Karyotype analysis of two oribatid mite species (Acari: Oribatida)
Year 2022,
Volume: 4 Issue: 1, 41 - 45, 27.01.2022
Nisa Gümüş
,
Halil Erhan Eroğlu
,
Sedat Per
Abstract
The chromosomal parameters and karyotypic relationships may provide very valuable information about speciation and karyotype evolution. In the order Oribatida, the chromosomal data are limited to a few reports. In the present study, the chromosomal data of two species are provided for the first time. The diploid chromosome numbers are 2n = 14 in Oribotritia hermanni Grandjean, 1967 (Oribatida: Oribotritiidae) and 2n = 22 in Hermanniella gibber Kulijev, 1979 (Oribatida: Hermanniellidae) and chromosomes are small holocentric chromosomes. The smallest and largest chromosome sizes are 0.38 μm and 1.08 μm in O. hermanni, respectively. The total haploid chromosome length is 4.88 μm, in O. hermanni, and a higher value of 6.98 μm is recorded in H. gibber. The sex chromosomes could not be identified, because the oribatid mites show weak sexual dimorphism. In this respect, the results of the study provide important contributions to the cytotaxonomy of oribatid mites.
Supporting Institution
Project Coordination Application and Research Center of Yozgat Bozok University
Project Number
6601-FBE/18- 222
Thanks
We would like to thank Biologist Kübra ÇUBUKÇU and Celalettin ŞAHBAZ for their help during the field work.
References
- Behan-Pelletier, V. M. 2015. Review of sexual dimorphism in brachypyline oribatid mites. Acarologia, 55: 127-146.
doi:10.1051/acarologia/20152163
- Bezci, T. and Baran, Ş. 2016. First record of the genus Lucoppia (Acari: Oribatida) from Turkey. Turkish Journal of Zoology, 40: 765-768.
doi:10.3906/zoo-1512-79
- Dabert, J. 2005. Acari (mites and ticks). In: Marine parasitology. Rohde, K. (Ed.). CSIRO Publishing, Collingwood, Australia, 216-222.
- Eroğlu, H.E. 2015. Which chromosomes are subtelocentric or acrocentric? A new karyotype symmetry/asymmetry index. Caryologia, 68: 239-245.
doi:10.1080/00087114.2015.1032614
- Eroğlu, H.E. and Per, S. 2016. Karyotype analysis of Zygoribatula cognata (Oudemans) (Acari: Oribatida: Oribatulidae). Turkish Journal of Entomology, 40: 33-38.
doi:10.16970/ted.50556
- Gokhman, V.E. and Quicke, D.L.J. 1995. The last twenty years of parasitic Hymenoptera karyology: an update and phylogenetic implications. Journal of Hymenoptera Research, 4: 41-63.
- Gümüş, N., Per, S. and Eroğlu, H.E. 2018. Karyotype analysis of Phauloppia lucorum (Koch, 1841) (Oribatida: Oribatulidae). Turkish Journal of Entomology, 42: 77-83.
doi:10.16970/entoted.382980
- Heethoff, M., Bergmann, P. and Norton, R.A. 2006. Karyology and sex determination of oribatid mites. Acarologia, 46: 127-131.
- Heethoff, M., Laumann, M. and Bergmann, P. 2007. Adding to the reproductive biology of the parthenogenetic oribatid mite, Archegozetes longisetosus (Acari, Oribatida, Trhypochthoniidae). Turkish Journal of Zoology, 31: 151-159.
- Imai, H., Taylor, R.W., Crosland, M.W. and Crozier, R. 1988. Modes of spontaneous chromosomal mutation and kar-yotype evolution in ants with reference to the minimum interaction hypothesis. The Japanese Journal of Genetics, 63 (2):159-185.
doi:10.1266/jjg.63.159
- Lachange, L.E. 1967. The Induction dominant lethal mutation in insects by Ionizing radiation and chemicals-as related to the steril-male technique of insect control. In: Genetic of insect vectors of diseases. Wright, J.W. and Pal, R. (Eds). Elsevier, Amsterdam, Netherlands, 617-650.
- Melters, D.P., Paliulis, L.V., Korf, I.F. and Chan, S.W. 2012. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research, 20 (5): 579-593.
doi:10.1007/s10577-012-9292-1
- North, D.T. 1967. Radiation-induced male sterility exhibited in the P1 and F1 generations in Lepidoptera. Radiation Research, 31: 615.
- Norton, R.A., Kethley, J.B., Johnston, D.E. and OConnor, B.M. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Evolution and diversity of sex ratio in insects and mites. Wrensch, D. and Ebbert, M.A. (Eds). Chapman and Hall, New York, USA, 8-99.
- Norton, R.A. and Franklin, E. 2018. Paraquanothrus n. gen. from freshwater rock pools in the USA, with new diagnoses of Aquanothrus, Aquanothrinae, and Ameronothridae (Acari, Oribatida). Acarologia, 58: 557-627.
doi:10.24349/acarologia/20184258
- Oliver, J.H. 1977. Cytogenetics of mites and ticks. Annual Review of Entomology, 22: 407-429.
doi:10.1146/annurev.en.22.010177.002203
- Peruzzi, L. and Eroğlu, H.E. 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics, 7: 1-9.
doi:10.3897/CompCytogen.v7i1.4431
- Schuppenhaurer, M.M., Lehmitz, R. and Xylander, W.E.R. 2019. Slow-moving soil organisms on a water highway: aquatic dispersal and survival potential of Oribatida and Collembola in running water. Movement Ecology, 7: 1-14.
doi:10.1186/s40462-019-0165-5
- Subías, L.S. 2004. Systematic, synonimical and biogeographical check-list of the world’s oribatid mites (Acariformes, Oribatida) (1758-2002). Graellsia, 60 (1): 3-305. (actualizado en junio de 2006, en abril de 2007, en mayo de 2008, en abril de 2009, en julio de 2010, en febrero de 2011, en abril de 2012, en mayo de 2013 y en febrero de 2014, en marzo de 2015 y en febrero de 2016, en febrero de 2017, en enero de 2018, en marzo de 2019, en enero de 2020 y en marzo de 2021). [In Spanish]
- White, M.J.D. 1973. Animal cytology and evolution. Cambridge University Press, Cambridge, UK, 468 pp.
- Wrensch, D.L., Kethley, J.B. and Norton, R.A. 1994. Cytogenetics of holokinetic chromosomes and inverted meiosis: Keys to the evolutionary success of mites, with generalization on eukaryotes. In: Mites: ecological and evolutionary analyses of life-history patterns. Houck, M.A. (Ed.). Chapman and Hall, New York, USA, 282-343.
doi:10.1007/978-1-4615-2389-5_11
Karyotype analysis of two oribatid mite species (Acari: Oribatida)
Year 2022,
Volume: 4 Issue: 1, 41 - 45, 27.01.2022
Nisa Gümüş
,
Halil Erhan Eroğlu
,
Sedat Per
Abstract
The chromosomal parameters and karyotypic relationships may provide very valuable information about speciation and karyotype evolution. In the order Oribatida, the chromosomal data are limited to a few reports. In the present study, the chromosomal data of two species are provided for the first time. The diploid chromosome numbers are 2n = 14 in Oribotritia hermanni Grandjean, 1967 (Oribatida: Oribotritiidae) and 2n = 22 in Hermanniella gibber Kulijev, 1979 (Oribatida: Hermanniellidae) and chromosomes are small holocentric chromosomes. The smallest and largest chromosome sizes are 0.38 μm and 1.08 μm in O. hermanni, respectively. The total haploid chromosome length is 4.88 μm, in O. hermanni, and a higher value of 6.98 μm is recorded in H. gibber. The sex chromosomes could not be identified, because the oribatid mites show weak sexual dimorphism. In this respect, the results of the study provide important contributions to the cytotaxonomy of oribatid mites.
Project Number
6601-FBE/18- 222
References
- Behan-Pelletier, V. M. 2015. Review of sexual dimorphism in brachypyline oribatid mites. Acarologia, 55: 127-146.
doi:10.1051/acarologia/20152163
- Bezci, T. and Baran, Ş. 2016. First record of the genus Lucoppia (Acari: Oribatida) from Turkey. Turkish Journal of Zoology, 40: 765-768.
doi:10.3906/zoo-1512-79
- Dabert, J. 2005. Acari (mites and ticks). In: Marine parasitology. Rohde, K. (Ed.). CSIRO Publishing, Collingwood, Australia, 216-222.
- Eroğlu, H.E. 2015. Which chromosomes are subtelocentric or acrocentric? A new karyotype symmetry/asymmetry index. Caryologia, 68: 239-245.
doi:10.1080/00087114.2015.1032614
- Eroğlu, H.E. and Per, S. 2016. Karyotype analysis of Zygoribatula cognata (Oudemans) (Acari: Oribatida: Oribatulidae). Turkish Journal of Entomology, 40: 33-38.
doi:10.16970/ted.50556
- Gokhman, V.E. and Quicke, D.L.J. 1995. The last twenty years of parasitic Hymenoptera karyology: an update and phylogenetic implications. Journal of Hymenoptera Research, 4: 41-63.
- Gümüş, N., Per, S. and Eroğlu, H.E. 2018. Karyotype analysis of Phauloppia lucorum (Koch, 1841) (Oribatida: Oribatulidae). Turkish Journal of Entomology, 42: 77-83.
doi:10.16970/entoted.382980
- Heethoff, M., Bergmann, P. and Norton, R.A. 2006. Karyology and sex determination of oribatid mites. Acarologia, 46: 127-131.
- Heethoff, M., Laumann, M. and Bergmann, P. 2007. Adding to the reproductive biology of the parthenogenetic oribatid mite, Archegozetes longisetosus (Acari, Oribatida, Trhypochthoniidae). Turkish Journal of Zoology, 31: 151-159.
- Imai, H., Taylor, R.W., Crosland, M.W. and Crozier, R. 1988. Modes of spontaneous chromosomal mutation and kar-yotype evolution in ants with reference to the minimum interaction hypothesis. The Japanese Journal of Genetics, 63 (2):159-185.
doi:10.1266/jjg.63.159
- Lachange, L.E. 1967. The Induction dominant lethal mutation in insects by Ionizing radiation and chemicals-as related to the steril-male technique of insect control. In: Genetic of insect vectors of diseases. Wright, J.W. and Pal, R. (Eds). Elsevier, Amsterdam, Netherlands, 617-650.
- Melters, D.P., Paliulis, L.V., Korf, I.F. and Chan, S.W. 2012. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research, 20 (5): 579-593.
doi:10.1007/s10577-012-9292-1
- North, D.T. 1967. Radiation-induced male sterility exhibited in the P1 and F1 generations in Lepidoptera. Radiation Research, 31: 615.
- Norton, R.A., Kethley, J.B., Johnston, D.E. and OConnor, B.M. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Evolution and diversity of sex ratio in insects and mites. Wrensch, D. and Ebbert, M.A. (Eds). Chapman and Hall, New York, USA, 8-99.
- Norton, R.A. and Franklin, E. 2018. Paraquanothrus n. gen. from freshwater rock pools in the USA, with new diagnoses of Aquanothrus, Aquanothrinae, and Ameronothridae (Acari, Oribatida). Acarologia, 58: 557-627.
doi:10.24349/acarologia/20184258
- Oliver, J.H. 1977. Cytogenetics of mites and ticks. Annual Review of Entomology, 22: 407-429.
doi:10.1146/annurev.en.22.010177.002203
- Peruzzi, L. and Eroğlu, H.E. 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics, 7: 1-9.
doi:10.3897/CompCytogen.v7i1.4431
- Schuppenhaurer, M.M., Lehmitz, R. and Xylander, W.E.R. 2019. Slow-moving soil organisms on a water highway: aquatic dispersal and survival potential of Oribatida and Collembola in running water. Movement Ecology, 7: 1-14.
doi:10.1186/s40462-019-0165-5
- Subías, L.S. 2004. Systematic, synonimical and biogeographical check-list of the world’s oribatid mites (Acariformes, Oribatida) (1758-2002). Graellsia, 60 (1): 3-305. (actualizado en junio de 2006, en abril de 2007, en mayo de 2008, en abril de 2009, en julio de 2010, en febrero de 2011, en abril de 2012, en mayo de 2013 y en febrero de 2014, en marzo de 2015 y en febrero de 2016, en febrero de 2017, en enero de 2018, en marzo de 2019, en enero de 2020 y en marzo de 2021). [In Spanish]
- White, M.J.D. 1973. Animal cytology and evolution. Cambridge University Press, Cambridge, UK, 468 pp.
- Wrensch, D.L., Kethley, J.B. and Norton, R.A. 1994. Cytogenetics of holokinetic chromosomes and inverted meiosis: Keys to the evolutionary success of mites, with generalization on eukaryotes. In: Mites: ecological and evolutionary analyses of life-history patterns. Houck, M.A. (Ed.). Chapman and Hall, New York, USA, 282-343.
doi:10.1007/978-1-4615-2389-5_11