Research Article
BibTex RIS Cite

The study of exposure times and dose-escalation of tick saliva on mouse embryonic stem cell proliferation

Year 2022, , 1 - 8, 27.01.2022
https://doi.org/10.47121/acarolstud.975641

Abstract

The saliva of ticks contains numerous bioactive molecules with anti-hemostatic and immunomodulatory properties. Due to their abilities of self-renewal and pluripotency, stem cells hold considerable promise in the regenerative medicine and biomedical fields. The present study examines the viability and proliferation of mouse embryonic stem cells (mESCs) following the addition of tick salivary gland extracts obtained from three tick species (Dermacentor marginatus, Rhipicephalus bursa and Hyalomma marginatum) to the mESC medium in different quantities (0.2, 2, 20, 40, 80, and 160 µg/ml). On days 2, 5 and 7 of the treatment, the vitality and proliferation of the cells were determined with CellTiter-Glo and morphological tests. The results showed that the culture supplemented with D. marginatus salivary gland extract at a concentration of 80 µg/ml positively affected the proliferation rate of mESC. It was further shown that all concentrations of the salivary gland extracts derived from H. marginatum and R. bursa had a negative effect on the proliferation rate of mESC when compared to the controls.

Supporting Institution

This research supported by a grant from TUBITAK - The Scientific and Technological

Project Number

Grant Number: TUBITAK-114O638

Thanks

The authors gratefully acknowledge use of the services and facilities of the Koç University Research Center for Translational Medicine (KUTTAM), funded by the Republic of Turkey Ministry of Development. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Ministry of Development. This work derived from Ahmet Kocabay’ s master thesis.

References

  • Akagi, E.M., Júnior. P.L., Simons. S.M., Bellini. M.H., Barreto. S.A and Chudzinski-Tavassi, A.M. 2012. Pro-apoptotic effects of Amblyomin-X in murine renal cell carcinoma “in vitro”. Biomedicine & Pharmacotherapy, 66 (1): 64-69. doi: 10.1016/j.biopha.2011.11.015
  • Aounallah, H., Bensaoud, C., M’ghirbi, Y., Faria, F., Chmelar̆, J. and Kotsyfakis, M. 2020. Tick salivary compounds for targeted immunomodulatory therapy. Frontiers in Immunology, 11: 2440. doi: 10.3389/fimmu.2020.583845
  • Arolas, J.L., Lorenzo, J., Rovira, A., Castella, J., Aviles, F.X. and Sommerhoff, C.P. 2005. A carboxypeptidase inhibitor from the tick Rhipicephalus bursa: isolation, cDNA cloning, recombinant expression, and characterization. Journal of Biological Chemistry, 280 (5): 3441-3448. doi: 10.1074/jbc.m411086200
  • Brake, D.K., Wikel, S.K., Tidwell, J.P. and de León, A.A.P. 2010. Rhipicephalus microplus salivary gland molecules induce differential CD86 expression in murine macrophages. Parasites & Vectors, 3: 103. doi: 10.1186/1756-3305-3-103
  • Blisnick, A.A., Foulon, T. and Bonnet, S.I. 2017. Serine protease inhibitors in ticks: an overview of their role in tick biology and tick-borne pathogen transmission. Front Cell Infect Microbiology, 22 (7): 199. doi: 10.3389/fcimb.2017.00199.
  • Cao, J., Shi, L., Zhou, Y., Gao, X., Zhang, H., Gong, H. and Zhou, J. 2013. Characterization of a new Kunitz-type serine protease inhibitor from the hard tick Rhipicephalus hemaphysaloides. Archives of Insect Biochemistry and Physiology, 84 (2): 104-113. doi: 10.1002/arch.21118
  • Carneiro-Lobo, T.C., Schaffner, F., Disse, J., Ostergaard, H., Francischetti, I.M., Monteiro, R.Q. and Ruf, W. 2012. The tick-derived inhibitor Ixolaris prevents tissue factor signaling on tumor cells. The Journal of Thrombosis and Haemostasis, 10 (9): 1849-1858. doi: 10.1111/j.1538-7836.2012.04864.x
  • Czechanski, A., Byers, C., Greenstein, I., Schrode, N., Donahue, L.R., Hadjantonakis, A.K. and, Reinholdt, L. 2014. Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nature Protocols, 9 (3): 559-574. doi: 10.1038/nprot.2014.030
  • Eiselleova, L., Peterkova, I., Neradil, J., Slaninova, I., Hampl, A. and Dvorak, P. 2008. Comparative study of mouse and human feeder cells for human embryonic stem cells. The International Journal of Developmental Biology, 52: 353-363. doi: 10.1387/ijdb.082590le
  • Esteves, E., Maruyama, S.R., Kawahara, R., Fujita, A., Martins, L.A., Righi, A.A., Costa, F.B., Palmisano, G., Labruna, M.B., Sá-Nunes, A., Ribeiro, R.M.C. and Fogaça, A.C. 2017. Analysis of the salivary gland transcriptome of unfed and partially fed Amblyomma sculptum ticks and descriptive proteome of the saliva. Frontiers in Cellular and Infection Microbiology, 7: 476. doi: 10.3389/fcimb.2017.00476
  • Evans, M.J. and Kaufman, M.H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature, 292: 154-156. doi: 10.1038/292154a0
  • Francischetti, I.M., Mather, T.N. and Riberio, J.M.C. 2005. Tick saliva is potent inhibitor of endothellel cell proliferation and angiogenesis. Thombosis and Heamost, 94 (1): 167-174. doi: 10.1160/TH04-09-0566
  • Francischetti, I.M., Sa-Nunes, A., Mans, B.J., Santos, I.M. and Ribeiro, J.M. 2009. The role of saliva in tick feeding. Frontiers in Bioscience, 14: 2051-2088. doi: 10.2741/3363
  • Ferreira, B.R. and Silva, J.S. 1998. Saliva of Rhipicephalus sanguineus tick impairs T cell proliferation and IFN-gamma-induced macrophage microbicidal activity. Veterinary Immunology and Immunopathology, 64: 279-293. doi: 10.1016/s0165-2427(98)00135-4
  • Gill, H.S. 1986. Kinetics of mast cell, basophil and eosinophil populations at Hyalomma anatolicum anatolicum feeding sites on cattle and the acquisition of resistance. Parasitology, 93 (2): 305-15. doi: 10.1017/s0031182000051477
  • Hermant, B., Desroches-Castan, A., Dubessay, M.L., Prandini, M.H., Huber, P. and Vittet, D. 2007. Development of a one-step embryonic stem cell-based assay for the screening of sprouting angiogenesis. BMC Biotechnology, 7: 20. doi: 10.1186/1472-6750-7-20
  • Hudson, L. and Hay, F.C. 1989. Practical Immunology. 3rd edition, Blackwell Scientific Publication, Oxford, UK, 47 pp.
  • Iijima, S., Tanimoto, Y., Mizuno, S., Daitoku, Y., Kunita, S., Sugiyama, F. and Yagami, K. 2010. Effect of different culture conditions on establishment of embryonic stem cells from BALB/cAJ and NZB/BINJ mice. Cellular Reprogramming, 12 (6): 679-688. doi: 10.1089/cell.2010.0018
  • Karim, S. and Ribeiro, J.M.C. 2015. An insight into the sialome of the Lone Star tick, Amblyomma americanum, with a glimpse on its time dependent gene expression. PLoS One, 10: e0131292. doi: 10.1371/journal.pone.0131292
  • Kaufman, W.R. 2007. Gluttony and sex in female ixodid ticks: how do they compare to other blood-sucking arthropods? Journal of Insect Physiology, 53: 264-273. doi: 10.1016/j.jinsphys.2006.10.004
  • Kazimírová, M. and Štibrániová, I. 2013. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 3: 43. doi: 10.3389/fcimb.2013.00043
  • Kotál, J., Langhansová, H., Lieskovská, J., Andersen, J.F., Francischetti, I.M.B., Chavakis, T., Kopecký, J., Pedra, J.H.F., Kotsyfakis, M. and Chmelař, J. 2015. Modulation of host immunity by tick saliva. Journal Proteomics, 128: 58-68. doi: 10.1016/j.jprot.2015.07.005
  • Šimo, L., Kazimirova, M., Richardson, J. and Bonnet, S.I. 2017. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 7: 281. doi: 10.3389/fcimb.2017.00281
  • Leboulle, G., Rochez, C., Louahed, J., Ruti, B., Brossard, M., Bollen, A. and Godfroid, E. 2002. Isolation of Ixodes ricinus salivary gland mRNA encoding factors induced during blood feeding. American Journal of Tropical Medicine and Hygiene, 66: 225-233. doi: 10.4269/ajtmh.2002.66.225
  • Lieskovská, J. and Kopecký, J. 2012. Tick saliva suppresses IFN signalling in dendritic cells upon Borrelia afzelii infection. Parasite Immunology, 34: 32-39. doi: 10.1111/j.1365-3024.2011.01345.x
  • Martin, G.R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78 (12): 7634-7638. doi: 10.1073/pnas.78.12.7634
  • Mudenda, L., Pierlé, S.A., Turse, J.E., Scoles, G.A., Purvine, S.O., Nicora, C.D., Clauss, T.R.W., Ueti, M.W., Brown, W.C. and Brayton, K.A. 2014. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. International Journal of Parasitology, 44: 1029-1037. doi: 10.1016/j.ijpara.2014.07.003
  • Nuttall, P.A. 2019. Wonders of tick saliva. Ticks and Tick-Borne Diseases, 10: 470-481. doi: 10.1016/j.ttbdis.2018.11.005
  • Ohtsuka, S., Futatsugi, Y.N. and Niwa, H. 2015. LIF signal in mouse embryonic stem cells. JAK-STAT, 4 (2): e1086520. doi: 10.1080/21623996.2015.1086520
  • Oliveira, C.J., Carvalho, W.A., Garcia, G.R., Gutierrez, F.R., de Miranda, Santos, I.K., Silva, J.S. and Ferreira, B.R. 2010. Tick saliva induces regulatory dendritic cells: MAP-kinases and Toll-like receptor-2 expression as potential targets. Veterinary Parasitology, 167 (2-4): 288-297. doi: 10.1016/j.vetpar.2009.09.031
  • Patton, T.G., Dietrich, G., Brandt, K., Dolan, M.C., Piesman, J. and Gilmore, R.D. 2012. Saliva, salivary gland, and hemolymph collection from Ixodes scapularis ticks. Journal of Visualized Experiments, 60: 3894. doi: 10.3791/3894
  • Perner, J., Kropáčková, S., Kopáček, P. and Ribeiro, J.M.C. 2018. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLOS Neglected Tropical Diseases, 12: e0006410. doi: 10.1371/journal.pntd.0006410
  • Reck, J., Marks, F.S., Termignoni, C., Guimaraes, J.A. and Martins, J.R. 2013. Ornithodoros brasiliensis (mouro tick) salivary gland homogenates inhibit in vivo would healing and in vitro endothelial cell proliferation. Parasitology Research, 112 (4): 1749-53. doi: 10.1007/s00436-013-333-3
  • Ribeiro, J.M.C., Slovák, M. and Francischetti, I.M.B. 2017. An insight into the sialome of Hyalomma excavatum. Ticks and Tick-Borne Diseases, 8: 201-207. doi: 10.1016/j.ttbdis.2016.08.011
  • Silva-Cote, I. and Cardier, J.E. 2011. Liver sinusoidal endo-thelial cells support the survival and undifferentiated growth of the CGR8 mouse embryonic stem cell line: Possible role of leukemia inhibitory factor (LIF). Cytokine, 56: 608-615. doi: 10.1016/j.cyto.2011.08.035
  • Smith, G.H. and Chepko, G. 2001. Mammary epithelial stem cells. Microscopy Research and Technique, 52: 190-203. doi: 10.1002/1097-0029(20010115)52:2<190::AID-JEMT1005>3.0.CO;2-O
  • Sonenshine, D.E. and Roe, R.M. 2014. Biology of ticks. Volume 1. Second edition. Oxford University Press, UK, 540 pp.
  • Sousa, A.C.P., Szabó, M.P.J., Oliveira, C.J.F. and Silva, M.J.B. 2015. Exploring the anti-tumoral effects of tick saliva and derived components. Toxicon, 102: 69-73. doi: 10.1016/j.toxicon.2015.06.001
  • Štibrániová, I., Bartíková, P., Holíková, V. and Kazimírová, M. 2019. Deciphering biological processes at the tick-host interface opens new strategies for treatment of human diseases. Frontiers in Physiology, 10: 830. doi: 10.3389/fphys.2019.00830
  • Tamm, C., Pijuan, Galitó. S. and Annerén, C. 2013. A comparative study of protocols for mouse embryonic stem cell culturing. PLoS One, 8 (12): e81156. doi: 10.1371/journal.pone.0081156
  • Taskin, A.C., Kocabay, A., Ebrahimi, A., Karahuseyinoglu, S., Sahin, G.N., Ozcimen, B., Ruacan, A. and Onder, T.T. 2019. Leptin treatment of in vitro culture embryos increases outgrowth rate of inner cell mass during embryonic stem cell derivation. In Vitro Cellular & Developmental Biology-Animal, 55: 473-481. doi:10.1007/s11626-019-00367-y
  • Tietz, N.W. 1986. Textbook of Clinical Chemistry. W.B. Saunders, Philadelphia, USA, 1919 pp.
  • Ushio, H., Watanable, N., Kiso, Y., Higuchi, S. and Matsuda, H. 1993. Protective immunity and mast cell and eosinophil responses in mice infested with larval Haemaphysalis longicornis tick. Parasite Immunology, 15 (4): 209-14. doi: 10.1111/j.1365-3024.1993.tb00602.x
  • Wikel, S.K. 2018. Tick-host-pathogen systems immunobiology: an interactive trio. Frontiers in Biosciences, 23: 265-283. doi: 10.2741/4590

The study of exposure times and dose-escalation of tick saliva on mouse embryonic stem cell proliferation

Year 2022, , 1 - 8, 27.01.2022
https://doi.org/10.47121/acarolstud.975641

Abstract

The saliva of ticks contains numerous bioactive molecules with anti-hemostatic and immunomodulatory properties. Due to their abilities of self-renewal and pluripotency, stem cells hold considerable promise in the regenerative medicine and biomedical fields. The present study examines the viability and proliferation of mouse embryonic stem cells (mESCs) following the addition of tick salivary gland extracts obtained from three tick species (Dermacentor marginatus, Rhipicephalus bursa and Hyalomma marginatum) to the mESC medium in different quantities (0.2, 2, 20, 40, 80, and 160 µg/ml). On days 2, 5 and 7 of the treatment, the vitality and proliferation of the cells were determined with CellTiter-Glo and morphological tests. The results showed that the culture supplemented with D. marginatus salivary gland extract at a concentration of 80 µg/ml positively affected the proliferation rate of mESC. It was further shown that all concentrations of the salivary gland extracts derived from H. marginatum and R. bursa had a negative effect on the proliferation rate of mESC when compared to the controls.

Project Number

Grant Number: TUBITAK-114O638

References

  • Akagi, E.M., Júnior. P.L., Simons. S.M., Bellini. M.H., Barreto. S.A and Chudzinski-Tavassi, A.M. 2012. Pro-apoptotic effects of Amblyomin-X in murine renal cell carcinoma “in vitro”. Biomedicine & Pharmacotherapy, 66 (1): 64-69. doi: 10.1016/j.biopha.2011.11.015
  • Aounallah, H., Bensaoud, C., M’ghirbi, Y., Faria, F., Chmelar̆, J. and Kotsyfakis, M. 2020. Tick salivary compounds for targeted immunomodulatory therapy. Frontiers in Immunology, 11: 2440. doi: 10.3389/fimmu.2020.583845
  • Arolas, J.L., Lorenzo, J., Rovira, A., Castella, J., Aviles, F.X. and Sommerhoff, C.P. 2005. A carboxypeptidase inhibitor from the tick Rhipicephalus bursa: isolation, cDNA cloning, recombinant expression, and characterization. Journal of Biological Chemistry, 280 (5): 3441-3448. doi: 10.1074/jbc.m411086200
  • Brake, D.K., Wikel, S.K., Tidwell, J.P. and de León, A.A.P. 2010. Rhipicephalus microplus salivary gland molecules induce differential CD86 expression in murine macrophages. Parasites & Vectors, 3: 103. doi: 10.1186/1756-3305-3-103
  • Blisnick, A.A., Foulon, T. and Bonnet, S.I. 2017. Serine protease inhibitors in ticks: an overview of their role in tick biology and tick-borne pathogen transmission. Front Cell Infect Microbiology, 22 (7): 199. doi: 10.3389/fcimb.2017.00199.
  • Cao, J., Shi, L., Zhou, Y., Gao, X., Zhang, H., Gong, H. and Zhou, J. 2013. Characterization of a new Kunitz-type serine protease inhibitor from the hard tick Rhipicephalus hemaphysaloides. Archives of Insect Biochemistry and Physiology, 84 (2): 104-113. doi: 10.1002/arch.21118
  • Carneiro-Lobo, T.C., Schaffner, F., Disse, J., Ostergaard, H., Francischetti, I.M., Monteiro, R.Q. and Ruf, W. 2012. The tick-derived inhibitor Ixolaris prevents tissue factor signaling on tumor cells. The Journal of Thrombosis and Haemostasis, 10 (9): 1849-1858. doi: 10.1111/j.1538-7836.2012.04864.x
  • Czechanski, A., Byers, C., Greenstein, I., Schrode, N., Donahue, L.R., Hadjantonakis, A.K. and, Reinholdt, L. 2014. Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nature Protocols, 9 (3): 559-574. doi: 10.1038/nprot.2014.030
  • Eiselleova, L., Peterkova, I., Neradil, J., Slaninova, I., Hampl, A. and Dvorak, P. 2008. Comparative study of mouse and human feeder cells for human embryonic stem cells. The International Journal of Developmental Biology, 52: 353-363. doi: 10.1387/ijdb.082590le
  • Esteves, E., Maruyama, S.R., Kawahara, R., Fujita, A., Martins, L.A., Righi, A.A., Costa, F.B., Palmisano, G., Labruna, M.B., Sá-Nunes, A., Ribeiro, R.M.C. and Fogaça, A.C. 2017. Analysis of the salivary gland transcriptome of unfed and partially fed Amblyomma sculptum ticks and descriptive proteome of the saliva. Frontiers in Cellular and Infection Microbiology, 7: 476. doi: 10.3389/fcimb.2017.00476
  • Evans, M.J. and Kaufman, M.H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature, 292: 154-156. doi: 10.1038/292154a0
  • Francischetti, I.M., Mather, T.N. and Riberio, J.M.C. 2005. Tick saliva is potent inhibitor of endothellel cell proliferation and angiogenesis. Thombosis and Heamost, 94 (1): 167-174. doi: 10.1160/TH04-09-0566
  • Francischetti, I.M., Sa-Nunes, A., Mans, B.J., Santos, I.M. and Ribeiro, J.M. 2009. The role of saliva in tick feeding. Frontiers in Bioscience, 14: 2051-2088. doi: 10.2741/3363
  • Ferreira, B.R. and Silva, J.S. 1998. Saliva of Rhipicephalus sanguineus tick impairs T cell proliferation and IFN-gamma-induced macrophage microbicidal activity. Veterinary Immunology and Immunopathology, 64: 279-293. doi: 10.1016/s0165-2427(98)00135-4
  • Gill, H.S. 1986. Kinetics of mast cell, basophil and eosinophil populations at Hyalomma anatolicum anatolicum feeding sites on cattle and the acquisition of resistance. Parasitology, 93 (2): 305-15. doi: 10.1017/s0031182000051477
  • Hermant, B., Desroches-Castan, A., Dubessay, M.L., Prandini, M.H., Huber, P. and Vittet, D. 2007. Development of a one-step embryonic stem cell-based assay for the screening of sprouting angiogenesis. BMC Biotechnology, 7: 20. doi: 10.1186/1472-6750-7-20
  • Hudson, L. and Hay, F.C. 1989. Practical Immunology. 3rd edition, Blackwell Scientific Publication, Oxford, UK, 47 pp.
  • Iijima, S., Tanimoto, Y., Mizuno, S., Daitoku, Y., Kunita, S., Sugiyama, F. and Yagami, K. 2010. Effect of different culture conditions on establishment of embryonic stem cells from BALB/cAJ and NZB/BINJ mice. Cellular Reprogramming, 12 (6): 679-688. doi: 10.1089/cell.2010.0018
  • Karim, S. and Ribeiro, J.M.C. 2015. An insight into the sialome of the Lone Star tick, Amblyomma americanum, with a glimpse on its time dependent gene expression. PLoS One, 10: e0131292. doi: 10.1371/journal.pone.0131292
  • Kaufman, W.R. 2007. Gluttony and sex in female ixodid ticks: how do they compare to other blood-sucking arthropods? Journal of Insect Physiology, 53: 264-273. doi: 10.1016/j.jinsphys.2006.10.004
  • Kazimírová, M. and Štibrániová, I. 2013. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 3: 43. doi: 10.3389/fcimb.2013.00043
  • Kotál, J., Langhansová, H., Lieskovská, J., Andersen, J.F., Francischetti, I.M.B., Chavakis, T., Kopecký, J., Pedra, J.H.F., Kotsyfakis, M. and Chmelař, J. 2015. Modulation of host immunity by tick saliva. Journal Proteomics, 128: 58-68. doi: 10.1016/j.jprot.2015.07.005
  • Šimo, L., Kazimirova, M., Richardson, J. and Bonnet, S.I. 2017. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 7: 281. doi: 10.3389/fcimb.2017.00281
  • Leboulle, G., Rochez, C., Louahed, J., Ruti, B., Brossard, M., Bollen, A. and Godfroid, E. 2002. Isolation of Ixodes ricinus salivary gland mRNA encoding factors induced during blood feeding. American Journal of Tropical Medicine and Hygiene, 66: 225-233. doi: 10.4269/ajtmh.2002.66.225
  • Lieskovská, J. and Kopecký, J. 2012. Tick saliva suppresses IFN signalling in dendritic cells upon Borrelia afzelii infection. Parasite Immunology, 34: 32-39. doi: 10.1111/j.1365-3024.2011.01345.x
  • Martin, G.R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78 (12): 7634-7638. doi: 10.1073/pnas.78.12.7634
  • Mudenda, L., Pierlé, S.A., Turse, J.E., Scoles, G.A., Purvine, S.O., Nicora, C.D., Clauss, T.R.W., Ueti, M.W., Brown, W.C. and Brayton, K.A. 2014. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. International Journal of Parasitology, 44: 1029-1037. doi: 10.1016/j.ijpara.2014.07.003
  • Nuttall, P.A. 2019. Wonders of tick saliva. Ticks and Tick-Borne Diseases, 10: 470-481. doi: 10.1016/j.ttbdis.2018.11.005
  • Ohtsuka, S., Futatsugi, Y.N. and Niwa, H. 2015. LIF signal in mouse embryonic stem cells. JAK-STAT, 4 (2): e1086520. doi: 10.1080/21623996.2015.1086520
  • Oliveira, C.J., Carvalho, W.A., Garcia, G.R., Gutierrez, F.R., de Miranda, Santos, I.K., Silva, J.S. and Ferreira, B.R. 2010. Tick saliva induces regulatory dendritic cells: MAP-kinases and Toll-like receptor-2 expression as potential targets. Veterinary Parasitology, 167 (2-4): 288-297. doi: 10.1016/j.vetpar.2009.09.031
  • Patton, T.G., Dietrich, G., Brandt, K., Dolan, M.C., Piesman, J. and Gilmore, R.D. 2012. Saliva, salivary gland, and hemolymph collection from Ixodes scapularis ticks. Journal of Visualized Experiments, 60: 3894. doi: 10.3791/3894
  • Perner, J., Kropáčková, S., Kopáček, P. and Ribeiro, J.M.C. 2018. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLOS Neglected Tropical Diseases, 12: e0006410. doi: 10.1371/journal.pntd.0006410
  • Reck, J., Marks, F.S., Termignoni, C., Guimaraes, J.A. and Martins, J.R. 2013. Ornithodoros brasiliensis (mouro tick) salivary gland homogenates inhibit in vivo would healing and in vitro endothelial cell proliferation. Parasitology Research, 112 (4): 1749-53. doi: 10.1007/s00436-013-333-3
  • Ribeiro, J.M.C., Slovák, M. and Francischetti, I.M.B. 2017. An insight into the sialome of Hyalomma excavatum. Ticks and Tick-Borne Diseases, 8: 201-207. doi: 10.1016/j.ttbdis.2016.08.011
  • Silva-Cote, I. and Cardier, J.E. 2011. Liver sinusoidal endo-thelial cells support the survival and undifferentiated growth of the CGR8 mouse embryonic stem cell line: Possible role of leukemia inhibitory factor (LIF). Cytokine, 56: 608-615. doi: 10.1016/j.cyto.2011.08.035
  • Smith, G.H. and Chepko, G. 2001. Mammary epithelial stem cells. Microscopy Research and Technique, 52: 190-203. doi: 10.1002/1097-0029(20010115)52:2<190::AID-JEMT1005>3.0.CO;2-O
  • Sonenshine, D.E. and Roe, R.M. 2014. Biology of ticks. Volume 1. Second edition. Oxford University Press, UK, 540 pp.
  • Sousa, A.C.P., Szabó, M.P.J., Oliveira, C.J.F. and Silva, M.J.B. 2015. Exploring the anti-tumoral effects of tick saliva and derived components. Toxicon, 102: 69-73. doi: 10.1016/j.toxicon.2015.06.001
  • Štibrániová, I., Bartíková, P., Holíková, V. and Kazimírová, M. 2019. Deciphering biological processes at the tick-host interface opens new strategies for treatment of human diseases. Frontiers in Physiology, 10: 830. doi: 10.3389/fphys.2019.00830
  • Tamm, C., Pijuan, Galitó. S. and Annerén, C. 2013. A comparative study of protocols for mouse embryonic stem cell culturing. PLoS One, 8 (12): e81156. doi: 10.1371/journal.pone.0081156
  • Taskin, A.C., Kocabay, A., Ebrahimi, A., Karahuseyinoglu, S., Sahin, G.N., Ozcimen, B., Ruacan, A. and Onder, T.T. 2019. Leptin treatment of in vitro culture embryos increases outgrowth rate of inner cell mass during embryonic stem cell derivation. In Vitro Cellular & Developmental Biology-Animal, 55: 473-481. doi:10.1007/s11626-019-00367-y
  • Tietz, N.W. 1986. Textbook of Clinical Chemistry. W.B. Saunders, Philadelphia, USA, 1919 pp.
  • Ushio, H., Watanable, N., Kiso, Y., Higuchi, S. and Matsuda, H. 1993. Protective immunity and mast cell and eosinophil responses in mice infested with larval Haemaphysalis longicornis tick. Parasite Immunology, 15 (4): 209-14. doi: 10.1111/j.1365-3024.1993.tb00602.x
  • Wikel, S.K. 2018. Tick-host-pathogen systems immunobiology: an interactive trio. Frontiers in Biosciences, 23: 265-283. doi: 10.2741/4590
There are 44 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Article
Authors

Ahmet Kocabay 0000-0002-2365-7246

Ayyub Ebrahımı 0000-0003-4683-5102

Ali Taşkın 0000-0003-3196-821X

Sırrı Kar 0000-0002-3301-6215

Project Number Grant Number: TUBITAK-114O638
Publication Date January 27, 2022
Published in Issue Year 2022

Cite

APA Kocabay, A., Ebrahımı, A., Taşkın, A., Kar, S. (2022). The study of exposure times and dose-escalation of tick saliva on mouse embryonic stem cell proliferation. Acarological Studies, 4(1), 1-8. https://doi.org/10.47121/acarolstud.975641
AMA Kocabay A, Ebrahımı A, Taşkın A, Kar S. The study of exposure times and dose-escalation of tick saliva on mouse embryonic stem cell proliferation. Acarol. Stud. January 2022;4(1):1-8. doi:10.47121/acarolstud.975641
Chicago Kocabay, Ahmet, Ayyub Ebrahımı, Ali Taşkın, and Sırrı Kar. “The Study of Exposure Times and Dose-Escalation of Tick Saliva on Mouse Embryonic Stem Cell Proliferation”. Acarological Studies 4, no. 1 (January 2022): 1-8. https://doi.org/10.47121/acarolstud.975641.
EndNote Kocabay A, Ebrahımı A, Taşkın A, Kar S (January 1, 2022) The study of exposure times and dose-escalation of tick saliva on mouse embryonic stem cell proliferation. Acarological Studies 4 1 1–8.
IEEE A. Kocabay, A. Ebrahımı, A. Taşkın, and S. Kar, “The study of exposure times and dose-escalation of tick saliva on mouse embryonic stem cell proliferation”, Acarol. Stud., vol. 4, no. 1, pp. 1–8, 2022, doi: 10.47121/acarolstud.975641.
ISNAD Kocabay, Ahmet et al. “The Study of Exposure Times and Dose-Escalation of Tick Saliva on Mouse Embryonic Stem Cell Proliferation”. Acarological Studies 4/1 (January 2022), 1-8. https://doi.org/10.47121/acarolstud.975641.
JAMA Kocabay A, Ebrahımı A, Taşkın A, Kar S. The study of exposure times and dose-escalation of tick saliva on mouse embryonic stem cell proliferation. Acarol. Stud. 2022;4:1–8.
MLA Kocabay, Ahmet et al. “The Study of Exposure Times and Dose-Escalation of Tick Saliva on Mouse Embryonic Stem Cell Proliferation”. Acarological Studies, vol. 4, no. 1, 2022, pp. 1-8, doi:10.47121/acarolstud.975641.
Vancouver Kocabay A, Ebrahımı A, Taşkın A, Kar S. The study of exposure times and dose-escalation of tick saliva on mouse embryonic stem cell proliferation. Acarol. Stud. 2022;4(1):1-8.

by-nc-nd.png

Acarological Studies is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International.

International Scientific Research Journal on Acarology