Review
BibTex RIS Cite

Duyarlı Cephelerin Entegrasyon Termal ve Gün Işığı Performansı: Kapsamlı Bir Literatür İncelemesi

Year 2024, Volume: 10 Issue: 2, 114 - 130, 17.12.2024

Abstract

Robotikteki teknolojik gelişmeler, mimaride kinetik kavramını görmemizi sağlamıştır. Kinetik mimarinin bir örneği olan Duyarlı Cepheler, enerji verimliliği açısından çok işlevlidir. Bu cephe sistemi, iç mekanda daha az enerji ile termal ve görsel performansı iyileştirir. Değişen çevresel etkilere ve mekansal koşullara göre çeşitli duyarlı cepheler geliştirilmektedir. Bu çalışma, literatürdeki duyarlı cephelerin son termal ve gün ışığı performansı çalışmalarını kapsamlı bir şekilde incelemeyi amaçlamaktadır. Çalışma, duyarlı cephelerin geri bildirim bilgilerini sağlayarak gelecekteki çalışmalara rehberlik etmek için bu tür mevcut çalışmaların sonuçlarını hedeflemektedir. Bu, bu tür cephelerdeki teknik gelişmeleri iyileştirmeye ve bunları inşaat veya yenilemelere uygulanabilir hale getirmeye yardımcı olabilir. Bu nedenle, bu anlamda literatüre katkıda bulunur. Literatürdeki çalışmalar tablolaştırılır ve yorumlanır. Çalışma, tasarımcıların bina tasarımı sırasında dikkate alması gereken iç mekan termal ve gün ışığı parametrelerinin olduğunu ve binanın kullanıcıların eylemlerini en konforlu şekilde gerçekleştirmeleri için fiziksel koşulları sağlayacak şekilde tasarlanması gerektiği sonucuna varmıştır. Ayrıca, optimizasyon yönteminin daha sık kullanılmasıyla tepkisel cephe tasarımının iç mekanda termal görsel konfor sağlayabileceği de tespit edilmiştir.

References

  • Schittich, C., Lang, W., & Krippner, R. (2006). Building skins. Birkhäuser.
  • Rahbarianyazd, R., & Raswol, L. (2018). Evaluating energy consumption regarding climatic factors: A case study of Karakol residential apartments, Famagusta, North Cyprus. Journal of Contemporary Urban Affairs, 2(1), 45 54. https://doi.org/10.25034/ijcua.2018.3658
  • Drozdowski, Z. (2010). The Adaptive Building Initiative. Architectural Design, 118–123.
  • Moloney, J. (2011). Designing kinetics for architectural facades: state change. Taylor & Francis.
  • Selkowitz, S., Aschehoug, O., & Lee, E. S. (2003). Advanced Interactive Facades – Critical Elements for Future Green Buildings? USGBC International Conference and Expo, November, 12. http://escholarship.org/uc/item/9rk4j113%5CnCopyright
  • Malinauskaite, J., Jouhara, H. (2020). Energy efficiency in the industrial sector in the EU, Slovenia, and Spain, Energy 208, 2020, https://doi.org/10.1016/j.energy.2020.118398.
  • Favoino, F., Jin, Q., & Overend, M. (2014). Towards an ideal adaptive glazed façade for office buildings. Energy Procedia, 62, 289–298. https://doi.org/10.1016/j.egypro.2014.12.390
  • Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and buildings, 40(3), 394-398.
  • Knaack, U., & Klein, T. (2009). The Future Envelope 2: Architecture - Climate - Skin - Volume 9 Research in Architectural Engineering Series.
  • Diler, Y., Turhan, C., Arsan, Z. D., Akkurt, G. G., (2021). Thermal Comfort analysis of historical mosques. Case Study: The Ulu Mosque, Manisa, Turkey, Energy and Buildings 252:11144, DOI: 10.1016/j.enbuild.2021.111441
  • Han, F., Liu, B., Wang, Y., Dermentzis, G., Cao, X., Zhao, L., Pfluger, R., Feist, W. (2022). Verifying of the feasibility and energy efficiency of the largest certified passive house office building in China: A three-year performance monitoring study, Journal of Building Engineering 32(7), https://doi.org/10.1177/1420326X231169874.
  • Motalebi, M., Rashidi, A., Nasiri, M. M. (2022). Optimisation and BIM-based lifecycle assesment integration for energy efficiency retrofit of buildings, Journal of Building Engineering 49, https://doi.org/10.1016/j.jobe.2022.104022
  • Li, D., Wu, Y., Wang, B., Liu, C., & Arıcı, M. (2020). Optical and thermal performance of glazing units containing PCM in buildings: A review. Construction and Building Materials, 233, 117327.
  • Hou, J., Huang, Y., Zhang, J., Meng, X., & Dewancker, B. J. (2022). Influence of phase change material (PCM) parameters on the thermal performance of lightweight building walls with different thermal resistances. Case Studies in Thermal Engineering, 31, 101844.
  • STI, 2007. ER 2007:34. STIL 1, (Förbättrad energistatistik för lokaler – Stegvis STIL – Rapport för år 1 – Inventering av kontor och förvaltningsbyggnader, Statens Energimyndighet).
  • Apian-Bennewitz, P., Goller, M., Herkel, S., Kovach-Hebling, A., Wienold, J., (1998). “Compute- Oriented Building Design: Advances in Daylighting and Thermal Simulation Tools”, Renewable Energy, 14(1-4): 351-356.
  • Manning, M. A. (2005). “An Experimental Evaluation and Comparison of Four Daylighting Strategies for Schools in North Carolina”.
  • Burton, S. H. (1991). Doggart, J., “Passive solar energy as a fuel 1990–2000”, Pergamon Press, 151- 156.
  • Krarti, M., Erickson, P. M., Hillman, T. C. (2005). A simplified method to estimate energy savings of artificial lighting use from daylighting, Building and Environment, 40: 747-754.
  • Ihm, P., Nemri, A., Krarti, M. (2009). Estimation of Lighting Energy Savings from Daylighting”, Building and Environment, 44: 509-514.
  • Alrubaih, M. S., Zain, M. F. M., Alghoul, M. A., Ibrahim, N. L. N., Shameri, M. A., & Elayeb, O. (2013). Research and development on aspects of daylighting fundamentals. Renewable and Sustainable Energy Reviews, 21, 494-505.
  • Wong, I. L. (2017). A Review of Daylighting Design and Implementation in Buildings, Renewable and Sustainable Energy Reviews, 74: 959-968.
  • BRE (1983). Lighting control and daylight use. BRE digest 272. Bracknell: IHS BRE Press.
  • CIBSE (2009). SLL lighting handbook. London: CIBSE, (2009).
  • Cheng, Y., Gao, M., Dong, J., Jia, J., Zhao, X., & Li, G. (2018). Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China. Applied Energy, 232, 517-526.
  • Cheng, Y., Gao, M., Dong, J., Jia, J., Zhao, X., & Li, G. (2018). Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China. Applied Energy, 232, 517-526.
  • Gutiérrez, R. U., Du, J., Ferreira, N., Ferrero, A., & Sharples, S. (2019). Daylight control and performance in office buildings using a novel ceramic louvre system. Building and Environment, 151, 54- 74.
  • Cheng, Y., Gao, M., Jia, J., Sun, Y., Fan, Y., & Yu, M. (2019). An optimal and comparison study on daylight and overall energy performance of double-glazed photovoltaics windows in cold region of China. Energy, 170, 356-366.
  • Mason, C. (2011). Towards a History of Kinetic Art in Britain. Chapter written for Kinetica Museum. http://www. catherinemason. co. uk/wp-content/uploads/2011/03/Kinetica-bookchapter-for-my-website. pdf.
  • Carson, R. (1962). Silent Spring, 2002 edition.
  • Ferguson, S., Siddiqi, A., Lewis, K., & De Weck, O. (2007). Flexible and reconfigurable systems: Nomenclature and review. ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, Nevada, USA, pp. 249-263.
  • Negroponte, N. (1976). Soft Architecture Machines. Cambridge: MIT Press
  • Meagher, M. (2015). Designing for change: The poetic potential of responsive architecture. Frontiers of Architectural Research, 4, pp.159-165.
  • Heiselberg, P., Inger, A., & Perino, M. (2012). Integrating Environmentally Responsive Elements in Buildings. Proceedings of the 27th AIVC Conference, Lyon.
  • https://www.archdaily.com/162101/ad-classics-institut-du-monde-arabe-jean-nouvel
  • Karanouh, A., & Kerber, E. (2015). Innovations in dynamic architecture. Journal of Facade Design and Engineering, 3(2), 185-221.
  • https://www.designboom.com/architecture/aedas-al-bahar-towers/
  • Kolodziej, P., & Rak, J. (2013). Responsive building envelope as a material system of autonomous agent. Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia, pp.945-954.
  • Velikov, K., & Thün, G. (2013). Responsive Building Envelopes: Characteristics and evolving paradigms. In: Trubiano, F., Design and Construction of High Performance Homes. pp. 75-92. London and New York: Routledge.
  • Chen, J. Y., & Huang, S. C. (2016). Adaptive building facade Optimisation. In Proceedings of the 21st International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA (pp. 259-268).
  • Heidari Matin, N., & Eydgahi, A. (2020). Factors affecting the design and development of responsive facades: a historical evolution. Intelligent Buildings International, 12(4), 257-270.
  • Heidari Matin, N., & Eydgahi, A. (2022). Technologies used in responsive facade systems: a comparative study. Intelligent Buildings International, 14(1), 54-73.
  • Ascione, F., Bianco, N., De Masi, R. F., Mastellone, M., Mauro, G. M., & Vanoli, G. P. (2020). The role of the occupant behavior in affecting the feasibility of energy refurbishment of residential buildings: Typical effective retrofits compromised by typical wrong habits. Energy and Buildings, 223, 110217.
  • Jang, S. Y., Lee, S., & Kim, S. A. (2013). Collaborative, responsive facade design using sensor and actuator network. In Cooperative Design, Visualization, and Engineering: 10th International Conference, CDVE 2013, Alcudia, Mallorca, Spain, September 22-25, 2013. Proceedings 10 (pp. 11-18). Springer Berlin Heidelberg.
  • Favoino, F., Goia, F., Perino, M., & Serra, V. (2014). Experimental assessment of the energy performance of an advanced responsive multifunctional façade module. Energy and buildings, 68, 647-659.
  • Prieto, A., Knaack, U., Auer, T., & Klein, T. (2018). Passive cooling & climate responsive façade design: Exploring the limits of passive cooling strategies to improve the performance of commercial buildings in warm climates. Energy and Buildings, 175, 30-47.
  • Yoon, J. (2019). SMP prototype design and fabrication for thermo-responsive façade elements. Journal of Facade Design and Engineering, 7(1), 41-62.
  • Shahrzad, S., & Umberto, B. (2022). Parametric optimisation of multifunctional integrated climateresponsive opaque and ventilated façades using CFD simulations. Applied Thermal Engineering, 204, 117923.
  • Aruta, G., Ascione, F., Bianco, N., Iovane, T., & Mauro, G. M. (2023). A responsive double-skin façade for the retrofit of existing buildings: Analysis on an office building in a Mediterranean climate. Energy and Buildings, 284, 112850.
  • Valitabar, M., Moghimi, M., Mahdavinejad, M., & Pilechiha, P. (2018). Design optimum responsive façade based on visual comfort and energy performance. In 23rd International Conference on Computer-Aided Architectural Design Research in Asia: Learning, Prototyping and Adapting, CAADRIA (Vol. 2, pp. 93-102). The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) Beijing, China.
  • Matin, N. H., Eydgahi, A., Shyu, S., & Matin, P. (2018, June). Evaluating visual comfort metrics of responsive facade systems as educational activities. In 2018 ASEE Annual Conference & Exposition.
  • Kim, M. J., Kim, B. G., Koh, J. S., & Yi, H. (2023). Flexural biomimetic responsive building façade using a hybrid soft robot actuator and fabric membrane. Automation in Construction, 145, 104660.
  • Chuan, N. S. B. S., Razif, F. M., Mydin, M. A. O., Mohidin, H. H. B., & Chung, L. P. (2023). Solar Responsive Facade as Siamese Cultural Aesthetic Frontage in Malaysia. Journal of Advanced Research in Applied Sciences and Engineering Technology, 29(3), 62-76.
  • Heidari Matin, N., & Eydgahi, A. (2022). A data-driven optimised daylight pattern for responsive facades design. Intelligent Buildings International, 14(3), 363-374.
  • Kahramanoglu, B., & Alp, N. Ç. (2023). Enhancing visual comfort with Miura-ori-based responsive facade model. Journal of Building Engineering, 69, 106241.
  • https://issuu.com/ggooskens/docs/designersmanual
  • Toodekharman, H., Abravesh, M., & Heidari, S. (2023). Visual comfort assessment of hospital patient rooms with climate-responsive facades. Journal of Daylighting, 10(1), 17-30.
  • Sommese, F., Hosseini, S. M., Badarnah, L., Capozzi, F., Giordano, S., Ambrogi, V., & Ausiello, G. (2024). Light-responsive kinetic façade system inspired by the Gazania flower: A biomimetic approach in parametric design for daylighting. Building and Environment, 247, 111052.
  • Dutt, F., & Das, S. (2012). Computational design of a bio-inspired responsive architectural Façade system. International Journal of Architectural Computing, 10(4), 613-633.
  • Meagher, M. (2015). Designing for change: The poetic potential of responsive architecture. Frontiers of Architectural Research, 4(2), 159-165.
  • Iennarella, S., Serra, V., & Verso, V. R. L. (2015). A novel concept of a responsive, transparent façade module: optimisation of energy performance through parametric design. Energy Procedia, 78, 358- 363.
  • Favoino, F., Goia, F., Perino, M., & Serra, V. (2016). Experimental analysis of the energy performance of an ACTive, RESponsive and Solar (ACTRESS) façade module. Solar Energy, 133, 226- 248.
  • Fakourian, F., & Asefi, M. (2019). Environmentally responsive kinetic façade for educational buildings. Journal of Green Building, 14(1), 165-186.
  • Soudian, S., & Berardi, U. (2021). Development of a performance-based design framework for multifunctional climate-responsive façades. Energy and Buildings, 231, 110589.
  • Reki, M., & Selçuk, S. A. (2021). Exploring New Forms with Parametric Patterns for Responsive Facades: A Case on Kinetic Jali Design. Periodica Polytechnica Architecture, 52(2), 205-224.
  • Ascione, F., Bianco, N., Iovane, T., Mastellone, M., & Mauro, G. M. (2021). The evolution of building energy retrofit via double-skin and responsive façades: A review. Solar Energy, 224, 703-717.
  • Eltanboly, M. F., & Afify, M. M. (2022, February). The Influence of Using Responsive Façade as a Tool for Improving the Built Environment: Case study: Attaba–Opera square. In IOP Conference Series: Earth and Environmental Science (Vol. 992, No. 1, p. 012005). IOP Publishing.
  • Talaei, M., Mahdavinejad, M., Azari, R., Haghighi, H. M., & Atashdast, A. (2022). Thermal and energy performance of a user-responsive microalgae bioreactive façade for climate adaptability. Sustainable Energy Technologies and Assessments, 52, 101894.
  • Kızılörenli, E., & Maden, F. (2023). Modular responsive facade proposals based on semi-regular and demi-regular tessellation: daylighting and visual comfort. Frontiers of Architectural Research, 12(4), 601- 612.
  • Santos, R. A., Flores-Colen, I., Simoes, N., & Silvestre, J. D. (2023). Auto-responsive technologies on opaque facades: Worldwide climatic suitability under current and future weather conditions. Journal of Building Engineering, 63, 105498.
  • Mehrvarz, F., Bemanian, M., Nasr, T., Mansoori, R., AL-Kazee, M. F., Khudhayer, W. A., & Mahdavinejad, M. (2024). Designerly Approach to Design Responsive Façade for Occupant Visual Comfort in Different Latitudes. Journal of Daylighting, 11(1), 149-164.

Integration Thermal and Daylight Performance of Responsive Facades: A Comprehensive Literature Review

Year 2024, Volume: 10 Issue: 2, 114 - 130, 17.12.2024

Abstract

Technological advances in robotics have enabled us to see the concept of kinetics in architecture. Responsive Facades, an example of kinetic architecture, is multifunctional in terms of energy efficiencyThis façade system improves thermal and visual performance with less energy in the interior. Various responsive facades are being developed according to changing environmental impacts and spatial conditions. This study aims to comprehensively review recent thermal and daylighting performance studies of responsive facades in the literature. The study targets the results of such existing studies to guide future studies by providing feedback information of responsive facades. This can help improve technical developments in such facades and make them applicable to construction or retrofits. Therefore, in this sense it contributes to the literature. Studies in the literature are tabulated and interpreted. The study concludes that there are indoor thermal and daylight parameters that designers should consider during building design and that the building should be designed to provide the building with physical conditions for the users to perform their actions in the most comfortable way. It was also found that a responsive façade design can provide indoor thermal visual comfort by using the optimisation method more frequently.

References

  • Schittich, C., Lang, W., & Krippner, R. (2006). Building skins. Birkhäuser.
  • Rahbarianyazd, R., & Raswol, L. (2018). Evaluating energy consumption regarding climatic factors: A case study of Karakol residential apartments, Famagusta, North Cyprus. Journal of Contemporary Urban Affairs, 2(1), 45 54. https://doi.org/10.25034/ijcua.2018.3658
  • Drozdowski, Z. (2010). The Adaptive Building Initiative. Architectural Design, 118–123.
  • Moloney, J. (2011). Designing kinetics for architectural facades: state change. Taylor & Francis.
  • Selkowitz, S., Aschehoug, O., & Lee, E. S. (2003). Advanced Interactive Facades – Critical Elements for Future Green Buildings? USGBC International Conference and Expo, November, 12. http://escholarship.org/uc/item/9rk4j113%5CnCopyright
  • Malinauskaite, J., Jouhara, H. (2020). Energy efficiency in the industrial sector in the EU, Slovenia, and Spain, Energy 208, 2020, https://doi.org/10.1016/j.energy.2020.118398.
  • Favoino, F., Jin, Q., & Overend, M. (2014). Towards an ideal adaptive glazed façade for office buildings. Energy Procedia, 62, 289–298. https://doi.org/10.1016/j.egypro.2014.12.390
  • Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and buildings, 40(3), 394-398.
  • Knaack, U., & Klein, T. (2009). The Future Envelope 2: Architecture - Climate - Skin - Volume 9 Research in Architectural Engineering Series.
  • Diler, Y., Turhan, C., Arsan, Z. D., Akkurt, G. G., (2021). Thermal Comfort analysis of historical mosques. Case Study: The Ulu Mosque, Manisa, Turkey, Energy and Buildings 252:11144, DOI: 10.1016/j.enbuild.2021.111441
  • Han, F., Liu, B., Wang, Y., Dermentzis, G., Cao, X., Zhao, L., Pfluger, R., Feist, W. (2022). Verifying of the feasibility and energy efficiency of the largest certified passive house office building in China: A three-year performance monitoring study, Journal of Building Engineering 32(7), https://doi.org/10.1177/1420326X231169874.
  • Motalebi, M., Rashidi, A., Nasiri, M. M. (2022). Optimisation and BIM-based lifecycle assesment integration for energy efficiency retrofit of buildings, Journal of Building Engineering 49, https://doi.org/10.1016/j.jobe.2022.104022
  • Li, D., Wu, Y., Wang, B., Liu, C., & Arıcı, M. (2020). Optical and thermal performance of glazing units containing PCM in buildings: A review. Construction and Building Materials, 233, 117327.
  • Hou, J., Huang, Y., Zhang, J., Meng, X., & Dewancker, B. J. (2022). Influence of phase change material (PCM) parameters on the thermal performance of lightweight building walls with different thermal resistances. Case Studies in Thermal Engineering, 31, 101844.
  • STI, 2007. ER 2007:34. STIL 1, (Förbättrad energistatistik för lokaler – Stegvis STIL – Rapport för år 1 – Inventering av kontor och förvaltningsbyggnader, Statens Energimyndighet).
  • Apian-Bennewitz, P., Goller, M., Herkel, S., Kovach-Hebling, A., Wienold, J., (1998). “Compute- Oriented Building Design: Advances in Daylighting and Thermal Simulation Tools”, Renewable Energy, 14(1-4): 351-356.
  • Manning, M. A. (2005). “An Experimental Evaluation and Comparison of Four Daylighting Strategies for Schools in North Carolina”.
  • Burton, S. H. (1991). Doggart, J., “Passive solar energy as a fuel 1990–2000”, Pergamon Press, 151- 156.
  • Krarti, M., Erickson, P. M., Hillman, T. C. (2005). A simplified method to estimate energy savings of artificial lighting use from daylighting, Building and Environment, 40: 747-754.
  • Ihm, P., Nemri, A., Krarti, M. (2009). Estimation of Lighting Energy Savings from Daylighting”, Building and Environment, 44: 509-514.
  • Alrubaih, M. S., Zain, M. F. M., Alghoul, M. A., Ibrahim, N. L. N., Shameri, M. A., & Elayeb, O. (2013). Research and development on aspects of daylighting fundamentals. Renewable and Sustainable Energy Reviews, 21, 494-505.
  • Wong, I. L. (2017). A Review of Daylighting Design and Implementation in Buildings, Renewable and Sustainable Energy Reviews, 74: 959-968.
  • BRE (1983). Lighting control and daylight use. BRE digest 272. Bracknell: IHS BRE Press.
  • CIBSE (2009). SLL lighting handbook. London: CIBSE, (2009).
  • Cheng, Y., Gao, M., Dong, J., Jia, J., Zhao, X., & Li, G. (2018). Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China. Applied Energy, 232, 517-526.
  • Cheng, Y., Gao, M., Dong, J., Jia, J., Zhao, X., & Li, G. (2018). Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China. Applied Energy, 232, 517-526.
  • Gutiérrez, R. U., Du, J., Ferreira, N., Ferrero, A., & Sharples, S. (2019). Daylight control and performance in office buildings using a novel ceramic louvre system. Building and Environment, 151, 54- 74.
  • Cheng, Y., Gao, M., Jia, J., Sun, Y., Fan, Y., & Yu, M. (2019). An optimal and comparison study on daylight and overall energy performance of double-glazed photovoltaics windows in cold region of China. Energy, 170, 356-366.
  • Mason, C. (2011). Towards a History of Kinetic Art in Britain. Chapter written for Kinetica Museum. http://www. catherinemason. co. uk/wp-content/uploads/2011/03/Kinetica-bookchapter-for-my-website. pdf.
  • Carson, R. (1962). Silent Spring, 2002 edition.
  • Ferguson, S., Siddiqi, A., Lewis, K., & De Weck, O. (2007). Flexible and reconfigurable systems: Nomenclature and review. ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, Nevada, USA, pp. 249-263.
  • Negroponte, N. (1976). Soft Architecture Machines. Cambridge: MIT Press
  • Meagher, M. (2015). Designing for change: The poetic potential of responsive architecture. Frontiers of Architectural Research, 4, pp.159-165.
  • Heiselberg, P., Inger, A., & Perino, M. (2012). Integrating Environmentally Responsive Elements in Buildings. Proceedings of the 27th AIVC Conference, Lyon.
  • https://www.archdaily.com/162101/ad-classics-institut-du-monde-arabe-jean-nouvel
  • Karanouh, A., & Kerber, E. (2015). Innovations in dynamic architecture. Journal of Facade Design and Engineering, 3(2), 185-221.
  • https://www.designboom.com/architecture/aedas-al-bahar-towers/
  • Kolodziej, P., & Rak, J. (2013). Responsive building envelope as a material system of autonomous agent. Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia, pp.945-954.
  • Velikov, K., & Thün, G. (2013). Responsive Building Envelopes: Characteristics and evolving paradigms. In: Trubiano, F., Design and Construction of High Performance Homes. pp. 75-92. London and New York: Routledge.
  • Chen, J. Y., & Huang, S. C. (2016). Adaptive building facade Optimisation. In Proceedings of the 21st International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA (pp. 259-268).
  • Heidari Matin, N., & Eydgahi, A. (2020). Factors affecting the design and development of responsive facades: a historical evolution. Intelligent Buildings International, 12(4), 257-270.
  • Heidari Matin, N., & Eydgahi, A. (2022). Technologies used in responsive facade systems: a comparative study. Intelligent Buildings International, 14(1), 54-73.
  • Ascione, F., Bianco, N., De Masi, R. F., Mastellone, M., Mauro, G. M., & Vanoli, G. P. (2020). The role of the occupant behavior in affecting the feasibility of energy refurbishment of residential buildings: Typical effective retrofits compromised by typical wrong habits. Energy and Buildings, 223, 110217.
  • Jang, S. Y., Lee, S., & Kim, S. A. (2013). Collaborative, responsive facade design using sensor and actuator network. In Cooperative Design, Visualization, and Engineering: 10th International Conference, CDVE 2013, Alcudia, Mallorca, Spain, September 22-25, 2013. Proceedings 10 (pp. 11-18). Springer Berlin Heidelberg.
  • Favoino, F., Goia, F., Perino, M., & Serra, V. (2014). Experimental assessment of the energy performance of an advanced responsive multifunctional façade module. Energy and buildings, 68, 647-659.
  • Prieto, A., Knaack, U., Auer, T., & Klein, T. (2018). Passive cooling & climate responsive façade design: Exploring the limits of passive cooling strategies to improve the performance of commercial buildings in warm climates. Energy and Buildings, 175, 30-47.
  • Yoon, J. (2019). SMP prototype design and fabrication for thermo-responsive façade elements. Journal of Facade Design and Engineering, 7(1), 41-62.
  • Shahrzad, S., & Umberto, B. (2022). Parametric optimisation of multifunctional integrated climateresponsive opaque and ventilated façades using CFD simulations. Applied Thermal Engineering, 204, 117923.
  • Aruta, G., Ascione, F., Bianco, N., Iovane, T., & Mauro, G. M. (2023). A responsive double-skin façade for the retrofit of existing buildings: Analysis on an office building in a Mediterranean climate. Energy and Buildings, 284, 112850.
  • Valitabar, M., Moghimi, M., Mahdavinejad, M., & Pilechiha, P. (2018). Design optimum responsive façade based on visual comfort and energy performance. In 23rd International Conference on Computer-Aided Architectural Design Research in Asia: Learning, Prototyping and Adapting, CAADRIA (Vol. 2, pp. 93-102). The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) Beijing, China.
  • Matin, N. H., Eydgahi, A., Shyu, S., & Matin, P. (2018, June). Evaluating visual comfort metrics of responsive facade systems as educational activities. In 2018 ASEE Annual Conference & Exposition.
  • Kim, M. J., Kim, B. G., Koh, J. S., & Yi, H. (2023). Flexural biomimetic responsive building façade using a hybrid soft robot actuator and fabric membrane. Automation in Construction, 145, 104660.
  • Chuan, N. S. B. S., Razif, F. M., Mydin, M. A. O., Mohidin, H. H. B., & Chung, L. P. (2023). Solar Responsive Facade as Siamese Cultural Aesthetic Frontage in Malaysia. Journal of Advanced Research in Applied Sciences and Engineering Technology, 29(3), 62-76.
  • Heidari Matin, N., & Eydgahi, A. (2022). A data-driven optimised daylight pattern for responsive facades design. Intelligent Buildings International, 14(3), 363-374.
  • Kahramanoglu, B., & Alp, N. Ç. (2023). Enhancing visual comfort with Miura-ori-based responsive facade model. Journal of Building Engineering, 69, 106241.
  • https://issuu.com/ggooskens/docs/designersmanual
  • Toodekharman, H., Abravesh, M., & Heidari, S. (2023). Visual comfort assessment of hospital patient rooms with climate-responsive facades. Journal of Daylighting, 10(1), 17-30.
  • Sommese, F., Hosseini, S. M., Badarnah, L., Capozzi, F., Giordano, S., Ambrogi, V., & Ausiello, G. (2024). Light-responsive kinetic façade system inspired by the Gazania flower: A biomimetic approach in parametric design for daylighting. Building and Environment, 247, 111052.
  • Dutt, F., & Das, S. (2012). Computational design of a bio-inspired responsive architectural Façade system. International Journal of Architectural Computing, 10(4), 613-633.
  • Meagher, M. (2015). Designing for change: The poetic potential of responsive architecture. Frontiers of Architectural Research, 4(2), 159-165.
  • Iennarella, S., Serra, V., & Verso, V. R. L. (2015). A novel concept of a responsive, transparent façade module: optimisation of energy performance through parametric design. Energy Procedia, 78, 358- 363.
  • Favoino, F., Goia, F., Perino, M., & Serra, V. (2016). Experimental analysis of the energy performance of an ACTive, RESponsive and Solar (ACTRESS) façade module. Solar Energy, 133, 226- 248.
  • Fakourian, F., & Asefi, M. (2019). Environmentally responsive kinetic façade for educational buildings. Journal of Green Building, 14(1), 165-186.
  • Soudian, S., & Berardi, U. (2021). Development of a performance-based design framework for multifunctional climate-responsive façades. Energy and Buildings, 231, 110589.
  • Reki, M., & Selçuk, S. A. (2021). Exploring New Forms with Parametric Patterns for Responsive Facades: A Case on Kinetic Jali Design. Periodica Polytechnica Architecture, 52(2), 205-224.
  • Ascione, F., Bianco, N., Iovane, T., Mastellone, M., & Mauro, G. M. (2021). The evolution of building energy retrofit via double-skin and responsive façades: A review. Solar Energy, 224, 703-717.
  • Eltanboly, M. F., & Afify, M. M. (2022, February). The Influence of Using Responsive Façade as a Tool for Improving the Built Environment: Case study: Attaba–Opera square. In IOP Conference Series: Earth and Environmental Science (Vol. 992, No. 1, p. 012005). IOP Publishing.
  • Talaei, M., Mahdavinejad, M., Azari, R., Haghighi, H. M., & Atashdast, A. (2022). Thermal and energy performance of a user-responsive microalgae bioreactive façade for climate adaptability. Sustainable Energy Technologies and Assessments, 52, 101894.
  • Kızılörenli, E., & Maden, F. (2023). Modular responsive facade proposals based on semi-regular and demi-regular tessellation: daylighting and visual comfort. Frontiers of Architectural Research, 12(4), 601- 612.
  • Santos, R. A., Flores-Colen, I., Simoes, N., & Silvestre, J. D. (2023). Auto-responsive technologies on opaque facades: Worldwide climatic suitability under current and future weather conditions. Journal of Building Engineering, 63, 105498.
  • Mehrvarz, F., Bemanian, M., Nasr, T., Mansoori, R., AL-Kazee, M. F., Khudhayer, W. A., & Mahdavinejad, M. (2024). Designerly Approach to Design Responsive Façade for Occupant Visual Comfort in Different Latitudes. Journal of Daylighting, 11(1), 149-164.
There are 71 citations in total.

Details

Primary Language English
Subjects Materials and Technology in Architecture, Sustainable Architecture
Journal Section Review
Authors

Mustafa Serhan Ünlütürk 0000-0001-8368-4169

Publication Date December 17, 2024
Submission Date September 28, 2024
Acceptance Date November 13, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Ünlütürk, M. S. (2024). Integration Thermal and Daylight Performance of Responsive Facades: A Comprehensive Literature Review. A+Arch Design International Journal of Architecture and Design, 10(2), 114-130.


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png