 − √𝑥2𝑦2 + 𝑦. Note that ℓ1 + ℓ2 = 2𝑥𝑦, ℓ1ℓ2 = −𝑦, and ℓ1 − ℓ2 = √𝑥
2𝑦2 + 𝑦. Moreover, 𝑃−𝑛(𝑥, 𝑦) =

−1

(−𝑦)𝑛
𝑃𝑛(𝑥, 𝑦) and 𝑄−𝑛(𝑥, 𝑦) =

1

(−𝑦)𝑛
𝑄𝑛(𝑥, 𝑦). The main objective of this study is to describe sums and 

connection formulas. Moreover, we introduce the special sums and prove them using Binet’s formula. 

3. Results and Discussions 

We first establish sums and relations for bivariate Pell and bivariate Pell-Lucas polynomials. The motivation 

of this work comes from the study of [8-11].  

Proposition 3.1. For 𝜗,𝜔 ∈ ℤ, we get 

∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏𝑦𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

𝑃𝑏(𝑥, 𝑦) = 𝑃2𝜗+2𝜔(𝑥, 𝑦) 

Proof. 

By Binet’s formula, 
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∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏𝑦𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

𝑃𝑏(𝑥, 𝑦) = ∑(
𝜗 + 𝜔

𝑏
) (2𝑥𝑦)𝑏𝑦𝜗+𝜔−𝑏

𝑐+𝑑

𝑏=0

(
ℓ1
𝑏 − ℓ2

𝑏

ℓ1 − ℓ2
) 

 = 
1

ℓ1 − ℓ2
∑ (

𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏𝑦𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

(ℓ1
𝑏 − ℓ2

𝑏) 

 = 
1

ℓ1 − ℓ2
∑ (

𝜗 +𝜔

𝑏
)

𝜗+𝜔

𝑏=0

{(2𝑥𝑦ℓ1)
𝑏 − (2𝑥𝑦ℓ2)

𝑏}𝑦𝜗+𝜔−𝑏 

 = 
1

ℓ1 − ℓ2
{(2𝑥𝑦ℓ1 + 𝑦)

𝜗+𝜔 − (2𝑥𝑦ℓ2 + 𝑦)
𝜗+𝜔} 

Since ℓ1 and ℓ2 are the roots of 𝑡2 − 2𝑥𝑦𝑡 − 𝑦 = 0,  

∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏𝑦𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

𝑃𝑏(𝑥, 𝑦) =
(ℓ1
2)𝜗+𝜔 − (ℓ2

2)𝜗+𝜔

ℓ1 − ℓ2
= 𝑃2𝜗+2𝜔(𝑥, 𝑦) 

□ 

Proposition 3.2. For 𝜗,𝜔 ∈ ℤ, we get 

∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏(−𝑦)𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

𝑃𝑏(𝑥, 𝑦) = ∑ (
𝜗 + 𝜔

𝑏
) (−2𝑦)𝑏

𝜗+𝜔

𝑏=0

𝑃2𝜗+2𝜔−2𝑏(𝑥, 𝑦) 

Proof. 

By Binet’s formula, 

∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏(−𝑦)𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

𝑃𝑏(𝑥, 𝑦) = ∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏(−𝑦)𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

(
ℓ1
𝑏 − ℓ2

𝑏

ℓ1 − ℓ2
) 

 = 
1

ℓ1 − ℓ2
∑ (

𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏(−𝑦)𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

(ℓ1
𝑏 − ℓ2

𝑏) 

 = 
1

ℓ1 − ℓ2
∑ (

𝜗 +𝜔

𝑏
) {(2𝑥𝑦ℓ1)

𝑏 − (2𝑥𝑦ℓ2)
𝑏}(−𝑦)𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

 

 = 
1

ℓ1 − ℓ2
{(2𝑥𝑦ℓ1 − 𝑦)

𝜗+𝜔 − (2𝑥𝑦ℓ2 − 𝑦)
𝜗+𝜔} 

Since ℓ1 and ℓ2 are the roots of 𝑡2 − 2𝑥𝑦𝑡 − 𝑦 = 0, 

2𝑥𝑦ℓ1 − 𝑦 = ℓ1
2 − 2𝑦 

and 

2𝑥𝑦ℓ2 − 𝑦 = ℓ2
2 − 2𝑦 

 

 



93 

 

Panwar / JAUIST / 4(2) (2023) 90-99 

Thus, 

∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏(−𝑦)𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

𝑃𝑏(𝑥, 𝑦) = 
(ℓ1
2 − 2𝑦)𝜗+𝜔 − (ℓ2

2 − 2𝑦)𝜗+𝜔

ℓ1 − ℓ2
 

 = ∑ (
𝜗 +𝜔

𝑏
) (−2𝑦)𝑏

𝜗+𝜔

𝑏=0

𝑃2𝜗+2𝜔−2𝑏(𝑥, 𝑦) 

□ 

Proposition 3.3. For 𝜗,𝜔 ∈ ℤ, we get 

∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝜗+𝜔−𝑏(−1)𝑏

𝜗+𝜔

𝑏=0

𝑄𝑏(𝑥, 𝑦) = 𝑄𝜗+𝜔(𝑥, 𝑦) 

Proof. 

By Binet’s formula, 

∑ (
𝜗 + 𝜔

𝑏
) (2𝑥𝑦)𝜗+𝜔−𝑏(−1)𝑏

𝜗+𝜔

𝑏=0

𝑄𝑏(𝑥, 𝑦) = ∑ (
𝜗 + 𝜔

𝑏
) (2𝑥𝑦)𝜗+𝜔−𝑏(−1)𝑏

𝜗+𝜔

𝑏=0

(ℓ1
𝑏 + ℓ2

𝑏) 

 = ∑ (
𝜗 + 𝜔

𝑏
) (2𝑥𝑦)𝜗+𝜔−𝑏(−1)𝑏

𝜗+𝜔

𝑏=0

(−ℓ1
𝑏) + ∑ (

𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝜗+𝜔−𝑏(−1)𝑏

𝜗+𝜔

𝑏=0

(−ℓ2
𝑏) 

 = (2𝑥𝑦 − ℓ1)
𝜗+𝜔 + (2𝑥𝑦 − ℓ2)

𝜗+𝜔 

 = (
−𝑦

ℓ1
)
𝜗+𝜔

+ (
−𝑦

ℓ2
)
𝜗+𝜔

 

 = (−𝑦)𝜗+𝜔
ℓ1
𝜗+𝜔 + ℓ2

𝜗+𝜔

(ℓ1ℓ2)
𝜗+𝜔

 

 = 𝑄𝜗+𝜔(𝑥, 𝑦) 

□ 

Proposition 3.4. For 𝜗,𝜔 ∈ ℤ, we get 

∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏𝑦𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

𝑄𝑏(𝑥, 𝑦) = 𝑄2𝜗+2𝜔(𝑥, 𝑦) 

Proof. 

By Binet’s formula, 

∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏𝑦𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

𝑄𝑏(𝑥, 𝑦) = ∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏𝑦𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

𝑄𝑏(𝑥, 𝑦)(ℓ1
𝑏 + ℓ2

𝑏) 

 = ∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦ℓ1)

𝑏𝑦𝜗+𝜔−𝑏
𝜗+𝜔

𝑏=0

+ ∑ (
𝜗 + 𝜔

𝑏
) (2𝑥𝑦ℓ2)

𝑏𝑦𝜗+𝜔−𝑏
𝜗+𝜔

𝑏=0

 

 = (2𝑥𝑦ℓ1 + 𝑦)
𝜗+𝜔 + (2𝑥𝑦ℓ2 + 𝑦)

𝜗+𝜔 
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Since ℓ1 and ℓ2 are the roots of 𝑡2 − 2𝑥𝑦𝑡 − 𝑦 = 0,  

∑ (
𝜗 +𝜔

𝑏
) (2𝑥𝑦)𝑏𝑦𝜗+𝜔−𝑏

𝜗+𝜔

𝑏=0

𝑄𝑏(𝑥, 𝑦) = (ℓ1
2)𝜗+𝜔 + (ℓ2

2)𝜗+𝜔 

 = 𝑄2𝜗+2𝜔(𝑥, 𝑦) 

□ 

Proposition 3.5. If 𝑃𝑏(𝑥, 𝑦) and 𝑄𝑏(𝑥, 𝑦) are Bivariate Pell and Bivariate Pell-Lucas polynomials, then for 

𝑏 ≥ 𝜗 + 𝜔, 

𝑃𝑏+𝜗+𝜔(𝑥, 𝑦) − (−𝑦)
𝜗+𝜔𝑃𝑏−𝜗−𝜔(𝑥, 𝑦) = 𝑃𝜗+𝜔(𝑥, 𝑦)𝑄𝑏(𝑥, 𝑦) 

Proof. 

By Binet’s formula, 

𝑃𝑏+𝜗+𝜔(𝑥, 𝑦) − (−𝑦)
𝜗+𝜔𝑃𝑏−𝜗−𝜔(𝑥, 𝑦) = 

ℓ1
𝑏+𝜗+𝜔 − ℓ2

𝑏+𝜗+𝜔

ℓ1 − ℓ2
− (−𝑦)𝜗+𝜔 (

ℓ1
𝑏−𝜗−𝜔 − ℓ2

𝑏−𝜗−𝜔

ℓ1 − ℓ2
) 

 = 
(ℓ1
𝑏+𝜗+𝜔 − ℓ2

𝑏+𝜗+𝜔) − (−𝑦)𝜗+𝜔(ℓ1
𝑏−𝜗−𝜔 − ℓ2

𝑏−𝜗−𝜔)

ℓ1 − ℓ2
 

 = 
(ℓ1
𝑏+𝜗+𝜔 − ℓ2

𝑏+𝜗+𝜔) − (ℓ1ℓ2)
𝜗+𝜔(ℓ1

𝑏−𝜗−𝜔 − ℓ2
𝑏−𝜗−𝜔)

ℓ1 − ℓ2
 

 = 
(ℓ1
𝑏+𝜗+𝜔 − ℓ2

𝑏+𝜗+𝜔) − (ℓ1
𝑏ℓ2

𝜗+𝜔 − ℓ1
𝜗+𝜔ℓ2

𝑏)

ℓ1 − ℓ2
 

 = (
ℓ1
𝜗+𝜔 − ℓ2

𝜗+𝜔

ℓ1 − ℓ2
) (ℓ1

𝑏 + ℓ2
𝑏) 

 = 𝑃𝜗+𝜔(𝑥, 𝑦)𝑄𝑏(𝑥, 𝑦) 

□ 

Secondly, we investigate sums for Bivariate Pell and Pell-Lucas polynomials with negative indices. 

Theorem 3.6. For 𝜗 ≥ 1 and 𝜔 any integer, we get 

∑(−𝑦)𝑖𝑃−𝑖𝜗−𝜔(𝑥, 𝑦)

𝑏

𝑖=0

=

{
 
 

 
 𝑃𝜗𝑏+𝜗+𝜔(𝑥, 𝑦) − (−𝑦)

𝜗𝑃𝜗𝑏+𝜔(𝑥, 𝑦) − (−𝑦)
𝜔𝑃𝜗−𝜔(𝑥, 𝑦) + 𝑃𝜔(𝑥, 𝑦)

(−1)𝜗 −𝑄𝜗(𝑥, 𝑦) + 1
, 𝜔 < 𝜗

𝑃𝜗𝑏+𝜗+𝜔(𝑥, 𝑦) − (−𝑦)
𝜗𝑃𝜗𝑏+𝜔(𝑥, 𝑦) + (−𝑦)

𝜔𝑃𝜗−𝜔(𝑥, 𝑦) + 𝑃𝜔(𝑥, 𝑦)

(−1)𝜗 −𝑄𝜗(𝑥, 𝑦) + 1
, otherwise

 

Proof. 

Since 

∑(−𝑦)𝑖𝑃−𝑖𝜗−𝜔(𝑥, 𝑦)

𝑏

𝑖=0

= −∑𝑃𝑖𝜗+𝜔(𝑥, 𝑦)

𝑏

𝑖=0
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By Binet’s formula, 

∑(−𝑦)𝑖𝑃−𝑖𝜗−𝜔(𝑥, 𝑦)

𝑏

𝑖=0

 = −∑
ℓ1
𝑖𝜗+𝜔 − ℓ2

𝑖𝜗+𝜔

ℓ1 − ℓ2

𝑏

𝑖=0

 

 = 
−1

ℓ1 − ℓ2
(ℓ1

𝜔∑ℓ1
𝜗𝑖

𝑏

𝑖=0

− ℓ2
𝜔∑ℓ2

𝜗𝑖

𝑏

𝑖=0

) 

 = 
−1

ℓ1 − ℓ2
[
ℓ1
𝜗𝑏+𝜗+𝜔 − ℓ1

𝜔

ℓ1
𝜗 − 1

−
ℓ2
𝜗𝑏+𝜗+𝜔 − ℓ2

𝜔

ℓ2
𝜗 − 1

] 

 = 
(ℓ1
𝜗𝑏+𝜗+𝜔 − ℓ2

𝜗𝑏+𝜗+𝜔) − (ℓ1ℓ2)
𝜗(ℓ1

𝜗𝑏+𝜔 − ℓ2
𝜗𝑏+𝜔) − (ℓ1

𝜗ℓ2
𝜔 − ℓ1

𝜔ℓ2
𝜗) + (ℓ1

𝜔 − ℓ2
𝜔)

(ℓ1 − ℓ2){(ℓ1ℓ2)𝜗 − (ℓ1
𝜗 + ℓ2

𝜗) + 1}
 

 = 

{
 
 

 
 𝑃𝜗𝑏+𝜗+𝜔(𝑥, 𝑦) − (−𝑦)

𝜗𝑃𝜗𝑏+𝜔(𝑥, 𝑦) − (−𝑦)
𝜔𝑃𝜗−𝜔(𝑥, 𝑦) + 𝑃𝜔(𝑥, 𝑦)

(−1)𝜗 − 𝑄𝜗(𝑥, 𝑦) + 1
, 𝜔 < 𝜗

𝑃𝜗𝑏+𝜗+𝜔(𝑥, 𝑦) − (−𝑦)
𝜗𝑃𝜗𝑏+𝜔(𝑥, 𝑦) + (−𝑦)

𝜔𝑃𝜗−𝜔(𝑥, 𝑦) + 𝑃𝜔(𝑥, 𝑦)

(−1)𝜗 − 𝑄𝜗(𝑥, 𝑦) + 1
, otherwise

 

□ 

Theorem 3.7. For 𝜗 ≥ 1 and 𝜔 any integer, we get 

∑(−𝑦)𝑖𝑄−𝑖𝜗−𝜔(𝑥, 𝑦)

𝑏

𝑖=0

=

{
 
 

 
 (−𝑦)

𝜗𝑄𝜗𝑏+𝜔(𝑥, 𝑦) − 𝑄𝜗𝑏+𝜗+𝜔(𝑥, 𝑦) − (−𝑦)
𝜔𝑄𝜗−𝜔(𝑥, 𝑦) + 𝑄𝜔(𝑥, 𝑦)

(−1)𝜗 − 𝑄𝜗(𝑥, 𝑦) + 1
, 𝜔 < 𝜗

(−𝑦)𝜗𝑄𝜗𝑏+𝜔(𝑥, 𝑦) − 𝑄𝜗𝑏+𝜗+𝜔(𝑥, 𝑦) + (−𝑦)
𝜔𝑄𝜗−𝜔(𝑥, 𝑦) + 𝑄𝜔(𝑥, 𝑦)

(−1)𝜗 − 𝑄𝜗(𝑥, 𝑦) + 1
, otherwise

 

Proof. 

Since 

∑(−𝑦)𝑖𝑄−𝑖𝜗−𝜔(𝑥, 𝑦)

𝑏

𝑖=0

=∑𝑄𝑖𝜗+𝜔(𝑥, 𝑦)

𝑏

𝑖=0

 

By Binet’s formula, 

∑(−𝑦)𝑖𝑄−𝑖𝜗−𝜔(𝑥, 𝑦)

𝑏

𝑖=0

 = ∑(ℓ1
𝑖𝜗+𝜔 + ℓ2

𝑖𝜗+𝜔)

𝑏

𝑖=0

 

 = ℓ1
𝜔∑ℓ1

𝜗𝑖

𝑏

𝑖=0

+ ℓ2
𝜔∑ℓ2

𝜗𝑖

𝑏

𝑖=0

 

 = 
ℓ1
𝜗𝑏+𝜗+𝜔 − ℓ1

𝜔

ℓ1
𝜗 − 1

+
ℓ2
𝜗𝑏+𝜗+𝜔 − ℓ2

𝜔

ℓ2
𝜗 − 1

 

 = 
(ℓ1ℓ2)

𝜗(ℓ1
𝜗𝑏+𝜔 + ℓ2

𝜗𝑏+𝜔) − (ℓ1
𝜗𝑏+𝜗+𝜔 + ℓ2

𝜗𝑏+𝜗+𝜔) − (ℓ1
𝜗ℓ2

𝜔 + ℓ1
𝜔ℓ2

𝜗) + (ℓ1
𝜔 + ℓ2

𝜔)

(ℓ1 − ℓ2){(ℓ1ℓ2)𝜗 − (ℓ1
𝜗 + ℓ2

𝜗) + 1}
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 = 

{
 
 

 
 (−𝑦)

𝜗𝑄𝜗𝑏+𝜔(𝑥, 𝑦) − 𝑄𝜗𝑏+𝜗+𝜔(𝑥, 𝑦) − (−𝑦)
𝜔𝑄𝜗−𝜔(𝑥, 𝑦) + 𝑄𝜔(𝑥, 𝑦)

(−1)𝜗 − 𝑄𝜗(𝑥, 𝑦) + 1
, 𝜔 < 𝜗

(−𝑦)𝜗𝑄𝜗𝑏+𝜔(𝑥, 𝑦) − 𝑄𝜗𝑏+𝜗+𝜔(𝑥, 𝑦) + (−𝑦)
𝜔𝑄𝜗−𝜔(𝑥, 𝑦) + 𝑄𝜔(𝑥, 𝑦)

(−1)𝜗 − 𝑄𝜗(𝑥, 𝑦) + 1
, otherwise

 

□ 

Thirdly, we establish some identities for bivariate Pell and bivariate Pell-Lucas polynomials. 

Theorem 3.8. For 𝜗,𝜔 ∈ ℤ, we get 

∑ 𝑃𝑏(𝑥, 𝑦)𝑡
−𝑏

𝜗+𝜔

𝑏=0

=
1

𝑡𝜗+𝜔(𝑡2 − 2𝑥𝑦𝑡 − 𝑦)
{𝑡𝜗+𝜔+1 − 𝑡𝑃𝜗+𝜔+1(𝑥, 𝑦) − 𝑦𝑃𝜗+𝜔(𝑥, 𝑦)} 

Proof. 

By Binet’s formula, 

∑ 𝑃𝑏(𝑥, 𝑦)𝑡
−𝑏

𝜗+𝜔

𝑏=0

 = ∑ (
ℓ1
𝑏 − ℓ2

𝑏

ℓ1 − ℓ2
) 𝑡−𝑏

𝜗+𝜔

𝑏=0

 

 = 
1

ℓ1 − ℓ2
∑ {(

ℓ1
𝑡
)
𝑏

− (
ℓ2
𝑡
)
𝑏

}

𝜗+𝜔

𝑏=0

 

 = 
1

ℓ1 − ℓ2
{
1 − (

ℓ1
𝑡 )

𝜗+𝜔+1

1 −
ℓ1
𝑡

−
1 − (

ℓ2
𝑡 )

𝜗+𝜔+1

1 −
ℓ2
𝑡

} 

 = 
1

(ℓ1 − ℓ2)𝑡
𝜗+𝜔

(
𝑡𝜗+𝜔+1 − ℓ1

𝜗+𝜔+1

𝑡 − ℓ1
−
𝑡𝜗+𝜔+1 − ℓ2

𝜗+𝜔+1

𝑡 − ℓ2
) 

 = 
1

(ℓ1 − ℓ2)𝑡
𝜗+𝜔

{
𝑡𝜗+𝜔+1(ℓ1 − ℓ2) − 𝑡(ℓ1

𝜗+𝜔+1 − ℓ2
𝑐+𝑑+1) − 𝑦(ℓ1

𝜗+𝜔 − ℓ2
𝜗+𝜔)

(𝑡 − ℓ1)(𝑡 − ℓ2)
} 

 = 
1

𝑡𝜗+𝜔(𝑡2 − 2𝑥𝑦𝑡 − 𝑦)
{𝑡𝜗+𝜔+1 − 𝑡𝑃𝜗+𝜔+1(𝑥, 𝑦) − 𝑦𝑃𝜗+𝜔(𝑥, 𝑦)} 

□ 

Theorem 3.9. For 𝜗,𝜔 ∈ ℤ, we get 

∑ 𝑄𝑏(𝑥, 𝑦)𝑡
−𝑏

𝜗+𝜔

𝑏=0

=
2𝑡2 − 𝑥𝑡

(𝑡2 − 2𝑥𝑦𝑡 − 𝑦)
−

1

𝑡𝜗+𝜔(𝑡2 − 2𝑥𝑦𝑡 − 𝑦)
{𝑡𝑄𝜗+𝜔+1(𝑥, 𝑦) + 𝑦𝑄𝜗+𝜔(𝑥, 𝑦)} 

Proof. 

By Binet’s formula, 

∑ 𝑄𝑏(𝑥, 𝑦)𝑡
−𝑏

𝜗+𝜔

𝑏=0

 = ∑(ℓ1
𝑏 + ℓ2

𝑏)𝑡−𝑏
𝜗+𝜔

𝑏=0
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 = ∑ {(
ℓ1
𝑡
)
𝑏

+ (
ℓ2
𝑡
)
𝑏

}

𝜗+𝜔

𝑏=0

 

 = 
1 − (

ℓ1
𝑡
)
𝜗+𝜔+1

1 −
ℓ1
𝑡

+
1 − (

ℓ2
𝑡
)
𝜗+𝜔+1

1 −
ℓ2
𝑡

 

 = 
1

𝑡𝜗+𝜔
(
𝑡𝜗+𝜔+1 − ℓ1

𝜗+𝜔+1

𝑡 − ℓ1
+
𝑡𝜗+𝜔+1 − ℓ2

𝜗+𝜔+1

𝑡 − ℓ2
) 

 = 
2𝑡𝜗+𝜔+2 − 𝑡(ℓ1

𝜗+𝜔+1 + ℓ2
𝜗+𝜔+1) − 𝑡𝜗+𝜔+1(ℓ1 + ℓ2) + ℓ1ℓ2(ℓ1

𝜗+𝜔 + ℓ2
𝜗+𝜔)

𝑡𝜗+𝜔(𝑡 − ℓ1)(𝑡 − ℓ2)
 

 = 
2𝑡2 − 𝑥𝑡

(𝑡2 − 2𝑥𝑦𝑡 − 𝑦)
−

1

𝑡𝜗+𝜔(𝑡2 − 2𝑥𝑦𝑡 − 𝑦)
{𝑡𝑄𝜗+𝜔+1(𝑥, 𝑦) + 𝑦𝑄𝜗+𝜔(𝑥, 𝑦)} 

□ 

Fourthly, we define identities involving common factors of bivariate Pell and Pell-Lucas polynomials. 

Theorem 3.10. If 𝑃𝑏(𝑥, 𝑦) and 𝑄𝑏(𝑥, 𝑦) are Bivariate Pell and Pell-Lucas polynomials, then holds for every 𝑏 

and 𝑠, 

i. 𝑃2𝑏+𝑠(𝑥, 𝑦)𝑄2𝑏+1(𝑥, 𝑦) = 𝑃4𝑏+𝑠+1(𝑥, 𝑦) + (−𝑦)
2𝑏+1𝑃𝑠−1(𝑥, 𝑦) 

ii. 𝑃2𝑏+𝑠(𝑥, 𝑦)𝑄2𝑏+2(𝑥, 𝑦) = 𝑃4𝑏+𝑠+2(𝑥, 𝑦) + 𝑦
2𝑏+2𝑃𝑠−2(𝑥, 𝑦) 

iii. 𝑃2𝑏+𝑠(𝑥, 𝑦)𝑄2𝑏(𝑥, 𝑦) = 𝑃4𝑏+𝑠(𝑥, 𝑦) + 𝑦
2𝑏𝑃𝑠(𝑥, 𝑦) 

iv. 𝑃2𝑏−𝑠(𝑥, 𝑦)𝑄2𝑏+1(𝑥, 𝑦) = 𝑃4𝑏−𝑠+1(𝑥, 𝑦) + (−𝑦)
2𝑏+1𝑃−𝑠−1(𝑥, 𝑦) 

v. 𝑃2𝑏−𝑠(𝑥, 𝑦)𝑄2𝑏−1(𝑥, 𝑦) = 𝑃4𝑏−𝑠−1(𝑥, 𝑦) + (−𝑦)
2𝑏−1𝑃1−𝑠(𝑥, 𝑦) 

vi. 𝑃2𝑏−𝑠(𝑥, 𝑦)𝑄2𝑏(𝑥, 𝑦) = 𝑃4𝑏−𝑠(𝑥, 𝑦) + (−𝑦)
2𝑏𝑃−𝑠(𝑥, 𝑦) 

vii. 𝑃2𝑏(𝑥, 𝑦)𝑄2𝑏+𝑠(𝑥, 𝑦) = 𝑃4𝑏−𝑠(𝑥, 𝑦) − (−𝑦)
2𝑏𝑃𝑠(𝑥, 𝑦) 

viii. (𝑥2𝑦2 + 𝑦)𝑃2𝑏(𝑥, 𝑦)𝑄2𝑏+𝑠(𝑥, 𝑦) = 𝑄4𝑏+𝑠(𝑥, 𝑦) − (−𝑦)
2𝑏𝑄𝑠(𝑥, 𝑦) 

ix. 𝑄2𝑏(𝑥, 𝑦)𝑄2𝑏+𝑠(𝑥, 𝑦) = 𝑄4𝑏+𝑠(𝑥, 𝑦) + (−𝑦)
2𝑏𝑄𝑠(𝑥, 𝑦) 

Proof.  

Using Binet’s formula of Bivariate Pell and Pell-Lucas polynomials and Principle of Mathematical 

Induction (PMI) on 𝑏 and 𝑠, the proof is clear. □ 

Finally, we present two cross two matrix for bivariate Pell and Pell-Lucas polynomials by 𝛣 = [
2𝑥𝑦 1
𝑦 0

]. 

Then, we can write, 𝛣𝑛 = [
𝑃𝑛+1(𝑥, 𝑦) 𝑃𝑛(𝑥, 𝑦)
𝑦𝑃𝑛(𝑥, 𝑦) 𝑦𝑃𝑛−1(𝑥, 𝑦)

] and we get 𝑑𝑒𝑡 (𝛣𝑛) = (−1)𝑛(𝑦𝑛) (Cassini’s identity). 

Many authors introduce and present matrices properties and identities of bivariate polynomials [1,2,4]. 

Theorem 3.11. Let 𝑏 ∈ ℕ. Then, 

[
𝑃𝑏+1(𝑥, 𝑦)
𝑦𝑃𝑏(𝑥, 𝑦)

] = 𝛣 [
𝑃𝑏(𝑥, 𝑦)

𝑦𝑃𝑏−1(𝑥, 𝑦)
] 
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Proof. 

Let 𝑏 ∈ ℕ. For 𝑏 = 1, 

[
𝑃2(𝑥, 𝑦)
𝑦𝑃1(𝑥, 𝑦)

] = 𝛣 [
𝑃1(𝑥, 𝑦)

𝑦𝑃0(𝑥, 𝑦)
] = 𝛣 [

1
0
] 

The identity is valid for 𝑏 = 1.  

For the mathematical induction on 𝑏, suppose that the identity is true for 𝑏. Thus,   

[
𝑃𝑏+2(𝑥, 𝑦)
𝑦𝑃𝑏+1(𝑥, 𝑦)

] = [
2𝑥𝑦𝑃𝑏+1(𝑥, 𝑦) + 𝑦𝑃𝑏(𝑥, 𝑦)

𝑦𝑃𝑏+1(𝑥, 𝑦)
] 

 = [
2𝑥𝑦 1
𝑦 0

] [
𝑃𝑏+1(𝑥, 𝑦)
𝑦𝑃𝑏(𝑥, 𝑦)

] 

 = [
2𝑥𝑦 1
𝑦 0

] [
2𝑥𝑦 1
𝑦 0

] [
𝑃𝑏(𝑥, 𝑦)

𝑦𝑃𝑏−1(𝑥, 𝑦)
] 

 = [
2𝑥𝑦 1
𝑦 0

] [
2𝑥𝑦𝑃𝑏(𝑥, 𝑦) + 𝑦𝑃𝑏−1(𝑥, 𝑦)

𝑦𝑃𝑏(𝑥, 𝑦)
] 

 = [
2𝑥𝑦 1
𝑦 0

] [
𝑃𝑛+1(𝑥, 𝑦)
𝑦𝑃𝑛(𝑥, 𝑦)

] 

 = 𝛣 [
𝑃𝑏+1(𝑥, 𝑦)

𝑦𝑃𝑏(𝑥, 𝑦)
] 

□ 

Theorem 3.12. Let 𝑏 ∈ ℕ. Then, 

[
𝑄𝑏+1(𝑥, 𝑦)
𝑦𝑄𝑏(𝑥, 𝑦)

] = 𝛣 [
𝑄𝑏(𝑥, 𝑦)

𝑦𝑄𝑏−1(𝑥, 𝑦)
] 

Theorem 3.13. Let 𝑏 ∈ ℕ. Then, 

[
𝑃𝑏+1(𝑥, 𝑦)
𝑦𝑃𝑏(𝑥, 𝑦)

] = 𝛣𝑏 [
𝑃1(𝑥, 𝑦)
𝑦𝑃0(𝑥, 𝑦)

] 

Theorem 3.14. Let 𝑏 ∈ ℕ. Then, 

[
𝑄𝑏+1(𝑥, 𝑦)
𝑦𝑄𝑏(𝑥, 𝑦)

] = 𝛣𝑏 [
𝑄1(𝑥, 𝑦)
𝑦𝑄0(𝑥, 𝑦)

] 

4. Conclusion 

In this paper, we present sums of bivariate Pell and Pell-Lucas polynomials. Moreover, we describe sums with 

negative indices, some connection formulas, and two cross two matrix representation and give several 

interesting identities involving them. 
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Abstract − Nuray and Savaş proposed statistical convergence of fuzzy number sequences. Afterward, Tripathy and Baruah 
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1. Introduction 

Thus far, many studies, such as de la Vallée-Poussin, Cesàro, Riesz, and Nörlund convergence [1-3], have 

been conducted on sequences of fuzzy numbers [4,5]. New convergence types for nonconvergent sequences 

of fuzzy numbers via Cesàro, Riesz, and Nörlund means have been proposed in these studies. Another useful 

type of convergence introduced for fuzzy number sequences is statistical convergence [6]. Afterward, 

statistical convergence and statistical Cesàro and 𝑝-Cesàro convergence [7-9] have been investigated. This 

study defines statistical Riesz and Nörlund convergence for fuzzy number sequences. 

Section 2 of the present study provides some basic definitions to be required in the next section. Section 3 

defines statistical Riesz and Nörlund convergence of fuzzy number sequences. Moreover, it shows that 

convergent sequences are statistical Riesz/Nörlund convergent, but the converse is not always correct. Finally, 

we discuss the need for further research. 

2. Preliminaries 

This section presents some basic notions to be needed for the following section. 

Definition 2.1. A fuzzy set 𝜇 over ℝ is called a fuzzy number if 

i. there exists an 𝑥 ∈ ℝ such that 𝜇(𝑥) = 1 

ii. 𝜇(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ min{𝜇(𝑥), 𝜇(𝑦)}, for all 𝑥, 𝑦 ∈ ℝ and for all 𝜆 ∈ [0,1] 

iii. for all 𝜀 > 0, there exists a 𝛿(𝜀) > 0 such that |𝑥 − 𝑎| < 𝛿 ⇒ 𝜇(𝑥) − 𝜇(𝑎) < 𝜀 

iv. the closure of  {𝑥 ∈ ℝ: 𝜇(𝑥) > 0}, denoted by supp(𝜇), in the usual topology of ℝ is compact 
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Throughout this paper, the set of all the fuzzy numbers over ℝ is denoted by 𝐹𝑁(ℝ). 

Definition 2.2. The 𝛼-level set [𝜇]𝛼 of 𝜇 ∈ 𝐹𝑁(ℝ) is defined by 

[𝜇]𝛼: = {
{𝑥 ∈ ℝ:𝜇(𝑥) ≥ 𝛼}, 0 < 𝛼 ≤ 1

supp(𝜇), 𝛼 = 0
 

Proposition 2.3. Let 𝜇 ∈ 𝐹𝑁(ℝ). Then, the set [𝜇]𝛼, denoted by [𝜇−(𝛼), 𝜇+(𝛼)], is a closed, bounded, and 

non-empty interval for all 𝛼 ∈ [0,1]. 

Proposition 2.4. The function 𝐷 defined by, for all 𝜇, 𝜈 ∈ 𝐹𝑁(ℝ), 

𝐷(𝜇, 𝜈) ≔ sup
𝛼∈[0,1]

max{|𝜇−(𝛼) − 𝜈−(𝛼)|, |𝜇+(𝛼) − 𝜈+(𝛼)|} 

is a metric on 𝐹𝑁(ℝ), and (𝐹𝑁(ℝ),𝐷) is a complete metric space. 

Proposition 2.5. Let 𝜇, 𝜈, 𝜂, 𝜔 ∈ 𝐹𝑁(ℝ) and 𝜆 ∈ ℝ. Then, 

i.  𝐷(𝜆𝜇, 𝜆𝜈) = |𝜆|𝐷(𝜇, 𝜈) 

ii.  𝐷(𝜇 + 𝜈, 𝜂 + 𝜈) = 𝐷(𝜇, 𝜂) 

iii.  𝐷(𝜇 + 𝜈, 𝜂 + 𝜔) ≤ 𝐷(𝜇, 𝜂) + 𝐷(𝜈, 𝜔) 

Definition 2.6. A sequence (𝑢𝑘) of fuzzy numbers is a function 𝑢 from ℕ to 𝐹𝑁(ℝ). The fuzzy number 𝑢𝑘 

denotes the value of the function at 𝑘 ∈ ℕ and is called the 𝑘𝑡ℎ term of the sequence. 

Across this study, the set of all the sequences of fuzzy numbers is denoted by 𝑤(𝐹). 

Definition 2.7. A sequence (𝑢𝑘) ∈ 𝑤(𝐹) is called convergent to 𝑢 ∈ 𝐹𝑁(ℝ) if, for all 𝜀 > 0, there exists an 

𝑛0 = 𝑛0(𝜀) ∈ ℕ such that 𝐷(𝑢𝑘, 𝑢) < 𝜀, for all  𝑘 ≥ 𝑛0. 

Hereinafter, the set of all the convergent sequences of fuzzy numbers is denoted by 𝑐(𝐹). 

Definition 2.8. [3] Let (𝑢𝑘) ∈ 𝑤(𝐹), (𝑞𝑘) be a sequence of non-negative real numbers, not all zero and 𝑞1 >

0, and 𝑄𝑛 ≔ 𝑞1 + 𝑞2 +⋯+ 𝑞𝑛, for all 𝑛 ∈ ℕ. If lim
𝑛
𝑅𝑛(𝑞, 𝑢) = 𝑢0 ∈ 𝐹𝑁(ℝ), then (𝑢𝑘) is called Riesz-

convergent to fuzzy number 𝑢0 and denoted by 𝑅-lim
𝑘
𝑢𝑘 = 𝑢0 or 𝑢𝑘

𝑅
→ 𝑢0 where 

𝑅𝑛(𝑞, 𝑢) =
1

𝑄𝑛
∑

𝑛

𝑘=1

𝑞𝑘𝑢𝑘,    𝑛 ∈ ℕ 

Definition 2.9. [3] Let (𝑢𝑘) ∈ 𝑤(𝐹), (𝑞𝑘) be a sequence of non-negative real numbers, not all zero and 𝑞1 >

0, and 𝑄𝑛 ≔ 𝑞1 + 𝑞2 +⋯+ 𝑞𝑛, for all 𝑛 ∈ ℕ. If lim
𝑛
𝑁𝑛(𝑞, 𝑢) = 𝑢0 ∈ 𝐹𝑁(ℝ), then (𝑢𝑘) is called Nörlund-

convergent to fuzzy number 𝑢0 and denoted by 𝑁-lim
𝑘
𝑢𝑘 = 𝑢0 or 𝑢𝑘

𝑁
→ 𝑢0 where 

𝑁𝑛(𝑞, 𝑢) =
1

𝑄𝑛
∑

𝑛

𝑘=1

𝑞𝑛−𝑘+1𝑢𝑘 ,    𝑛 ∈ ℕ 

From now on, the set of all the Riesz and Nörlund convergent sequences of fuzzy numbers are denoted by 

𝑅𝑐(𝐹) and 𝑁𝑐(𝐹), respectively. 

Definition 2.10. The natural density of a set 𝐾 ⊆ ℕ is defined by 𝛿(𝐾) ≔ lim
𝑛

1

𝑛
|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐾}| where | . | 

denotes the cardinality of a set. 

Definition 2.11. [6] A sequence (𝑢𝑘) ∈ 𝑤(𝐹) is called statistical convergent (or briefly st-convergent) to 𝑢0 ∈

𝐹𝑁(ℝ) and denoted by st-lim
𝑘
𝑢𝑘 = 𝑢0 or 𝑢𝑘

𝑠𝑡
→ 𝑢0 if 
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for all 𝜀 > 0 and for all 𝑘 except for a set of natural density zero, 𝐷(𝑢𝑘 , 𝑢0) < 𝜀 

or 

for all 𝜀 > 0, 𝛿({𝑘 ≤ 𝑛 ∶ 𝐷(𝑢𝑘, 𝑢0) ≥ 𝜀}) = 0 

or 

there exists a subsequence (𝑢𝑛𝑘) such that lim
𝑘

𝑘

𝑛𝑘
= 1 and 𝑢𝑛𝑘 → 𝑢0 

Proposition 2.12. Let (𝑢𝑘) ∈ 𝑐(𝐹). Then, (𝑢𝑘) ∈ 𝑠𝑐(𝐹), (𝑢𝑘) ∈ 𝑅𝑐(𝐹), and (𝑢𝑘) ∈ 𝑁𝑐(𝐹). 

3. Statistical Riesz and Nörlund Convergence for Fuzzy Number Sequences 

This section proposes statistical Riesz and Nörlund convergence of sequences of fuzzy numbers and 

investigates their properties. 

Definition 3.1. Let (𝑢𝑘) ∈ 𝑤(𝐹) and (𝑢𝑛𝑘) be a Riesz convergent subsequence of (𝑢𝑘) to 𝑢0 ∈ 𝐹𝑁(ℝ) such 

that lim
𝑘

𝑘

𝑛𝑘
= 1. Then, (𝑢𝑘) is called statistical Riesz convergent (or briefly stR-convergent) to 𝑢0 and denoted 

by stR-lim
𝑘
𝑢𝑘 = 𝑢0 or 𝑢𝑘

𝑠𝑡𝑅
→ 𝑢0. In other words, 

stR-lim
𝑘
𝑢𝑘 = 𝑢0⇔ ∃(𝑢𝑛𝑘) ∋ R-lim

𝑛𝑘
𝑢𝑛𝑘 = 𝑢0 ∧ lim𝑘

𝑘

𝑛𝑘
= 1 

Throughout this study, the set of all the stR-convergent sequences of fuzzy numbers is denoted by 𝑠𝑡𝑅𝑐(𝐹). 

Definition 3.2. Let (𝑢𝑘) ∈ 𝑤(𝐹) and (𝑢𝑛𝑘) be a Nörlund convergent subsequence of (𝑢𝑘) to 𝑢0 ∈ 𝐹𝑁(ℝ) 

such that lim
𝑘

𝑘

𝑛𝑘
= 1. Then, (𝑢𝑘) is called statistical Nörlund convergent (or briefly stN-convergent) to 𝑢0 and 

denoted by stN-lim
𝑘
𝑢𝑘 = 𝑢0 or 𝑢𝑘

𝑠𝑡𝑁
→ 𝑢0. In other words, 

stN-lim
𝑘
𝑢𝑘 = 𝑢0⇔ ∃(𝑢𝑛𝑘) ∋ N-lim

𝑛𝑘
𝑢𝑛𝑘 = 𝑢0 ∧ lim𝑘

𝑘

𝑛𝑘
= 1 

Across this study, the set of all the stN-convergent sequences of fuzzy numbers is denoted by 𝑠𝑡𝑁𝑐(𝐹). 

Theorem 3.3. Let (𝑢𝑘) ∈ 𝑠𝑡𝑐(𝐹). Then, (𝑢𝑘) ∈ 𝑠𝑡𝑅𝑐(𝐹). 

Proof. 

Let 𝑢𝑘
𝑠𝑡
→ 𝑢0. Then, there exists a (𝑢𝑛𝑘) such that lim

𝑘

𝑘

𝑛𝑘
= 1 and 𝑢𝑛𝑘 → 𝑢0. From Proposition 2.12, 𝑢𝑛𝑘

𝑅
→ 𝑢0.  

◻ 

The converse of Theorem 3.3 is not always correct. 

Example 3.4.  Let (𝑤𝑘) ∈ 𝑤(ℝ) defined by 

𝑤𝑘(𝑥) = {
𝑣𝑘 , ∃𝑛 ∈ ℕ ∋ 𝑘 = 𝑛2

𝑢𝑘 , ∀𝑛 ∈ ℕ, 𝑘 ≠ 𝑛2
 

such that 

𝑢𝑘(𝑥) = {

𝑘−2+𝑥

𝑘
, 𝑥 ∈ [2 − 𝑘, 2]

𝑘+2−𝑥

𝑘
, 𝑥 ∈ (2,2 + 𝑘]

0, otherwise

       

and 
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𝑣𝑘(𝑥) = {
𝑥 − 𝑘, 𝑥 ∈ [𝑘, 𝑘 + 1]

𝑘 + 2 − 𝑥, 𝑥 ∈ (𝑘 + 1, 𝑘 + 2]
0, otherwise

 

Then, the 𝛼-level sets of 𝑢𝑘 and 𝑣𝑘, for all 𝑘 ∈ ℕ and for all 𝛼 ∈ [0,1], are as follows: 

[𝑢𝑘]𝛼 = [𝑘𝛼 − (𝑘 − 2), (𝑘 + 2) − 𝑘𝛼]     

and 

[𝑣𝑘]𝛼 = [𝛼 + 𝑘, 𝑘 + 2 − 𝛼] 

Therefore, (𝑤𝑘) is not convergent and also not statistical convergent because 

lim
𝑘
[𝑢𝑘]𝛼 = lim

𝑘
[2 − 𝑘(1 − 𝛼), 2 + 𝑘(1 − 𝛼)] = ∞ 

Consider a sequence of real numbers (𝑞𝑘) = (
𝑘

2𝑘
). Thus, 

stR-lim
𝑘
𝑤𝑘 =R-lim

𝑘
𝑢𝑘 = lim

𝑘
𝑅𝑘(𝑞, 𝑢) 

where 

𝑅𝑘(𝑞, 𝑢) =

{
 
 

 
 
2(2𝑘 − 1)(𝑥 + 1) − 𝑘(𝑘 + 𝑥 + 2)

6(2𝑘 − 1) − 𝑘(𝑘 + 4) 
, 𝑥 ∈ [

𝑘(𝑘 + 1)

2𝑘+1 − (𝑘 + 2)
− 1,2]

𝑘(−𝑘 + 𝑥 − 6) − 2(2𝑘 − 1)(𝑥 − 5)

6(2𝑘 − 1) − 𝑘(𝑘 + 4) 
, 𝑥 ∈ (2,

𝑘(𝑘 + 1)

(𝑘 + 2) − 2𝑘+1
+ 5]

0 otherwise

 

and its 𝛼-level sets, for all 𝛼 ∈ [0,1], 

[𝑅𝑘(𝑞, 𝑢)]𝛼 = [3𝛼 − 1 −
(𝛼 − 1)𝑘(𝑘 + 1)

2𝑘+1 − (𝑘 + 2)
, 5 − 3𝛼 +

(𝛼 − 1)𝑘(𝑘 + 1)

2𝑘+1 − (𝑘 + 2)
] 

because 

[𝑢1]𝛼 = [𝛼 + 1,3 − 𝛼] 

[𝑢2]𝛼 = [2𝛼, 4 − 2𝛼] 

[𝑢3]𝛼 = [3𝛼 − 1,5 − 3𝛼] 

[𝑢4]𝛼 = [4𝛼 − 2,6 − 4𝛼] 

[𝑢5]𝛼 = [5𝛼 − 3,7 − 5𝛼] 

[𝑢6]𝛼 = [6𝛼 − 4,8 − 6𝛼] 

⋮ 

[𝑢𝑘]𝛼 = [𝑘𝛼 − (𝑘 − 2), (𝑘 + 2) − 𝑘𝛼] 

and 

[𝑅1(𝑞, 𝑢)]𝛼 =
𝑞1𝑢1
𝑞1

= 𝑢1 = [𝛼 + 1,3 − 𝛼] 

[𝑅2(𝑞, 𝑢)]𝛼 =
𝑞1𝑢1 + 𝑞2𝑢2
𝑞1 + 𝑞2

= [
6𝛼 + 2

4
,
14 − 6𝛼

4
] 

[𝑅3(𝑞, 𝑢)]𝛼 =
𝑞1𝑢1 + 𝑞2𝑢2 + 𝑞3𝑢3
𝑞1 + 𝑞2 + 𝑞3

= [
21𝛼 + 1

11
,
43 − 21𝛼

11
] 
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[𝑅4(𝑞, 𝑢)]𝛼 =
𝑞1𝑢1 + 𝑞2𝑢2 + 𝑞3𝑢3 + 𝑞4𝑢4

𝑞1 + 𝑞2 + 𝑞3 + 𝑞4
= [
58𝛼 − 6

26
,
110 − 58𝛼

26
] 

[𝑅5(𝑞, 𝑢)]𝛼 =
𝑞1𝑢1 + 𝑞2𝑢2 + 𝑞3𝑢3 + 𝑞4𝑢4 + 𝑞5𝑢5

𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 + 𝑞5
= [
141𝛼 − 27

57
,
255 − 141𝛼

57
] 

[𝑅6(𝑞, 𝑢)]𝛼 =
𝑞1𝑢1 + 𝑞2𝑢2 + 𝑞3𝑢3 + 𝑞4𝑢4 + 𝑞5𝑢5 + 𝑞6𝑢6

𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 + 𝑞6
= [
318𝛼 − 78

120
,
558 − 318𝛼

120
] 

⋮ 

[𝑅𝑘(𝑞, 𝑢)]𝛼 = [
(3 ⋅ 2𝑘+1 − 𝑘2 − 4𝑘 − 6)𝛼 − (2𝑘+1 − 𝑘2 − 2𝑘 − 2)

2𝑘+1 − (𝑘 + 2)
,
5 ⋅ 2𝑘+1 − 𝑘2 − 6𝑘 − 10 − (3 ⋅ 2𝑘+1 − 𝑘2 − 4𝑘 − 6)𝛼

2𝑘+1 − (𝑘 + 2)
] 

 = [3𝛼 − 1 −
(𝛼 − 1)𝑘(𝑘 + 1)

2𝑘+1 − (𝑘 + 2)
, 5 − 3𝛼 +

(𝛼 − 1)𝑘(𝑘 + 1)

2𝑘+1 − (𝑘 + 2)
] 

Thus, 

lim
𝑘
[𝑅𝑘(𝑞, 𝑢)]𝛼 = lim

𝑘
[3𝛼 − 1 −

(𝛼 − 1)𝑘(𝑘 + 1)

2𝑘+1 − (𝑘 + 2)
, 5 − 3𝛼 +

(𝛼 − 1)𝑘(𝑘 + 1)

2𝑘+1 − (𝑘 + 2)
] 

 = [3𝛼 − 1,5 − 3𝛼] 

Hence, 

lim
𝑘
𝑅𝑘(𝑞, 𝑢) =

{
 
 

 
 
𝑥 + 1

3
, 𝑥 ∈ [−1,2]

5 − 𝑥

3
, 𝑥 ∈ (2,5]

0, otherwise

 

Therefore, 

Rst-lim
𝑘
𝑤𝑘 =

{
 
 

 
 
𝑥+1

3
, 𝑥 ∈ [−1,2]

5−𝑥

3
, 𝑥 ∈ (2,5]

0, otherwise

 

Consequently, although (𝑤𝑘) is not convergent and not statistical convergent, (𝑤𝑘) is statistical Riesz 

convergent. 

Corollary 3.5. Let (𝑢𝑘) ∈ 𝑐(𝐹). Then, (𝑢𝑘) ∈ 𝑠𝑡𝑅𝑐(𝐹). 

Theorem 3.6. Let (𝑢𝑘) ∈ 𝑠𝑐(𝐹). Then, (𝑢𝑘) ∈ 𝑠𝑡𝑁𝑐(𝐹). 

The proof is similar to the proof of Theorem 3.3. The converse of Theorem 3.6 is not always correct. 

Example 3.7.  Consider (𝑤𝑘) provided in Example 3.4 and (𝑞𝑘) = (2
𝑘). Thus, 

stN-lim
𝑘
𝑤𝑘 =N-lim

𝑘
𝑢𝑘 = lim

𝑘
𝑁𝑘(𝑞, 𝑢) 

where 
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𝑁𝑘(𝑞, 𝑢) =

{
 
 

 
 

(2𝑘 − 1)𝑥 − 𝑘

2𝑘+1 − (𝑘 + 2) 
, 𝑥 ∈ [

𝑘

2𝑘 − 1
, 2]

−(2𝑘 − 1)𝑥 + 𝑘

2𝑘+1 − 2 − 𝑘
+ 2, 𝑥 ∈ (2,4 −

𝑘

2𝑘 − 1
]

0 otherwise

 

and its 𝛼-level sets, for all 𝛼 ∈ [0,1], 

[𝑁𝑘(𝑞, 𝑢)]𝛼 = [2𝛼 +
𝑘(1 − 𝛼)

2𝑘 − 1
, 4 − 2𝛼 +

𝑘(𝛼 − 1)

2𝑘 − 1
] 

because 

[𝑢1]𝛼 = [𝛼 + 1,3 − 𝛼] 

[𝑢2]𝛼 = [2𝛼, 4 − 2𝛼] 

[𝑢3]𝛼 = [3𝛼 − 1,5 − 3𝛼] 

[𝑢4]𝛼 = [4𝛼 − 2,6 − 4𝛼] 

[𝑢5]𝛼 = [5𝛼 − 3,7 − 5𝛼] 

[𝑢6]𝛼 = [6𝛼 − 4,8 − 6𝛼] 

⋮ 

[𝑢𝑘]𝛼 = [𝑘𝛼 − (𝑘 − 2), (𝑘 + 2) − 𝑘𝛼] 

and 

[𝑁1(𝑞, 𝑢)]𝛼 =
𝑞1𝑢1
𝑞1

= 𝑢1 = [𝛼 + 1,3 − 𝛼] 

[𝑁2(𝑞, 𝑢)]𝛼 =
𝑞2𝑢1 + 𝑞1𝑢2
𝑞1 + 𝑞2

= [
4𝛼 + 2

3
,
10 − 4𝛼

3
] 

[𝑁3(𝑞, 𝑢)]𝛼 =
𝑞3𝑢1 + 𝑞2𝑢2 + 𝑞1𝑢3
𝑞1 + 𝑞2 + 𝑞3

= [
11𝛼 + 3

7
,
25 − 11𝛼

7
] 

[𝑁4(𝑞, 𝑢)]𝛼 =
𝑞4𝑢1 + 𝑞3𝑢2 + 𝑞2𝑢3 + 𝑞1𝑢4

𝑞1 + 𝑞2 + 𝑞3 + 𝑞4
= [
26𝛼 + 4

15
,
56 − 26𝛼

15
] 

[𝑁5(𝑞, 𝑢)]𝛼 =
𝑞5𝑢1 + 𝑞4𝑢2 + 𝑞3𝑢3 + 𝑞2𝑢4 + 𝑞1𝑢5

𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 + 𝑞5
= [
57𝛼 + 5

31
,
119 − 57𝛼

31
] 

[𝑁6(𝑞, 𝑢)]𝛼 =
𝑞6𝑢1 + 𝑞5𝑢2 + 𝑞4𝑢3 + 𝑞3𝑢4 + 𝑞2𝑢5 + 𝑞1𝑢6

𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 + 𝑞6
= [
120𝛼 + 6

63
,
246 − 120𝛼

63
] 

⋮ 

[𝑁𝑘(𝑞, 𝑢)]𝛼 = [
(2𝑘+1 − 2 − 𝑘)𝛼 + 𝑘

2𝑘 − 1
,
2𝑘+2 − 4 − 𝑘 − (2𝑘+1 − 2 − 𝑘)𝛼

2𝑘 − 1
] 

 = [2𝛼 +
𝑘(1 − 𝛼)

2𝑘 − 1
, 4 − 2𝛼 +

𝑘(𝛼 − 1)

2𝑘 − 1
] 

Thus, 

lim
𝑘
[𝑁𝑘(𝑞, 𝑢)]𝛼 = [2𝛼, 4 − 2𝛼] 
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Hence, 

lim
𝑘
𝑁𝑘(𝑞, 𝑢) =

{
 
 

 
 
𝑥

2
, 𝑥 ∈ [0,2]

4 − 𝑥

2
, 𝑥 ∈ (2,4]

0, otherwise

 

Therefore, 

stN-lim
𝑘
𝑤𝑘 =

{
 
 

 
 
𝑥

2
, 𝑥 ∈ [0,2]

4−𝑥

2
, 𝑥 ∈ (2,4]

0, otherwise

 

Consequently, although (𝑤𝑘) is not convergent and not statistical convergent, (𝑤𝑘) is statistical Nörlund 

convergent. 

Corollary 3.8. Let (𝑢𝑘) ∈ 𝑐(𝐹). Then, (𝑢𝑘) ∈ 𝑠𝑡𝑁𝑐(𝐹). 

4. Conclusion 

This paper proposed statistical Riesz and Nörlund convergence of sequences of fuzzy numbers. It then showed 

that if a sequence of fuzzy numbers is convergent, then it is statistical Riesz/Nörlund convergent, and the 

converse is not always correct by two examples. In the future, the Tauberian conditions for a statistical 

Riesz/Nörlund convergent sequence to be convergent/statistical convergent and Korovkin-type theorems can 

be studied.  
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Abstract − Polymer-based food packaging is widely used and causes serious environmental problems due to the chemical 

ingredients. Therefore, these packages should be replaced by biodegradable alternatives in order to prevent environmental pollution. 

Many biodegradable polymers are used in food packaging. Among them, chitosan is gaining attention since it is bio-sourced and 

biodegradable. In this study, the usability of chitosan films as physical and chemical tests investigated food packaging. In order to 

improve the packaging properties of the films, halloysite nanotube was used as filler with a concentration range of 1-4 wt.%. It was 

observed that the halloysite significantly increased the opacity, mechanical strength, water resistance, and antioxidant properties of 

the films.  

Keywords: Chitosan films, composite films, food packaging, halloysite nanotube  

Subject Classification (2020): 

1. Introduction  

The plastic-based environmental problems are increasing day by day in accordance with plastic consumption 

depending on the human population. Petrochemical-derived packaging materials, especially those that cannot 

be recycled after use, are known to remain in the soil and seas for a long time. It is also known that these are 

broken down into phthalates with sunlight and are harmful to the entire ecosystem. In addition, it has also been 

proven that chemicals in contact with food undergo plastic transfer to food under light and heat. Therefore, the 

use of bioplastics for food packaging will have a positive impact on both health and the environment [1-3]. 

However, it is known that the mechanical strength and water resistance of biopolymers are relatively low 

compared to the petrochemical-based packaging. For this reason, these deficiencies are tried to be overcome 

with strong fillers.  

Chitin is one of the most abundant biopolymers in the world. It is found in the exoskeletons of insects, 

arthropods such as crabs, shrimp, and the cell walls of fungi [4]. Chitosan is also biocompatible, completely 

degradable, soluble in water, and forms a colloidal solution. It can be used in hydrogel or film form [5]. It is 

seen as a suitable polymer for many fields of study due to its antimicrobial properties, metal binding ability, 

high mechanical strength, non-toxicity, and biodegradability.  

Halloysite nanotube (HNT) is a tubular natural clay with a large surface area. It is used as a nanofiller material 

in film formation and improves the mechanical properties of the film. Depending on the negatively charged 

surface of HNT, it enables the slow release of antimicrobial substances in its structure, allowing their effects 
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to last for a long time [6] It has been revealed that it has a potential to replace traditional films in recent years 

due to its long-term durability and food spoilage retarding properties. In the literature, limited studies have 

performed on use of HNT in chitosan [7]. In studies where it was used other than chitosan, it was observed 

that it increased many properties of films simultaneously. 

Salmos et al. [8] aimed to extend the shelf life of kiwi fruit by obtaining a biodegradable film by dispersing 

thymol-enriched halloysite nanotube structure in chitosan/polyvinyl alcohol gel. Mechanical properties, 

transparency, antimicrobial and antioxidant properties were investigated. It was reported that the HNT 

simultaneously increased both parameters. Risyon et al. [9] aimed to strengthen the low thermal resistance of 

biopolymers with nanostructure additives by producing polylactic acid/halloysite nanotube (HNT) films. When 

the mechanical, thermal, and barrier properties were examined, it was concluded that the optimum HNT doping 

was obtained as 3% by weight. The critical point in composite polymeric films is the homogeneous distribution 

of the filler through the films. Homogeneous distribution of filler improves the properties throughout the film. 

For this, it is necessary to determine the appropriate ratio. 

In this study, HNT doped chitosan films were prepared, and their usability in food packaging was investigated. 

The HNT ratio was kept between 1-5% by weight. The effect of HNT doping on film opacity, moisture content, 

swelling, mechanical strength, and antioxidant properties was investigated. 

2. Materials and Methods 

Medium molecular weight Chitosan powder was purchased from Aldrich Chemicals. The HNT nanoparticles 

were kindly supplied from Esan Eczacıbası, Türkiye. Acetic acid (analytic grade) was purchased from Merck 

Chemical.  

2.1. Film Preparation 

Films were prepared by solution casting method. The aqueous solution containing 1 wt.% chitosan was stirred 

at room temperature for 24 hours. The solution contains 2% acetic acid. After the homogeneous mixture was 

obtained. HNT particles were added with the weight concentration of 1-5% and stirred for three hours. The 

solution was degassed under vacuum and casted on a polymethyl methacrylate plate. After casting, the films 

were allowed to dry at room temperature for 2 days and peeled off gently. The films were named according to 

the concentration of HNT (CS for the pristine chitosan, CS-HNT1, CS-HNT2, CS-HNT3, CS-HNT4 for the 

filled chitosan films) 

2.2. Characterization 

FTIR analysis of the membranes was performed with The Agilent Cary 630 FTIR spectrometer. This test was 

performed to determine the structural moisture retention properties of membranes and to examine their 

chemical bond structures. The test was performed in the wavelength ranges of 650-4000 cm-1. 

The light transmittance of the prepared films is determined by opacity tests. For this test, the opacity of the 

films cut in certain sizes was examined by measuring the absorbance at 600 nm in UV/Vis spectrophotometer 

(Shimadzu-1280). The opacity was calculated as shown in (2.1) 

𝑂𝑝𝑎𝑐𝑖𝑡𝑦 =
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑓𝑖𝑙𝑚𝑠
 (2.1) 

The percentage of moisture trapping of the films in standard media was determined by moisture content tests. 

The films were dried at 105°C for 24 hours until to constant weight and measured gravimetrically (Mi). The 
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films were kept on a water bath without contact at room temperature and the percentage of weight gain (Wg) 

was calculated as moisture content as shown in (2.2). 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =
𝑊𝑔

𝑊𝑖
∗ 100 (2.2) 

The swelling test is used to determine the water resistance of films. To test the swelling properties of the films, 

each sample was dried in an oven at 65 °C for 12 hours before the test. The films were soaked in 25 mL 

deionized water for 12 hours and the values before (Wi) and after (Wf) water retention were recorded as shown 

in (2.3). 

𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝐷𝑒𝑔𝑟𝑒𝑒 =
𝑊𝑓 − 𝑊𝑖

𝑊𝑖
∗ 100 (2.3) 

The antioxidant properties of the added additives were determined by antioxidant activity test. According to 

this test, films weighing 0.1 gram were placed in 70% methanol and 2,2-diphenyl-1-picrylhydrazyl (DPPH) 

stable radical (10 ml 70% methanol, 0.2 mg DPPH) and kept in the dark for 90 minutes. When this radical 

reacts with the antioxidant, a change from violet to yellow is observed and the antioxidant activity is calculated 

by measuring the absorbance at 520 nm with UV-Vis Spectrophotometer [10]. 

The mechanical analysis of the films was analyzed in Ankarin brand mechanical analyzer according to ASTM 

D882 standard. The mechanical strengths were performed by measuring the mechanical strength (stress) and 

elongation (strain) from the force and elongation at break of the strips cut in 4*1 cm size. Experiments were 

performed at a tensile speed of 3 mm/min.  

3. Results and Discussion  

The FTIR spectrum of the films are shown in Figure 1. A prominent band within the range of 3000–3620 cm−1 

is indicative of N–H and O–H stretching. It is clear that the intensity of the peak decreasing by increasing HNT 

depending on the reducing moisture content.  

 

Figure 1. FTIR spectra of the pure and HNT loaded films 

C-H symmetric and asymmetric stretching are responsible for the absorption bands at approximately 2920 and 

2876 cm−1, respectively. These bands are typical polysaccharide properties and are present in the spectra of 

various polysaccharides. The bands at about 1638 cm−1 (C=O stretching) and 1318 cm−1 (C-N stretching) 

respectively confirmed the presence of residual N-acetyl groups [11].  
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The light transmittance of the packaging films produced is a very important parameter [12]. While light can 

be degrading for some foods, an optimal degree of opacity is desired as a high degree of opacity reduces the 

visibility of the food [13,14]. Especially considering the freshness of the food, it is desired that it refracts and 

does not transmit too much light. Figure 2 shows the opacity of the films. Accordingly, all additive ratios 

increased the opacity values compared to pure chitosan film.  

 
Figure 2. Opacity results of films with and without HNT loading 

Figure 3a shows the results of the swelling tests of the additives in pure water for 30 minutes. Swelling 

tests are normally performed for very long hours, but in this study chitosan was not crosslinked. This 

is because the cross-linking process prevents understanding the antimicrobial activity or determining 

the actual character of the films. Therefore, the swelling tests were short because pure chitosan 

dissolves in water and disintegrates after 20-30 minutes. As can be seen in the figure, when the HNT 

content in the membrane increased from zero to 2 percentage, its resistance to water was significantly 

increased. However, there is a small increase of 3 percent and 4 percent. This shows that when the 

films are loaded with excess HNT, the HNT structure also interacts with water and fills its pores. 

 
Figure 3. Swelling degree (a) and Moisture content (b) results of films with and without HNT loading 
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Similar to the swelling test, the moisture retention (content) test is a measure of the resistance of films 

to water vapor. Unlike swelling, in this test the films interact only with the vapor at room temperature. 

Moisture retention value is actually expected similar results to swelling. However, since there is no 

direct contact with water, the structure of the HNT particles is not expected to be filled with water. 

Therefore, as seen in Figure 3b, the vapor contents gradually decreased with the addition of HNT. 

While the pure film retains a lot of vapor, this value decreased significantly in HNT doped films. This 

shows that the resistance of the films to moisture retention increases under room conditions, and 

therefore the degree of degradation decreases. 

Oxidative reactions change the basic properties of foods and cause them to deteriorate. Antioxidants 

are microcomponents that can scavenge free radicals by terminating oxidative chain reactions. 

Therefore, antioxidant activity is an important feature for food packaging [15-17]. In this study, 

DPPH free radical scavenging method is used to evaluate the antioxidant capacity of the chitosan 

films. Figure 4 shows the antioxidant values of the films depending on the DPPH reagent. This value 

is also an indicator of the resistance of the films against oxidation and is expected to be as high as 

possible. As seen in the figure, while the antioxidant value of the film was 20% in the pure film, this 

value increased to over 24% in the 4% added film. that is, more than 20% antioxidant properties were 

improved with 4% additive. 

 
Figure 4. Antioxidant results of films with and without HNT loading 

Figure 5 shows the mechanical analysis results of the additive ratios. Mechanical analysis is evaluated 

in two ways. The first is the stress, which is an indicator of the force applied at break, and the other 

is the strain value calculated based on the amount of elongation at break. The strength of the films is 

described by the stress value. Strain gives more information about elasticity. As seen in the figure, 

the stress value of pure chitosan is around 5.7 MPa. As seen in Figure 5, this value increased to 10.8 

MPa with the addition of HNT. However, it decreased after this value. The reason for this is that the 

additive material added to the polymeric matrix increases the mechanical strength, contributes to load 
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transfer in homogeneous distribution, but due to agglomeration caused by overloading, the load 

cannot be distributed properly and weak points are formed and cause rupture [18,19]. 

 
Figure 5. Stress-strain results of films with and without HNT loading 

4. Conclusion 

The environmental impact of reducing the use of plastic and replacing it with biodegradable packaging is 

increasing day by day. In this way, carcinogenic compounds resulting from plastic degradation are not formed, 

and naturally occurring films reduce the carbon footprint in nature. In this study, chitosan-based films were 

prepared for use in food packaging. In order to improve the mechanical properties, swelling and moisture 

retention properties, opacity, antioxidant and antimicrobial properties of the films, HNT additives were added 

between 1-4%. As a result of the study, 

i. The HNT additives increased the opacity values depending on the increasing ratios and since this is an 

indicator that reduces the light transmittance of the films, it has an inhibitory effect on food degradation. 

ii. The increasing ratio of HNT decreased the swelling and solubility of the films in water.  

iii. Increasing ratios of HNT in films significantly decreased moisture retention. This is a factor preventing the 

degradation of the films and thus the food when exposed to moisture and steam. 

iv. Increasing HNT content in films increased the mechanical strength and generally above 3% the mechanical 

strength decreased due to agglomeration.  

v. Increasing HNT content improved the antioxidant properties. 

In the next stage of the study, the degradation processes of the produced films in soil and atmospheric 

environments will be examined, and accordingly, their sustainability will be examined according to 

biodegradability criteria. 
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