Embryological Origins and Genetics in Frontotemporal Dementia
Yıl 2025,
Cilt: 9 Sayı: 3, 397 - 402, 22.12.2025
Zeynep Hayırlıoğlu
,
Zeliha Yücel
,
Emine Berrin Yüksel
Öz
Frontotemporal dementia (FTD) represents a heterogeneous group of neurodegenerative disorders marked by progressive deterioration in behavior, language, and executive function. While its genetic architecture dominated by mutations in C9orf72, GRN, and MAPT has been widely studied, less attention has been given to how early neurodevelopmental processes may shape regional vulnerability. This review integrates current findings in molecular genetics with insights from embryonic development of the frontal and temporal lobes. Key signaling pathways such as Wnt, SHH, and Notch are examined in the context of FTD-related pathology. Emphasis is placed on how embryological disruption may predispose cortical regions to later neurodegeneration. The clinical implications of these developmental-genetic interactions are also explored, underscoring their relevance in future biomarker discovery and therapeutic targeting.
Etik Beyan
Since it is a compilation, ethics committee approval is not required.
Kaynakça
-
1. Antonioni A, Raho EM, Lopriore P, et al. Frontotemporal dementia, where do we stand? A narrative review. Int J Mol Sci. 2023;24(14):11732.
-
2. Olney NT, Spina S, Miller BL. Frontotemporal dementia. Neurol Clin. 2017;35(2):339.
-
3. Hallmann A-L, Araúzo-Bravo MJ, Mavrommatis L, et al. Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein. Sci Rep. 2017;7(1):42991.
-
4. Greaves CV, Rohrer JD. An update on genetic frontotemporal dementia. J Neurol. 2019;266(8):2075–2086.
-
5. Leibovitz Z, Lerman-Sagie T, Haddad L. Fetal brain development: regulating processes and related malformations. Life. 2022;12(6):809.
-
6. Fenoglio C, Scarpini E, Serpente M, Galimberti D. Role of genetics and epigenetics in the pathogenesis of Alzheimer’s disease and frontotemporal dementia. J Alzheimers Dis. 2018;62(3):913–932.
-
7. Bagheri-Mohammadi S. Adult neurogenesis and the molecular signalling pathways in brain: the role of stem cells in adult hippocampal neurogenesis. Int J Neurosci. 2022;132(12):1165–1177.
-
8. Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. BBA Gen Subj. 2013;1830(2):2435–2448.
-
9. Hirota Y, Nakajima K. Control of neuronal migration and aggregation by reelin signaling in the developing cerebral cortex. Front Cell Dev Biol. 2017;5:40.
-
10. McCormick AM, Leipzig ND. Neural regenerative strategies incorporating biomolecular axon guidance signals. Ann Biomed Eng. 2012;40(3):578–597.
-
11. Duquette PM. Novel mechanisms regulating the netrin-1 receptor deleted in colorectal cancer (DCC) during cortical axon outgrowth. McGill University (Canada); 2019.
-
12. Buyanova IS, Arsalidou M. Cerebral white matter myelination and relations to age, gender, and cognition: a selective review. Front Hum Neurosci. 2021;15:662031.
-
13. Nishimura AL, Arias N. Synaptopathy mechanisms in ALS caused by C9orf72 repeat expansion. Front Cell Neurosci. 2021;15:660693.
-
14. Starr A, Sattler R. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD. Brain Res. 2018;1693:98–108.
-
15. Kao AW, McKay A, Singh PP, Brunet A, Huang EJ. Progranulin, lysosomal regulation and neurodegenerative disease. Nat Rev Neurosci. 2017;18(6):325–333.
-
16. Townley RA, Boeve BF, Benarroch EE. Progranulin: functions and neurologic correlations. Neurology. 2018;90(3):118–125.
-
17. Zhang C-C, Xing A, Tan M-S, Tan L, Yu J-T. The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy. Mol Neurobiol. 2016;53(7):4893–4904.
-
18. Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated tau in Alzheimer’s disease and other tauopathies. Int J Mol Sci. 2022;23(21):12841.
-
19. Hadi F, Akrami H, Shahpasand K, Fattahi MR. Wnt signalling pathway and tau phosphorylation: a comprehensive study on known connections. Cell Biochem Funct. 2020;38(6):686–694.
-
20. Ondaro Ezkurra J. Unveiling pathophysiological mechanisms and early transcriptomic biomarkers in hereditary progranulin-related frontotemporal dementia: a comprehensive study. Doctoral dissertation. University of the Basque Country; 2024.
-
21. Li X, Li Y, Li S, Li H, Yang C, Lin J. The role of Shh signalling pathway in central nervous system development and related diseases. Cell Biochem Funct. 2021;39(2):180–189.
-
22. Lines G, Casey JM, Preza E, Wray S. Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Mol Cell Neurosci. 2020;109:103553.
-
23. Cornell J, Salinas S, Huang H-Y, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res. 2022;17(4):705–716.
-
24. Valente ES, Caramelli P, Gambogi LB, et al. Phenocopy syndrome of behavioral variant frontotemporal dementia: a systematic review. Alzheimers Res Ther. 2019;11(1):30.
-
25. McEachin ZT, Parameswaran J, Raj N, Bassell GJ, Jiang J. RNA-mediated toxicity in C9orf72 ALS and FTD. Neurobiol Dis. 2020;145:105055.
-
26. Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Invest. 2019;99(7):912–928.
-
27. Sieben A, Van Langenhove T, Engelborghs S, et al. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. 2012;124(3):353–372.
-
28. Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol. 2012;8(8):423–434.
-
29. Tamang T, Wangchuk T, Zangmo C, Wangmo T, Tshomo K. The successful implementation of the enhanced recovery after surgery (ERAS) program among caesarean deliveries in Bhutan to reduce the postoperative length of hospital stay. BMC Pregnancy Childbirth. 2021;21(1):637.
-
30. Broce IJ, Sirkis DW, Nillo RM, et al. C9orf72 gene networks in the human brain correlate with cortical thickness in C9-FTD and implicate vulnerable cell types. Front Neurosci. 2024;18:1258996.
-
31. Boccardi M, Laakso MP, Bresciani L, et al. The MRI pattern of frontal and temporal brain atrophy in fronto-temporal dementia. Neurobiol Aging. 2003;24(1):95–103.
Frontotemporal Demansta Embriyolojik Kökenler ve Genetik
Yıl 2025,
Cilt: 9 Sayı: 3, 397 - 402, 22.12.2025
Zeynep Hayırlıoğlu
,
Zeliha Yücel
,
Emine Berrin Yüksel
Öz
Frontotemporal demans (FTD), davranış, dil ve yürütücü işlevlerde ilerleyici bozulma ile seyreden heterojen bir nörodejeneratif bozukluk grubudur. C9orf72, GRN ve MAPT gibi başlıca genetik mutasyonların rolü bilinmekle birlikte, bu genetik zeminin beyin korteksinin önceden programlanmış embriyolojik kırılganlıklarıyla nasıl kesiştiği yeterince açıklığa kavuşmamıştır. Bu derleme, frontal ve temporal lobların erken gelişimsel süreçleri ile FTD’ye özgü genetik mekanizmaları bir araya getirerek, nöronal göç, sinaptogenez ve miyelinizasyon gibi evrelerin hastalık patogenezindeki yerini tartışmaktadır. Sonuç olarak, bu gelişimsel-genetik etkileşimlerin klinik bulgu çeşitliliğini nasıl etkilediği ve yeni biyobelirteç geliştirme çalışmalarına nasıl yön verebileceği değerlendirilmiştir.
Etik Beyan
Derleme olması nedeni ile etik kurul onamı gerekmemektedir.
Kaynakça
-
1. Antonioni A, Raho EM, Lopriore P, et al. Frontotemporal dementia, where do we stand? A narrative review. Int J Mol Sci. 2023;24(14):11732.
-
2. Olney NT, Spina S, Miller BL. Frontotemporal dementia. Neurol Clin. 2017;35(2):339.
-
3. Hallmann A-L, Araúzo-Bravo MJ, Mavrommatis L, et al. Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein. Sci Rep. 2017;7(1):42991.
-
4. Greaves CV, Rohrer JD. An update on genetic frontotemporal dementia. J Neurol. 2019;266(8):2075–2086.
-
5. Leibovitz Z, Lerman-Sagie T, Haddad L. Fetal brain development: regulating processes and related malformations. Life. 2022;12(6):809.
-
6. Fenoglio C, Scarpini E, Serpente M, Galimberti D. Role of genetics and epigenetics in the pathogenesis of Alzheimer’s disease and frontotemporal dementia. J Alzheimers Dis. 2018;62(3):913–932.
-
7. Bagheri-Mohammadi S. Adult neurogenesis and the molecular signalling pathways in brain: the role of stem cells in adult hippocampal neurogenesis. Int J Neurosci. 2022;132(12):1165–1177.
-
8. Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. BBA Gen Subj. 2013;1830(2):2435–2448.
-
9. Hirota Y, Nakajima K. Control of neuronal migration and aggregation by reelin signaling in the developing cerebral cortex. Front Cell Dev Biol. 2017;5:40.
-
10. McCormick AM, Leipzig ND. Neural regenerative strategies incorporating biomolecular axon guidance signals. Ann Biomed Eng. 2012;40(3):578–597.
-
11. Duquette PM. Novel mechanisms regulating the netrin-1 receptor deleted in colorectal cancer (DCC) during cortical axon outgrowth. McGill University (Canada); 2019.
-
12. Buyanova IS, Arsalidou M. Cerebral white matter myelination and relations to age, gender, and cognition: a selective review. Front Hum Neurosci. 2021;15:662031.
-
13. Nishimura AL, Arias N. Synaptopathy mechanisms in ALS caused by C9orf72 repeat expansion. Front Cell Neurosci. 2021;15:660693.
-
14. Starr A, Sattler R. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD. Brain Res. 2018;1693:98–108.
-
15. Kao AW, McKay A, Singh PP, Brunet A, Huang EJ. Progranulin, lysosomal regulation and neurodegenerative disease. Nat Rev Neurosci. 2017;18(6):325–333.
-
16. Townley RA, Boeve BF, Benarroch EE. Progranulin: functions and neurologic correlations. Neurology. 2018;90(3):118–125.
-
17. Zhang C-C, Xing A, Tan M-S, Tan L, Yu J-T. The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy. Mol Neurobiol. 2016;53(7):4893–4904.
-
18. Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated tau in Alzheimer’s disease and other tauopathies. Int J Mol Sci. 2022;23(21):12841.
-
19. Hadi F, Akrami H, Shahpasand K, Fattahi MR. Wnt signalling pathway and tau phosphorylation: a comprehensive study on known connections. Cell Biochem Funct. 2020;38(6):686–694.
-
20. Ondaro Ezkurra J. Unveiling pathophysiological mechanisms and early transcriptomic biomarkers in hereditary progranulin-related frontotemporal dementia: a comprehensive study. Doctoral dissertation. University of the Basque Country; 2024.
-
21. Li X, Li Y, Li S, Li H, Yang C, Lin J. The role of Shh signalling pathway in central nervous system development and related diseases. Cell Biochem Funct. 2021;39(2):180–189.
-
22. Lines G, Casey JM, Preza E, Wray S. Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Mol Cell Neurosci. 2020;109:103553.
-
23. Cornell J, Salinas S, Huang H-Y, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res. 2022;17(4):705–716.
-
24. Valente ES, Caramelli P, Gambogi LB, et al. Phenocopy syndrome of behavioral variant frontotemporal dementia: a systematic review. Alzheimers Res Ther. 2019;11(1):30.
-
25. McEachin ZT, Parameswaran J, Raj N, Bassell GJ, Jiang J. RNA-mediated toxicity in C9orf72 ALS and FTD. Neurobiol Dis. 2020;145:105055.
-
26. Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Invest. 2019;99(7):912–928.
-
27. Sieben A, Van Langenhove T, Engelborghs S, et al. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. 2012;124(3):353–372.
-
28. Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol. 2012;8(8):423–434.
-
29. Tamang T, Wangchuk T, Zangmo C, Wangmo T, Tshomo K. The successful implementation of the enhanced recovery after surgery (ERAS) program among caesarean deliveries in Bhutan to reduce the postoperative length of hospital stay. BMC Pregnancy Childbirth. 2021;21(1):637.
-
30. Broce IJ, Sirkis DW, Nillo RM, et al. C9orf72 gene networks in the human brain correlate with cortical thickness in C9-FTD and implicate vulnerable cell types. Front Neurosci. 2024;18:1258996.
-
31. Boccardi M, Laakso MP, Bresciani L, et al. The MRI pattern of frontal and temporal brain atrophy in fronto-temporal dementia. Neurobiol Aging. 2003;24(1):95–103.