Konferans Bildirisi
BibTex RIS Kaynak Göster

PLASMA STUDIES IN TÜBİTAK NATIONAL METROLOGY INSTITUTE

Yıl 2021, Cilt: 5 Sayı: 1, 24 - 29, 03.09.2021

Öz

Over the past few decades, low-temperature plasma researches have gained momentum as they lie at the core of numerous applications in industry, environment and medicine. Recently, metrology community has also begun to take advantage of the unusual properties of plasma to develop new advanced measurement techniques and new measuring devices. In accordance with this purpose, in 2019, the Plasma Laboratory was installed in TÜBİTAK National Metrology Institute (UME) within the scope of infrastructure research and development program founded by Industry Ministry of Turkey for contributing to the ongoing worldwide research on plasma studies. In this work, the current advances in Plasma Laboratory of UME will be introduced. We present the installed experimental set-up for low-temperature and low-pressure gas discharge plasma. We present our preliminary measurement results in determining electron temperature by Langmuir probe and optical emission spectrometer.

Destekleyen Kurum

TÜBİTAK UME

Proje Numarası

G2ED-E1-02-I

Teşekkür

This research is founded by TÜBİTAK UME with Project No: G2ED-E1-02-I

Kaynakça

  • I. Langmuir, Oscillations in ionized gases, Proc. Natl. Acad. Sci. 14, 627–637 (1928).
  • P. I. John, Plasma Sciences and the Creation of Wealth, Tata McGraw-Hill Pub., New York (2005).
  • R. d'Agostino, P. Favia, C. Oehr, M. R. Wertheimer, Low Temperature Plasma Processing of Materials: Past, Present, and Future, PlasmaProcess. Polym. 2, 7-15 (2005). DOI: https://doi.org/10.1002/ppap.200400074
  • N. Khan, N. Abas, Comparative study of energy saving light sources, Renewable Sustainable Energy Rev. 15, 296-309 (2011). DOI: https://doi.org/10.1016/j.rser.2010.07.072
  • N. T. Kalyani, S. J. Dhoble, Organic light emitting diodes: Energy saving lighting technology-A review, Renewable Sustainable Energy Rev. 16, 2696-2723 (2012). DOI: 10.1016/j.rser.2012.02.021
  • E. M. Liston, L. Martinu, M. R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review, J. Adhes. Sci. Technol. 7, 1091-1127 (1993). DOI: https://doi.org/10.1163/156856193X00600
  • B. Eliasson, U. Kogelschatz, Nonequilibrium volume plasma chemical processing, IEEE Trans. Plasma Sci. 19, 1063-1077 (1991). DOI: 10.1109/27.125031
  • B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, J.-S. Chang, Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment, Ind. Eng. Chem. Res. 45, 882-905 (2006). DOI: https://doi.org/10.1021/ie050981u
  • H.-H. Kim, Nonthermal Plasma Processing for Air Pollution Control: A Historical Review, Current Issues, and Future Prospects, Plasma Process. Polym. 1, 91-110 (2004). DOI: https://doi.org/10.1002/ppap.200400028
  • W. Siemens, Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten, Ann. Phys., 178, 66 (1857). DOI: https://doi.org/10.1002/andp.18571780905
  • A. Sakudo, H. Shintani, Sterilization and Disinfection by Plasma: Sterilization Mechanisms, Biological and Medical Applications (Medical Devices and Equipment); Nova Science Publishers: Tokyo (2010).
  • M. A. Sobolewski, Real-time, noninvasive monitoring of ion energy and ion current at a wafer surface during plasma etching, J. Vac. Sci. & Technol. A 24, 1892-1905, (2006). DOI: https://doi.org/10.1116/1.2335862.
  • M. A. Sobolewski, J.-H. Kim, The effects of radio-frequency bias on electron density in an inductively coupled plasma reactor, J. Appl. Phys. 102, 113302 (2007). DOI: https://doi.org/10.1063/1.2815674
  • R. Silwal, E. Takacs, J. M. Dreiling, J. D. Gillaspy, Y. Ralchenko, Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium, Atoms , 5, 30 (2017). DOI: https://doi.org/10.3390/atoms5030030
  • J. S. E. Wieslander, M. Hult, G. Bonheure, D. Arnold, H. Dombrowski, J. Gasparro, G. Marissens, M. Laubenstein, G. Marissens, P. Vermaercke, Low-level gamma-ray spectrometry for analysing fusion plasma conditions, Nucl. Instr. and Meth. A 591 383-393 (2008).
  • R. González de Orduña, M. Hult, G. Bonheure, D. Arnold, H. Dombrowski, M. Laubenstein, J. S. E. Wieslander, T. Vidmar, P. Vermaercke, Angular distribution of proton leakage from a fusion plasma using ultra low-level gamma-ray spectrometry, Appl. Radiat. Isot. 68, 1226-1230 (2010). DOI: https://doi.org/10.1016/j.apradiso.2009.11.019
  • “9th edition of the SI Brochure”. BIPM (2019). https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf
  • J. Fischer, Low uncertainty Boltzmann constant determinations and the kelvin redefinition”, Phil. Trans. R. Soc. A 374, 20150038 (2016). DOI: https://doi.org/10.1098/rsta.2015.0038
  • D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H. S. Margolis, E. de Mirandés, P. J. Mohr, F. Nez, K. Pachucki, T. J. Quinn, B. N. Taylor, M. Wang, B. M. Wood and Z. Zhang, The CODATA 2017 values of h, e, k, and NA for the revision of the SI, Metrologia 55, L13–L16 (2018). DOI: 10.1088/1681-7575/aa950a
  • M. Stock, R. Davis, E. de Mirandés, M. J. T. Milton, The revision of the SI—the result of three decades of progress in metrology, Metrologia 56 022001 (2019). DOI: 10.1088/1681-7575/ab28a8.
  • NIST Atomic Spectra Database. https://www.nist.gov/pml/atomic-spectra-database
  • X.-M. Zhu, Y.-K. Pu, Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: determination of the electron temperature and density by the line-ratio method, J. Phys. D: Appl. Phys. 43 403001 (2010). DOI: 10.1088/0022-3727/43/40/403001
Yıl 2021, Cilt: 5 Sayı: 1, 24 - 29, 03.09.2021

Öz

Proje Numarası

G2ED-E1-02-I

Kaynakça

  • I. Langmuir, Oscillations in ionized gases, Proc. Natl. Acad. Sci. 14, 627–637 (1928).
  • P. I. John, Plasma Sciences and the Creation of Wealth, Tata McGraw-Hill Pub., New York (2005).
  • R. d'Agostino, P. Favia, C. Oehr, M. R. Wertheimer, Low Temperature Plasma Processing of Materials: Past, Present, and Future, PlasmaProcess. Polym. 2, 7-15 (2005). DOI: https://doi.org/10.1002/ppap.200400074
  • N. Khan, N. Abas, Comparative study of energy saving light sources, Renewable Sustainable Energy Rev. 15, 296-309 (2011). DOI: https://doi.org/10.1016/j.rser.2010.07.072
  • N. T. Kalyani, S. J. Dhoble, Organic light emitting diodes: Energy saving lighting technology-A review, Renewable Sustainable Energy Rev. 16, 2696-2723 (2012). DOI: 10.1016/j.rser.2012.02.021
  • E. M. Liston, L. Martinu, M. R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review, J. Adhes. Sci. Technol. 7, 1091-1127 (1993). DOI: https://doi.org/10.1163/156856193X00600
  • B. Eliasson, U. Kogelschatz, Nonequilibrium volume plasma chemical processing, IEEE Trans. Plasma Sci. 19, 1063-1077 (1991). DOI: 10.1109/27.125031
  • B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, J.-S. Chang, Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment, Ind. Eng. Chem. Res. 45, 882-905 (2006). DOI: https://doi.org/10.1021/ie050981u
  • H.-H. Kim, Nonthermal Plasma Processing for Air Pollution Control: A Historical Review, Current Issues, and Future Prospects, Plasma Process. Polym. 1, 91-110 (2004). DOI: https://doi.org/10.1002/ppap.200400028
  • W. Siemens, Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten, Ann. Phys., 178, 66 (1857). DOI: https://doi.org/10.1002/andp.18571780905
  • A. Sakudo, H. Shintani, Sterilization and Disinfection by Plasma: Sterilization Mechanisms, Biological and Medical Applications (Medical Devices and Equipment); Nova Science Publishers: Tokyo (2010).
  • M. A. Sobolewski, Real-time, noninvasive monitoring of ion energy and ion current at a wafer surface during plasma etching, J. Vac. Sci. & Technol. A 24, 1892-1905, (2006). DOI: https://doi.org/10.1116/1.2335862.
  • M. A. Sobolewski, J.-H. Kim, The effects of radio-frequency bias on electron density in an inductively coupled plasma reactor, J. Appl. Phys. 102, 113302 (2007). DOI: https://doi.org/10.1063/1.2815674
  • R. Silwal, E. Takacs, J. M. Dreiling, J. D. Gillaspy, Y. Ralchenko, Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium, Atoms , 5, 30 (2017). DOI: https://doi.org/10.3390/atoms5030030
  • J. S. E. Wieslander, M. Hult, G. Bonheure, D. Arnold, H. Dombrowski, J. Gasparro, G. Marissens, M. Laubenstein, G. Marissens, P. Vermaercke, Low-level gamma-ray spectrometry for analysing fusion plasma conditions, Nucl. Instr. and Meth. A 591 383-393 (2008).
  • R. González de Orduña, M. Hult, G. Bonheure, D. Arnold, H. Dombrowski, M. Laubenstein, J. S. E. Wieslander, T. Vidmar, P. Vermaercke, Angular distribution of proton leakage from a fusion plasma using ultra low-level gamma-ray spectrometry, Appl. Radiat. Isot. 68, 1226-1230 (2010). DOI: https://doi.org/10.1016/j.apradiso.2009.11.019
  • “9th edition of the SI Brochure”. BIPM (2019). https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf
  • J. Fischer, Low uncertainty Boltzmann constant determinations and the kelvin redefinition”, Phil. Trans. R. Soc. A 374, 20150038 (2016). DOI: https://doi.org/10.1098/rsta.2015.0038
  • D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H. S. Margolis, E. de Mirandés, P. J. Mohr, F. Nez, K. Pachucki, T. J. Quinn, B. N. Taylor, M. Wang, B. M. Wood and Z. Zhang, The CODATA 2017 values of h, e, k, and NA for the revision of the SI, Metrologia 55, L13–L16 (2018). DOI: 10.1088/1681-7575/aa950a
  • M. Stock, R. Davis, E. de Mirandés, M. J. T. Milton, The revision of the SI—the result of three decades of progress in metrology, Metrologia 56 022001 (2019). DOI: 10.1088/1681-7575/ab28a8.
  • NIST Atomic Spectra Database. https://www.nist.gov/pml/atomic-spectra-database
  • X.-M. Zhu, Y.-K. Pu, Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: determination of the electron temperature and density by the line-ratio method, J. Phys. D: Appl. Phys. 43 403001 (2010). DOI: 10.1088/0022-3727/43/40/403001
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Research Articles
Yazarlar

Hacı Ahmedov

Beste Korutlu

Recep Orhan

Esra Okumuş

Arif Demir Bu kişi benim

Proje Numarası G2ED-E1-02-I
Yayımlanma Tarihi 3 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 1

Kaynak Göster

APA Ahmedov, H., Korutlu, B., Orhan, R., Okumuş, E., vd. (2021). PLASMA STUDIES IN TÜBİTAK NATIONAL METROLOGY INSTITUTE. Acta Materialia Turcica, 5(1), 24-29.
AMA Ahmedov H, Korutlu B, Orhan R, Okumuş E, Demir A. PLASMA STUDIES IN TÜBİTAK NATIONAL METROLOGY INSTITUTE. ACTAMAT. Eylül 2021;5(1):24-29.
Chicago Ahmedov, Hacı, Beste Korutlu, Recep Orhan, Esra Okumuş, ve Arif Demir. “PLASMA STUDIES IN TÜBİTAK NATIONAL METROLOGY INSTITUTE”. Acta Materialia Turcica 5, sy. 1 (Eylül 2021): 24-29.
EndNote Ahmedov H, Korutlu B, Orhan R, Okumuş E, Demir A (01 Eylül 2021) PLASMA STUDIES IN TÜBİTAK NATIONAL METROLOGY INSTITUTE. Acta Materialia Turcica 5 1 24–29.
IEEE H. Ahmedov, B. Korutlu, R. Orhan, E. Okumuş, ve A. Demir, “PLASMA STUDIES IN TÜBİTAK NATIONAL METROLOGY INSTITUTE”, ACTAMAT, c. 5, sy. 1, ss. 24–29, 2021.
ISNAD Ahmedov, Hacı vd. “PLASMA STUDIES IN TÜBİTAK NATIONAL METROLOGY INSTITUTE”. Acta Materialia Turcica 5/1 (Eylül 2021), 24-29.
JAMA Ahmedov H, Korutlu B, Orhan R, Okumuş E, Demir A. PLASMA STUDIES IN TÜBİTAK NATIONAL METROLOGY INSTITUTE. ACTAMAT. 2021;5:24–29.
MLA Ahmedov, Hacı vd. “PLASMA STUDIES IN TÜBİTAK NATIONAL METROLOGY INSTITUTE”. Acta Materialia Turcica, c. 5, sy. 1, 2021, ss. 24-29.
Vancouver Ahmedov H, Korutlu B, Orhan R, Okumuş E, Demir A. PLASMA STUDIES IN TÜBİTAK NATIONAL METROLOGY INSTITUTE. ACTAMAT. 2021;5(1):24-9.