Review
BibTex RIS Cite

FRAKTAL GEOMETRİ VE KENT MORFOLOJİSİ: TÜRKİYE KENTLERİNDE PLANLAMAYA YÖNELİK ÖNGÖRÜLER

Year 2025, Volume: 11 Issue: 2, 167 - 186, 30.12.2025

Abstract

Karmaşıklık bilimi, bireysel bileşenler arasındaki etkileşimlerin dinamik ve uyarlanabilir örüntüler ürettiği, öz-düzenleyici açık sistemlerde yapının ortaya çıkışını inceleyen bir yaklaşımdır. Bu paradigma, kentleri uyarlanabilirlik, öz-düzenleme ve başlangıç koşullarına duyarlılık gibi özelliklerle tanımlanan karmaşık sistemler olarak ele alarak kentsel çevreyi anlama biçimimizi dönüştürmüştür. Kentsel planlama literatürü giderek artan biçimde bu bakış açısını benimsemekte ve kentlerin doğrusal olmayan süreçler aracılığıyla evrildiğini, çoğu zaman öz-benzerlik sergileyen mekânsal yapılara sahip olduğunu kabul etmektedir. Mandelbrot tarafından ortaya konan fraktal geometri, özellikle fraktal boyut [Fd] kavramı aracılığıyla kentsel sistemlerdeki yapısal karmaşıklığın tanımlanması ve ölçülmesine imkân tanımaktadır. Bu çalışma, kentlerde fraktal yapılara ilişkin kuramsal çerçeveyi derleyerek fraktal analiz yöntemlerinin temel ilkelerini ortaya koymakta ve fraktal analizlerin kent morfolojisi ile planlama pratiklerine yönelik sunduğu içgörüleri tartışmaktadır. Çok ölçekli, öz-afin [self-affine] ve çok-fraktal yaklaşımlar dâhil olmak üzere fraktal analiz türleri incelenmekte; bu yöntemlerin kentsel dokunun yoğunluk, süreklilik, parçalanma ve sınır karmaşıklığı gibi boyutlarını nasıl yakaladığı açıklanmaktadır. Özellikle Türkiye kentleri için gerçekleştirilen ampirik çalışmalar üzerinden Fd değerlerinin kent merkezlerinden çevreye doğru mekânsal farklılaşma örüntüleri ele alınmakta; fraktal boyut ile kentsel yayılma, yol ağı hiyerarşisi ve planlama kararları arasındaki ilişkiler tartışılmaktadır. Bulgular, fraktal geometrinin mekânsal heterojenliği nicelleştirme, kentsel sıkılığı [kompaktlığı] değerlendirme ve parçalanma süreçlerini izleme açısından güçlü bir analitik çerçeve sunduğunu göstermektedir. Böylece fraktal yaklaşımlar, sürdürülebilir ve dirençli kentsel büyümeyi yönlendirecek nicel yöntemler sağlayarak çağdaş kentsel planlamada güçlü bir araç olarak konumlanmaktadır.

References

  • Batty, M. (2005). Cities and complexity: Understanding cities with cellular automata, agent-based models, and fractals. MIT Press.
  • Özdemir, S., Şahin, M. R., & Yetişkul, E. (2024). Geleneksel kent modellerinden karmaşık sistem modellerine geçiş. Planlama, 34(2), 207-217.
  • Portugali, J. (2000). Self-organization and the city. Springer-Verlag.
  • Portugali, J., Meyer, H., Stolk, E., Tan, E. (Eds.). (2012). Complexity theories of cities have come of age. Berlin, Heidelberg: Springer-Verlag.
  • Yetişkul, E. (2017). Karmaşık kentler ve planlamada karmaşıklık. Planlama, 27(1), 7-15.
  • Yetişkul, E. (2022). Yerleşmeler ve karmaşıklık kuramı. Planlama, 32(3), 519-526.
  • Batty, M., & Longley, P. (1994). Fractal cities: A geometry of form and function. Academic Press.
  • Benguigui, L., Czamanski, D., Marinov M. & Portugali, Y. (2000). When and where is a city fractal? Environment and Planning B: Urban Analytics and City Science, 27(4), 507–519.
  • Frankhauser, P. (1998). Fractal geometry of urban patterns and their morphogenesis. Discrete Dynamics in Nature and Society, 2(2), 127-145.
  • Frankhauser, P. (1998). The fractal approach: A new tool for the spatial analysis of urban agglomerations. Population: An English Selection, 10(1), 205–240.
  • Salingaros, N. (2005). Principles of urban structure. Techne Press.
  • Shen, G. (2002). Fractal dimension and fractal growth of urbanized areas. International Journal of Geographical Information Science, 16(5), 419–437.
  • Tannier, C. & Pumain. D. (2005). Fractals in urban geography: A theoretical outline and an empirical example. Cybergeo: European Journal of Geography, Systèmes, Modélisation, Géostatistiques, Article 307. http://journals.openedition.org/cybergeo/3275
  • Briggs, J. (1992). Fractals: The patterns of chaos. Discovering a new aesthetic of art, science, and nature. Simon & Schuster.
  • Baranger, M. (2000). Chaos, complexity, and entropy. New England Complex Systems Institute.
  • Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractal dimension. Science, 156(3775), 636–638.
  • Richardson, L. (1961). The problem of contiguity: An appendix of statistics of deadly quarrels. General Systems Yearbook, 6, 139-187.
  • Mandelbrot, B. B. (1985). Self-affine fractals and fractal dimension. Physica Scripta, 32(4), 257.
  • McAdams, M. (2007). Fractal analysis and the urban morphology of a city in a developing country: A case study of İstanbul. Marmara Coğrafya Dergisi, 15, 149-172.
  • Jin, Y., Wu, Y., Li, H., Zhao, M. Y., & Pan, J. N. (2017). Definition of fractal topography to essential understanding of scale-invariance. Scientific Reports, 7, Article 46672. https://doi.org/10.1038/srep46672
  • Turcotte, D. L. (1997). Self-affine fractals. In Fractals and chaos in geology and geophysics (pp. 132-182). Cambridge University Press.
  • Evertsz, C. J. G. & Mandelbrot, B. B. (1992). Appendix B: Multifractal measures. In H.-O. Peitgen, H. Jürgens, & D. Saupe (Eds.), Chaos and fractals: New frontiers of science (pp. 921–953). Springer-Verlag.
  • Chen, Y., & Wang, J. (2013). Multifractal characterization of urban form and growth: The case of Beijing. Environment and Planning B: Urban Analytics and City Science, 40(5), 884-904.
  • Mandelbrot, B. B. (1977). The fractal geometry of nature. W.H. Freeman and Company.
  • Thomas, I., Frankhauser, P., & Biernacki, C. (2008). The morphology of built-up landscapes in Wallonia (Belgium): A classification using fractal indices. Landscape and Urban Planning, 84(2), 99–115.
  • Arlinghaus, S. L. (1985). Fractals take a central place. Geografiska Annaler. Series B, Human Geography, 67(2), 83–88.
  • Arlinghaus, S., & Arlinghaus, W. (1989). The fractal theory of central place geometry: a Diophantine analysis of fractal generators for arbitrary Löschian numbers. Geographical Analysis, 21(2): 103–121
  • Chen, Y. (2020). Fractal texture and structure of central place systems. Fractals, 28(1), Article 2050008.
  • De Keersmaecker, M.-L., Frankhauser, P., & Thomas, I. (2003). Using Fractal dimensions to characterize intra-urban diversity: The example of Brussels. Geographical Analysis, 35(4), 310–328.
  • Chen, Y. (2011). Fractal systems of central places based on intermittency of space-filling. Chaos, Solitons & Fractals, 44(8), 619–632.
  • Jevrić, M., & Romanovich, M. (2016). Fractal dimensions of urban border as a criterion for space management. Procedia Engineering, 165, 1478–1482.
  • Wang, J., Feng, J., & Chen, Y. (2011). Understanding the fractal dimensions of urban forms through Spatial Entropy. Entropy, 19(11), Article 600.
  • Frenkel, A., & Ashkenazi, M. (2008). Measuring urban sprawl: How can we deal with it? Environment and Planning B: Urban Analytics and City Science, 35(1), 56–79.
  • Lagarias. D. (2007). Fractal analysis of the urbanization at the outskirts of the city: Models, measurement and explanation. Cybergeo: European Journal of Geography, Systèmes, Modélisation, Géostatistiques, Article 391. https://journals.openedition.org/cybergeo/8902
  • Benguigui, L., Blumenfeld-Lieberthal, E., & Czamanski, D. (2006). The dynamics of the Tel Aviv morphology. Environment and Planning B: Urban Analytics and City Science, 33(2), 269–284.
  • Briggs, J. (1992). Fractals: The patterns of chaos. Discovering a new aesthetic of art, science, and nature. Simon & Schuster.
  • Jenks, M., Burton, E., & Williams, K. (Eds.) (1996). The compact city: A sustainable urban form? E&FN Spon.
  • Mandelbrot, B. B. (1983). The fractal geometry of nature. Henry Holt and Company. (Original work published 1977).
  • Jahanmiri, F., & Parker, D. C. (2022). An overview of fractal geometry applied to urban planning. Land, 11(4), Article 475.
  • Jevrić M, Knežević M, Kalezić J, Kopitović-Vuković, N., & Ćipranić, I. (2014). Application of fractal geometry in urban pattern design. Teh Vjesn; 21: 873–879.
  • Yüzer M.A. (2001). Şehirsel yerleşmelerde fractal ve hücresel otomata yöntemi ile gelişme alanlarının belirlenmesi. [Unpublished doctoral dissertation]. İstanbul Technical University.
  • Kaya, H. S. (2003). Kentsel mekan zenginliğinin kaos teorisi ve fraktal geometri kullanılarak değerlendirilmesi. [Unpublished master’s thesis]. İstanbul Technical University.
  • Kaya, H. S., & Bölen, F. (2006). Kentsel mekan organizasyonundaki farklılıkların fraktal analiz yöntemi ile değerlendirilmesi. Journal of İstanbul Kültür University, 4, 153-172.
  • Erdoğan, G., & Çubukçu, K. M. (2012). Bursa metropolitan alanının mekansal verimliğinin fraktal boyut ile ölçülmesi: 5216 Büyükşehir Belediye Yasası öncesi ve sonrası. In Kentsel ve Bölgesel Araştırmalar Ağı (Ed.), Kent Bölgeler, Metropoliten Alanlar ve Büyükşehirler: Değişen Dinamikler ve Sorunlar (pp. 433-441). Matsa Basımevi.
  • Batty, M., & Xie, Y. (1996). Preliminary evidence for a theory of the fractal city. Environment and Planning A: Economy and Space, 28(10), 1745-1762.
  • Terzi, F., & Kaya, H.S. (2011). Dynamic spatial analysis of urban sprawl through fractal geometry: The case of İstanbul. Environment and Planning B: Urban Analytics and City Science, 38, 175- 190.
  • Erdoğan, G., & Çubukçu, K. M. (2011, April 29-30). The space-filling efficiency of urban form in İzmir: A historical perspective using GIS and fractal dimension. 9th Workshop of the AESOP group on Complexity & Planning, İstanbul, Türkiye.
  • İlhan, C., & Ediz, Ö. (2019). Kent dokusu morfolojik değişiminin fraktal geometri aracılığıyla hesaplanması: Bursa örneği. Mimarlık ve Yaşam, 4(1), 117-140.
  • Aydın, N. (2016). Kentsel saçaklanmanın kent örüntüsü üzerindeki etkisinin fraktal geometri ile tespiti: Isparta örneği. [Unpublished master’s thesis]. Süleymen Demirel Üniversitesi.
  • Köprülü, B., & Topçu, M. (2022). Kent morfolojisinde kentsel doku değişiminin fraktal analiz yöntemi kullanılarak değerlendirilmesi: Konya örneği. Türkiye Kentsel Morfoloji Araştırma Ağı: III. Kentsel Morfoloji Sempozyumu, Ankara: ODTÜ Mimarlık Fakültesi.
  • Atabeyoğlu, Ö., & Bulut, Y. (2013). Ordu kentsel peyzaj karakter analizi. Akademik Ziraat Dergisi, 2(1), 1-12.
  • Kaya, H. S., & Bölen, F. (2017). Urban DNA: Morphogenetic analysis of urban pattern. ICONARP, International Journal of Architecture & Planning, 5(1), 10-41.
  • İlhan, C., & Gürsakal, N. (2021). Fractality and lacunarity of Turkish cities. Grid, 4(1), 74-100.
  • Abid, R.I., & Tortum, A. (2021). The fractal geometry of Turkey's urban transportation networks. KSCE Journal of Civil Engineering, 25(4), 1455-1466.
  • Engin, D. Ö., & Gündüz, U. (2020). Samsun ilçelerinde kentsel doku morfolojisindeki zamansal değişimlerin fraktal analiz ile belirlenmesi. DEU Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 22 (64), 81-95.
  • Özdemir, S., Şahin, M. R., & Yetişkul, E. (2024). Transition from Traditional Urban Models to Complex System Models. Planlama, 34(2): 207-217.
  • Allen, P. M. (1997). Cities and regions as self-organizing systems: Models of complexity. Gordon and Breach.
  • Şahin, M. R. (2023). Effects of urban planning on spatial complexity: Historical analysis of İzmir metropolitan area [Unpublished doctoral dissertation]. Middle East Technical University.
  • Thomas, I., & Frankhauser, P. (2013). Fractal dimensions of the built-up footprint: Buildings versus roads. Fractal evidence from Antwerp (Belgium). Environment and Planning B: Urban Analytics and City Science, 40(2), 310-329.
  • De Roo, G., Yamu, C., & Zuidema, C. (Eds.). (2020). Handbook on Planning and Complexity. Edward Elgar.
  • Özdemir, S., & Yetişkul, E. (2022). İzmir bölge morfolojisinin fraktal analiz yöntemiyle irdelenmesi. In Türkiye Kentsel Morfoloji Araştırma Ağı (Ed.), III. Kentsel Morfoloji Sempozyumu (pp. 917-930). ODTÜ Mimarlık Fakültesi.

Assessing Urban Morphological Complexity Through Fractal Geometry: Evidence From Turkish Cities

Year 2025, Volume: 11 Issue: 2, 167 - 186, 30.12.2025

Abstract

Complexity science examines the emergence of structure in self-organising open systems, where interactions among individual components give rise to dynamic and adaptive patterns. Within this paradigm, cities are conceptualised as complex systems characterised by adaptability, self-organisation and sensitivity to initial conditions, reshaping how urban environments are understood. Urban planning literature increasingly adopts this perspective, recognising that cities evolve through non-linear processes and often exhibit self-similar spatial configurations. Fractal geometry, introduced by Mandelbrot, provides a powerful analytical framework in this context, enabling the identification and measurement of structural complexity in urban systems by means of the fractal dimension [Fd].This study synthesises the theoretical background of fractal structures in cities and outlines the main methods of fractal analysis, with a particular focus on their relevance for urban morphology and planning. It discusses key approaches such as multi-scale, self-affine and multi-fractal analyses, explaining how these methods capture density, continuity, fragmentation and boundary complexity in urban form. Drawing on empirical studies, especially those conducted in Turkish cities, the paper examines spatial patterns of Fd values from city centres to peripheral zones and explores the relationships between fractal dimension, urban sprawl, road network hierarchy and planning decisions. The findings demonstrate that fractal geometry offers a robust quantitative framework for assessing spatial heterogeneity, evaluating urban compactness and monitoring fragmentation processes. In doing so, fractal approaches strengthen the role of quantitative methods in contemporary urban planning by providing tools to guide sustainable and resilient urban growth.

Ethical Statement

Ethical approval was not sought for the present study.

References

  • Batty, M. (2005). Cities and complexity: Understanding cities with cellular automata, agent-based models, and fractals. MIT Press.
  • Özdemir, S., Şahin, M. R., & Yetişkul, E. (2024). Geleneksel kent modellerinden karmaşık sistem modellerine geçiş. Planlama, 34(2), 207-217.
  • Portugali, J. (2000). Self-organization and the city. Springer-Verlag.
  • Portugali, J., Meyer, H., Stolk, E., Tan, E. (Eds.). (2012). Complexity theories of cities have come of age. Berlin, Heidelberg: Springer-Verlag.
  • Yetişkul, E. (2017). Karmaşık kentler ve planlamada karmaşıklık. Planlama, 27(1), 7-15.
  • Yetişkul, E. (2022). Yerleşmeler ve karmaşıklık kuramı. Planlama, 32(3), 519-526.
  • Batty, M., & Longley, P. (1994). Fractal cities: A geometry of form and function. Academic Press.
  • Benguigui, L., Czamanski, D., Marinov M. & Portugali, Y. (2000). When and where is a city fractal? Environment and Planning B: Urban Analytics and City Science, 27(4), 507–519.
  • Frankhauser, P. (1998). Fractal geometry of urban patterns and their morphogenesis. Discrete Dynamics in Nature and Society, 2(2), 127-145.
  • Frankhauser, P. (1998). The fractal approach: A new tool for the spatial analysis of urban agglomerations. Population: An English Selection, 10(1), 205–240.
  • Salingaros, N. (2005). Principles of urban structure. Techne Press.
  • Shen, G. (2002). Fractal dimension and fractal growth of urbanized areas. International Journal of Geographical Information Science, 16(5), 419–437.
  • Tannier, C. & Pumain. D. (2005). Fractals in urban geography: A theoretical outline and an empirical example. Cybergeo: European Journal of Geography, Systèmes, Modélisation, Géostatistiques, Article 307. http://journals.openedition.org/cybergeo/3275
  • Briggs, J. (1992). Fractals: The patterns of chaos. Discovering a new aesthetic of art, science, and nature. Simon & Schuster.
  • Baranger, M. (2000). Chaos, complexity, and entropy. New England Complex Systems Institute.
  • Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractal dimension. Science, 156(3775), 636–638.
  • Richardson, L. (1961). The problem of contiguity: An appendix of statistics of deadly quarrels. General Systems Yearbook, 6, 139-187.
  • Mandelbrot, B. B. (1985). Self-affine fractals and fractal dimension. Physica Scripta, 32(4), 257.
  • McAdams, M. (2007). Fractal analysis and the urban morphology of a city in a developing country: A case study of İstanbul. Marmara Coğrafya Dergisi, 15, 149-172.
  • Jin, Y., Wu, Y., Li, H., Zhao, M. Y., & Pan, J. N. (2017). Definition of fractal topography to essential understanding of scale-invariance. Scientific Reports, 7, Article 46672. https://doi.org/10.1038/srep46672
  • Turcotte, D. L. (1997). Self-affine fractals. In Fractals and chaos in geology and geophysics (pp. 132-182). Cambridge University Press.
  • Evertsz, C. J. G. & Mandelbrot, B. B. (1992). Appendix B: Multifractal measures. In H.-O. Peitgen, H. Jürgens, & D. Saupe (Eds.), Chaos and fractals: New frontiers of science (pp. 921–953). Springer-Verlag.
  • Chen, Y., & Wang, J. (2013). Multifractal characterization of urban form and growth: The case of Beijing. Environment and Planning B: Urban Analytics and City Science, 40(5), 884-904.
  • Mandelbrot, B. B. (1977). The fractal geometry of nature. W.H. Freeman and Company.
  • Thomas, I., Frankhauser, P., & Biernacki, C. (2008). The morphology of built-up landscapes in Wallonia (Belgium): A classification using fractal indices. Landscape and Urban Planning, 84(2), 99–115.
  • Arlinghaus, S. L. (1985). Fractals take a central place. Geografiska Annaler. Series B, Human Geography, 67(2), 83–88.
  • Arlinghaus, S., & Arlinghaus, W. (1989). The fractal theory of central place geometry: a Diophantine analysis of fractal generators for arbitrary Löschian numbers. Geographical Analysis, 21(2): 103–121
  • Chen, Y. (2020). Fractal texture and structure of central place systems. Fractals, 28(1), Article 2050008.
  • De Keersmaecker, M.-L., Frankhauser, P., & Thomas, I. (2003). Using Fractal dimensions to characterize intra-urban diversity: The example of Brussels. Geographical Analysis, 35(4), 310–328.
  • Chen, Y. (2011). Fractal systems of central places based on intermittency of space-filling. Chaos, Solitons & Fractals, 44(8), 619–632.
  • Jevrić, M., & Romanovich, M. (2016). Fractal dimensions of urban border as a criterion for space management. Procedia Engineering, 165, 1478–1482.
  • Wang, J., Feng, J., & Chen, Y. (2011). Understanding the fractal dimensions of urban forms through Spatial Entropy. Entropy, 19(11), Article 600.
  • Frenkel, A., & Ashkenazi, M. (2008). Measuring urban sprawl: How can we deal with it? Environment and Planning B: Urban Analytics and City Science, 35(1), 56–79.
  • Lagarias. D. (2007). Fractal analysis of the urbanization at the outskirts of the city: Models, measurement and explanation. Cybergeo: European Journal of Geography, Systèmes, Modélisation, Géostatistiques, Article 391. https://journals.openedition.org/cybergeo/8902
  • Benguigui, L., Blumenfeld-Lieberthal, E., & Czamanski, D. (2006). The dynamics of the Tel Aviv morphology. Environment and Planning B: Urban Analytics and City Science, 33(2), 269–284.
  • Briggs, J. (1992). Fractals: The patterns of chaos. Discovering a new aesthetic of art, science, and nature. Simon & Schuster.
  • Jenks, M., Burton, E., & Williams, K. (Eds.) (1996). The compact city: A sustainable urban form? E&FN Spon.
  • Mandelbrot, B. B. (1983). The fractal geometry of nature. Henry Holt and Company. (Original work published 1977).
  • Jahanmiri, F., & Parker, D. C. (2022). An overview of fractal geometry applied to urban planning. Land, 11(4), Article 475.
  • Jevrić M, Knežević M, Kalezić J, Kopitović-Vuković, N., & Ćipranić, I. (2014). Application of fractal geometry in urban pattern design. Teh Vjesn; 21: 873–879.
  • Yüzer M.A. (2001). Şehirsel yerleşmelerde fractal ve hücresel otomata yöntemi ile gelişme alanlarının belirlenmesi. [Unpublished doctoral dissertation]. İstanbul Technical University.
  • Kaya, H. S. (2003). Kentsel mekan zenginliğinin kaos teorisi ve fraktal geometri kullanılarak değerlendirilmesi. [Unpublished master’s thesis]. İstanbul Technical University.
  • Kaya, H. S., & Bölen, F. (2006). Kentsel mekan organizasyonundaki farklılıkların fraktal analiz yöntemi ile değerlendirilmesi. Journal of İstanbul Kültür University, 4, 153-172.
  • Erdoğan, G., & Çubukçu, K. M. (2012). Bursa metropolitan alanının mekansal verimliğinin fraktal boyut ile ölçülmesi: 5216 Büyükşehir Belediye Yasası öncesi ve sonrası. In Kentsel ve Bölgesel Araştırmalar Ağı (Ed.), Kent Bölgeler, Metropoliten Alanlar ve Büyükşehirler: Değişen Dinamikler ve Sorunlar (pp. 433-441). Matsa Basımevi.
  • Batty, M., & Xie, Y. (1996). Preliminary evidence for a theory of the fractal city. Environment and Planning A: Economy and Space, 28(10), 1745-1762.
  • Terzi, F., & Kaya, H.S. (2011). Dynamic spatial analysis of urban sprawl through fractal geometry: The case of İstanbul. Environment and Planning B: Urban Analytics and City Science, 38, 175- 190.
  • Erdoğan, G., & Çubukçu, K. M. (2011, April 29-30). The space-filling efficiency of urban form in İzmir: A historical perspective using GIS and fractal dimension. 9th Workshop of the AESOP group on Complexity & Planning, İstanbul, Türkiye.
  • İlhan, C., & Ediz, Ö. (2019). Kent dokusu morfolojik değişiminin fraktal geometri aracılığıyla hesaplanması: Bursa örneği. Mimarlık ve Yaşam, 4(1), 117-140.
  • Aydın, N. (2016). Kentsel saçaklanmanın kent örüntüsü üzerindeki etkisinin fraktal geometri ile tespiti: Isparta örneği. [Unpublished master’s thesis]. Süleymen Demirel Üniversitesi.
  • Köprülü, B., & Topçu, M. (2022). Kent morfolojisinde kentsel doku değişiminin fraktal analiz yöntemi kullanılarak değerlendirilmesi: Konya örneği. Türkiye Kentsel Morfoloji Araştırma Ağı: III. Kentsel Morfoloji Sempozyumu, Ankara: ODTÜ Mimarlık Fakültesi.
  • Atabeyoğlu, Ö., & Bulut, Y. (2013). Ordu kentsel peyzaj karakter analizi. Akademik Ziraat Dergisi, 2(1), 1-12.
  • Kaya, H. S., & Bölen, F. (2017). Urban DNA: Morphogenetic analysis of urban pattern. ICONARP, International Journal of Architecture & Planning, 5(1), 10-41.
  • İlhan, C., & Gürsakal, N. (2021). Fractality and lacunarity of Turkish cities. Grid, 4(1), 74-100.
  • Abid, R.I., & Tortum, A. (2021). The fractal geometry of Turkey's urban transportation networks. KSCE Journal of Civil Engineering, 25(4), 1455-1466.
  • Engin, D. Ö., & Gündüz, U. (2020). Samsun ilçelerinde kentsel doku morfolojisindeki zamansal değişimlerin fraktal analiz ile belirlenmesi. DEU Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 22 (64), 81-95.
  • Özdemir, S., Şahin, M. R., & Yetişkul, E. (2024). Transition from Traditional Urban Models to Complex System Models. Planlama, 34(2): 207-217.
  • Allen, P. M. (1997). Cities and regions as self-organizing systems: Models of complexity. Gordon and Breach.
  • Şahin, M. R. (2023). Effects of urban planning on spatial complexity: Historical analysis of İzmir metropolitan area [Unpublished doctoral dissertation]. Middle East Technical University.
  • Thomas, I., & Frankhauser, P. (2013). Fractal dimensions of the built-up footprint: Buildings versus roads. Fractal evidence from Antwerp (Belgium). Environment and Planning B: Urban Analytics and City Science, 40(2), 310-329.
  • De Roo, G., Yamu, C., & Zuidema, C. (Eds.). (2020). Handbook on Planning and Complexity. Edward Elgar.
  • Özdemir, S., & Yetişkul, E. (2022). İzmir bölge morfolojisinin fraktal analiz yöntemiyle irdelenmesi. In Türkiye Kentsel Morfoloji Araştırma Ağı (Ed.), III. Kentsel Morfoloji Sempozyumu (pp. 917-930). ODTÜ Mimarlık Fakültesi.
There are 61 citations in total.

Details

Primary Language English
Subjects Architectural Computing and Visualisation Methods, Architectural Science and Technology
Journal Section Review
Authors

Sıla Özdemir 0000-0002-6382-1311

Mustafa Raşit Şahin 0009-0001-4809-3950

Emine Yetişkul 0000-0003-0829-1562

Submission Date December 3, 2025
Acceptance Date December 21, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

APA Özdemir, S., Şahin, M. R., & Yetişkul, E. (2025). Assessing Urban Morphological Complexity Through Fractal Geometry: Evidence From Turkish Cities. A+Arch Design International Journal of Architecture and Design, 11(2), 167-186.


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png