Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of mycorrhiza and Trichoderma Inoculation on Plant Growth, Yield, and Fruit Quality in soilless tomato (Solanum lycopersicum) cultivation

Yıl 2024, Cilt: 6 Sayı: 1, 19 - 32, 12.09.2024

Öz

This study investigates the effects of mycorrhiza, Trichoderma, and a combination of mycorrhiza+Trichoderma on plant growth, yield, and fruit quality in a coconut fiber medium. Fungi were applied to the root zones of plant seedlings immediately after planting. For mycorrhizal inoculations, 0.1 g per plant and for Trichoderma inoculations, 0.2 g per plant were used. According to the results, mycorrhizal application has significantly increased the total number of fruits (93.46 fruits/plant), yield per plant (10.376 kg/plant), plant height (3.76 m), and root weight (221.3 g) compared to the control group. Additionally, Trichoderma and mycorrhiza+Trichoderma applications have led to significant increases in lycopene (11.65 mg/100g), ß-carotene (3.78 mg/100g), and Vitamin-C (15.68 mg/100g) values. It was determined that the amount of chlorophyll and carotenoids in the leaves was higher in the mycorrhiza+Trichoderma application compared to the control group. According to the research results, it has been determined that the use of mycorrhiza and Trichoderma inoculations positively affects yield and quality when used in conjunction with soilless agriculture methods.

Kaynakça

  • Adesemoye, A. O. ve Kloepper, J. W. (2009). Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology, 85, 1-12. https://doi.org/10.1007/s00253-009-2196-0
  • Aguilera, P., Becerra, N., Alvear, M., Ortiz, N., Turrini, A., Azcón‐Aguilar, C., Miguel L. G., Romero, J. K., Massri, M., Seguel, A., Mora, M. D. L. ve Borie, F. (2022). Arbuscular mycorrhizal fungi from acidic soils favors production of tomatoes and lycopene concentration. Journal of the Science of Food and Agriculture, 102(6), 2352-2358. https://doi.org/10.1002/jsfa.11573
  • Akınoğlu, G. ve Korkmaz, A. (2016). Topraksız tarımda farklı substrat miktarı ve besin çözeltisi uygulamalarının domateste beslenme ve verim kriterlerine etkisi. Toprak Bilimi ve Bitki Besleme Dergisi, 4(2), 49-56.
  • Alaboz, P. ve Çakmakcı, T. (2020). Kumlu tın ve killi tın toprakta kokopit oluşturduğu tarla kapasitesi ve sürekli solma noktası üzerine etkisi. Akdeniz Tarım Bilimleri, 33(2), 285-290. https://doi.org/10.29136/mediterranean.660207
  • Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109(1), 1-7. https://doi.org/10.1016/j.scienta.2006.02.019
  • Altomare, C., Norvell, W. A., Björkman, T. ve Harman, G. (1999). Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology, 65(7), 2926-2933. https://doi.org/10.1128/AEM.65.7.2926-2933.1999
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3-42. https://doi.org/10.1007/s005720100097
  • Behiry, S., Soliman, S. A., Massoud, M. A., Abdelbary, M., Kordy, A. M., Abdelkhalek, A. ve Heflish, A. (2023). Trichoderma pubescens elicit ınduced systemic resistance in tomato challenged by Rhizoctonia solani. Journal of Fungi, 9(2), 167. https://doi.org/10.3390/jof9020167
  • Boyacı, S., Abaci Bayar, A. A. ve Başak, H. (2022). Evaluation of harvest waste in soilless agriculture tomato cultivation. Infrastruktura i Ekologia Terenów Wiejskich, 1(1), 29-42.
  • Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320, 37-77. https://doi.org/10.1007/s11104-008-9877-9
  • Calvo, P., Nelson, L. ve Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383, 3-41. https://doi.org/10.1007/s11104-014-2131-8
  • Cemeroğlu, B. (1992). Meyve ve Sebze İşleme Endüstrisinde Temel Analiz Metotları. Ankara, Türkiye: Biltav Yayınları.
  • Chien, Y. C. ve Huang, C. H. (2020). Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. European Journal of Plant Pathology, 156(4), 995-1003. https://doi.org/10.1007/s10658-020-01947-5
  • Dasgan, H. Y., Kusvuran, S. ve Ortas, I. (2008). Responses of soilless grown tomato plants to arbuscular mycorrhizal fungal (Glomus fasciculatum) colonization in re-cycling and open systems. African Journal of Biotechnology, 7(20), 3606-3613.
  • Demirgül, F. (2018). Çadırdan saraya Türk mutfağı. Uluslararası Türk Dünyası Turizm Araştırmaları Dergisi, 3(1), 105-125.
  • Demmig-Adams, B. ve Adams Iii, W. W. (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Biology, 43(1), 599-626.
  • Dere, S., Coban, A., Akhoundnejad, Y., Ozsoy, S. ve Daşgan, H. (2019). Use of mycorrhiza to reduce mineral fertilizers in soilless melon (Cucumis melo L.) cultivation. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1331-1336. http://doi.org/10.15835/nbha47411738
  • Douds Jr, D. D., Nagahashi, G., Reider, C. ve Hepperly, P. R. (2007). Inoculation with arbuscular mycorrhizal fungi increases the yield of potatoes in a high P soil. Biological Agriculture & Horticulture, 25(1), 67-78.
  • Dönel, G., Algur, Ö. F. ve Doğan, S. (2011). Rafignatoyid akarlarin vücut yüzeyi ve vücut içi mikrofunguslarinin belirlenmesi. Erzincan University Journal of Science and Technology, 5(1), 25-42.
  • FAO (2021). Tomato production in Turkey. Retrieved from http://www.fao.org/faostat/en/#data/QC/visualize (Son erişim tarihi: 27 Mart 2023)
  • Ganugi, P., Fiorini, A., Tabaglio, V., Capra, F., Zengin, G., Bonini, P., Caffi, T., Puglisi, E., Trevisan, M. ve Lucini, L. (2023). The functional profile and antioxidant capacity of tomato fruits are modulated by the ınteraction between microbial biostimulants, soil properties, and soil nitrogen status. Antioxidants, 12(2), 520. https://doi.org/10.3390/antiox12020520
  • Gianinazzi, S., Gollotte, A., Binet, M. N., van Tuinen, D., Redecker, D. ve Wipf, D. (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20(8), 519-530. https://doi.org/10.1007/s00572-010-0333-3
  • Gül, A. (2019). Topraksız Tarım (3. Baskı). Hasad Yayıncılık.
  • Güvenç, İ. (2019). Türkiye’de domates üretimi, dış ticareti ve rekabet gücü. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(1), 57-61. https://doi.org/10.18016/ksutarimdoga.vi.432316
  • Harman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Disease, 84(4), 377-393. https://doi.org/10.1094/PDIS.2000.84.4.377
  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. ve Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. https://doi.org/10.1038/nrmicro797
  • Hazar, D. ve Baktır, İ. (2013). Topraksız tarım kesme gül yetiştiriciliği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(2), 21-27.
  • Hermosa, R., Viterbo, A., Chet, I. ve Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(1), 17-25. https://doi.org/10.1099/mic.0.052274-0
  • Keskin, G. (2021). Türkiye’nin domates üretimindeki kayıpları ve rekabet gücü. Eurasıan Journal of Agricultural Economics (Ejae), 1(2), 18-37.
  • Kirk, J. T. O. ve Allen, R. L. (1965). Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochemical and Biophysical Research Communications, 21(6), 523-530. https://doi.org/10.1016/0006-291X(65)90516-4
  • Koide, R. T. ve Mosse, B. (2004). A history of research on arbuscular mycorrhiza. Mycorrhiza, 14, 145-163. https://doi.org/10.1007/s00572-004-0307-4
  • Kubicek, C. P., Herrera-Estrella, A., Seidl-Seiboth, V., Martinez, D. A., Druzhinina, I. S., Thon, M., ve Grigoriev, I. V. (2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 12, 1-15. https://doi.org/10.1186/gb-2011-12-4-r40
  • Liu, J., Fang, L., Pei, W., Li, F. ve Zhao, J. (2023). Effects of magnesium application on the arbuscular mycorrhizal symbiosis in tomato. Symbiosis, 89, 1-10. https://doi.org/10.1007/s13199-022-00862-z
  • Martínez-Medina, A., Del Mar Alguacil, M., Pascual, J. A. ve Van Wees, S. C. (2014). Phytohormone profiles induced by Trichoderma correspond with their biocontrol and plant growth-promoting activity on melon plants. Journal of Chemical Ecology, 40, 804-815. https://doi.org/10.1007/s10886-014-0478-1
  • Mastouri, F., Björkman, T. ve Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213-1221. https://doi.org/10.1094/PHYTO-03-10-0091
  • McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12), 1254-1255.
  • Meriç, M. K. ve Öztekin, G. B. (2008). Topraksız tarımda kapilar sistemler. Ege Üniversitesi Ziraat Fakültesi Dergisi, 45(2), 145-152.
  • Michałojć, Z., Jarosz, Z., Pitura, K. ve Dzida, K. (2015). Effect of mycorrhizal colonization and nutrient solutions concentration on the yielding and chemical composition of tomato grown in rockwool and straw medium. Acta Scientiarum Polonorum Hortorum Cultus, 14(6), 15-27.
  • Nagata, M. ve Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi, 39(10), 925-928. https://doi.org/10.3136/nskkk1962.39.925
  • Nisar, N., Li, L., Lu, S., Khin, N. C. ve Pogson, B. J. (2015). Carotenoid metabolism in plants. Molecular Plant, 8(1), 68-82.
  • Ortaş, I. (2012). The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Research, 125, 35-48. https://doi.org/10.1016/j.fcr.2011.08.005
  • Özbucak, T., Kabul, D. ve Ergen Akçin, Ö. (2020). Mikoriza ve fungusit uygulamalarının domates bitkisinin bazı büyüme ve gelişim parametreleri üzerine etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 529-543. https://doi.org/10.35193/bseufbd.716195
  • Özdemir, R. ve Demirbaş, N. (2020). Meyve ve sebze meyveleri ortaya çıkan kayıplar üzerinde etkili olan faktörler: İzmir ili örneği. Akdeniz Tarım Bilimleri, 33(1), 85-91. https://doi.org/10.29136/mediterranean.659011
  • Öztekin, G. B., Tuzel, Y. ve Tüzel, I. H. (2013). Does mycorrhiza improve salinity tolerance in grafted plants?. Scientia Horticulturae, 149, 55-60. https://doi.org/10.1016/j.scienta.2012.02.033
  • Öztekin, GB ve Ece, M. (2014). Sera Domates Yetiştiriciliğinde Symbion VAM (Glomus fasciculatum) İnokulasyonunun Bitki Gelişimi, Verim ve Meyve Kalitesi Üzerine Etkisinin Belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 1 (1), 35-42. https://doi.org/10.19159/tutad.65880
  • Pasković, I., Soldo, B., Ban, S. G., Radić, T., Lukić, M., Urlić, B., Mimica, M., Bubola, K. B., Colla, G., Rouphael, Y., Major, N., Šimpraga, M., Ban, D., Palčić, I., Franić, M., Grozić, K. ve Lukić, I. (2021). Fruit quality and volatile compound composition of processing tomato as affected by fertilisation practices and arbuscular mycorrhizal fungi application. Food Chemistry, 359, 129961. https://doi.org/10.1016/j.foodchem.2021.129961
  • Porras-Soriano, A., Soriano-Martín, M. L., Porras-Piedra, A. ve Azcón, R. (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of Plant Physiology, 166(13), 1350-1359. https://doi.org/10.1016/j.jplph.2009.02.010
  • Pozo, M. J., Verhage, A., García-Andrade, J., García, J. M. ve Azcón-Aguilar, C. (2009). Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In Mycorrhizas-Functional Processes and Ecological Impact. (pp. 123-135) https://doi.org/10.1007/978-3-540-87978-7_9
  • Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S. L., Morton, J. B. ve Walker, C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23, 515-531. https://doi.org/10.1007/s00572-013-0486-y
  • Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P. ve Colla, G. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 196, 91-108. https://doi.org/10.1016/j.scienta.2015.09.002
  • Sanmartín, N., Sánchez-Bel, P., Pastor, V., Pastor-Fernandez, J., Mateu, D., Pozo, M. J., Cerezo, M. ve Flors, V. (2020). Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. Plant Science, 298, 110595. https://doi.org/10.1016/j.plantsci.2020.110595
  • Savvas, D. ve Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry—A review. European Journal of Horticultural Science, 83(5), 280-293. https://doi.org/10.17660/eJHS.2018/83.5.2
  • Shoresh, M., Harman, G. E. ve Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. https://doi.org/10.1146/annurev-phyto-073009-114450
  • Smith, S. E. ve Read, D. J. (2010). Mycorrhizal Symbiosis. Academic Press.
  • Smith, S. E. ve Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250. https://doi.org/10.1146/annurev-arplant-042110-103846
  • Song, Y. Y., Zeng, R. S., Xu, J. F., Li, J., Shen, X. ve Yihdego, W. G. (2010). Interplant communication of tomato plants through underground common mycorrhizal networks. PloS One, 5(10), e13324. https://doi.org/10.1371/journal.pone.0013324
  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L. ve Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10. https://doi.org/10.1016/j.soilbio.2007.07.002

Topraksız domates (Solanum lycopersicum) yetiştiriciliğinde mikoriza ve Trichoderma aşılamasının bitki gelişimi, verim ve meyve kalitesi üzerine etkisi

Yıl 2024, Cilt: 6 Sayı: 1, 19 - 32, 12.09.2024

Öz

Bu çalışmada, Hindistan cevizi lifi ortamında mikoriza, Trichoderma, mikoriza+Trichoderma kombinasyonunun bitki gelişimi, verim ve meyve kalitesi üzerine etkileri araştırılmıştır. Mantarlar, bitki fidelerinin kök bölgelerine dikimden hemen sonra uygulanmıştır. Mikoriza aşılamalarında bitki başına 0.1 g ve Trichoderma aşılamalarında bitki başına 0.2 g aşılama yapılmıştır. Sonuçlara göre, mikoriza uygulaması kontrol grubuna kıyasla toplam meyve sayısında (93.46 adet/bitki), bitki başına verimde (10.376 kg/bitki), bitki boyunda (3.76 m) ve kök ağırlığında (221.3 g) önemli ölçüde artış sağlamıştır. Aynı zamanda Trichoderma ve mikoriza+Trichoderma uygulamaları, likopen (11.65 mg/100g), ß-karoten (3.78 mg/100g) ve Vitamin-C (15.68 mg/100g) değerlerinde önemli artışlara neden olmuştur. Mikoriza+Trichoderma uygulamasının yaprakta klorofil ve karotenoid miktarlarının kontrol grubuna göre daha yüksek olduğu saptanmıştır. Araştırma sonuçlarına göre, topraksız tarımda mikoriza ve Trichoderma aşılamasının topraksız tarım yöntemleri ile birlikte kullanılmasının verim ve kaliteyi olumlu yönde etkilediği belirlenmiştir.

Kaynakça

  • Adesemoye, A. O. ve Kloepper, J. W. (2009). Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology, 85, 1-12. https://doi.org/10.1007/s00253-009-2196-0
  • Aguilera, P., Becerra, N., Alvear, M., Ortiz, N., Turrini, A., Azcón‐Aguilar, C., Miguel L. G., Romero, J. K., Massri, M., Seguel, A., Mora, M. D. L. ve Borie, F. (2022). Arbuscular mycorrhizal fungi from acidic soils favors production of tomatoes and lycopene concentration. Journal of the Science of Food and Agriculture, 102(6), 2352-2358. https://doi.org/10.1002/jsfa.11573
  • Akınoğlu, G. ve Korkmaz, A. (2016). Topraksız tarımda farklı substrat miktarı ve besin çözeltisi uygulamalarının domateste beslenme ve verim kriterlerine etkisi. Toprak Bilimi ve Bitki Besleme Dergisi, 4(2), 49-56.
  • Alaboz, P. ve Çakmakcı, T. (2020). Kumlu tın ve killi tın toprakta kokopit oluşturduğu tarla kapasitesi ve sürekli solma noktası üzerine etkisi. Akdeniz Tarım Bilimleri, 33(2), 285-290. https://doi.org/10.29136/mediterranean.660207
  • Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109(1), 1-7. https://doi.org/10.1016/j.scienta.2006.02.019
  • Altomare, C., Norvell, W. A., Björkman, T. ve Harman, G. (1999). Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology, 65(7), 2926-2933. https://doi.org/10.1128/AEM.65.7.2926-2933.1999
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3-42. https://doi.org/10.1007/s005720100097
  • Behiry, S., Soliman, S. A., Massoud, M. A., Abdelbary, M., Kordy, A. M., Abdelkhalek, A. ve Heflish, A. (2023). Trichoderma pubescens elicit ınduced systemic resistance in tomato challenged by Rhizoctonia solani. Journal of Fungi, 9(2), 167. https://doi.org/10.3390/jof9020167
  • Boyacı, S., Abaci Bayar, A. A. ve Başak, H. (2022). Evaluation of harvest waste in soilless agriculture tomato cultivation. Infrastruktura i Ekologia Terenów Wiejskich, 1(1), 29-42.
  • Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320, 37-77. https://doi.org/10.1007/s11104-008-9877-9
  • Calvo, P., Nelson, L. ve Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383, 3-41. https://doi.org/10.1007/s11104-014-2131-8
  • Cemeroğlu, B. (1992). Meyve ve Sebze İşleme Endüstrisinde Temel Analiz Metotları. Ankara, Türkiye: Biltav Yayınları.
  • Chien, Y. C. ve Huang, C. H. (2020). Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. European Journal of Plant Pathology, 156(4), 995-1003. https://doi.org/10.1007/s10658-020-01947-5
  • Dasgan, H. Y., Kusvuran, S. ve Ortas, I. (2008). Responses of soilless grown tomato plants to arbuscular mycorrhizal fungal (Glomus fasciculatum) colonization in re-cycling and open systems. African Journal of Biotechnology, 7(20), 3606-3613.
  • Demirgül, F. (2018). Çadırdan saraya Türk mutfağı. Uluslararası Türk Dünyası Turizm Araştırmaları Dergisi, 3(1), 105-125.
  • Demmig-Adams, B. ve Adams Iii, W. W. (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Biology, 43(1), 599-626.
  • Dere, S., Coban, A., Akhoundnejad, Y., Ozsoy, S. ve Daşgan, H. (2019). Use of mycorrhiza to reduce mineral fertilizers in soilless melon (Cucumis melo L.) cultivation. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1331-1336. http://doi.org/10.15835/nbha47411738
  • Douds Jr, D. D., Nagahashi, G., Reider, C. ve Hepperly, P. R. (2007). Inoculation with arbuscular mycorrhizal fungi increases the yield of potatoes in a high P soil. Biological Agriculture & Horticulture, 25(1), 67-78.
  • Dönel, G., Algur, Ö. F. ve Doğan, S. (2011). Rafignatoyid akarlarin vücut yüzeyi ve vücut içi mikrofunguslarinin belirlenmesi. Erzincan University Journal of Science and Technology, 5(1), 25-42.
  • FAO (2021). Tomato production in Turkey. Retrieved from http://www.fao.org/faostat/en/#data/QC/visualize (Son erişim tarihi: 27 Mart 2023)
  • Ganugi, P., Fiorini, A., Tabaglio, V., Capra, F., Zengin, G., Bonini, P., Caffi, T., Puglisi, E., Trevisan, M. ve Lucini, L. (2023). The functional profile and antioxidant capacity of tomato fruits are modulated by the ınteraction between microbial biostimulants, soil properties, and soil nitrogen status. Antioxidants, 12(2), 520. https://doi.org/10.3390/antiox12020520
  • Gianinazzi, S., Gollotte, A., Binet, M. N., van Tuinen, D., Redecker, D. ve Wipf, D. (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20(8), 519-530. https://doi.org/10.1007/s00572-010-0333-3
  • Gül, A. (2019). Topraksız Tarım (3. Baskı). Hasad Yayıncılık.
  • Güvenç, İ. (2019). Türkiye’de domates üretimi, dış ticareti ve rekabet gücü. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(1), 57-61. https://doi.org/10.18016/ksutarimdoga.vi.432316
  • Harman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Disease, 84(4), 377-393. https://doi.org/10.1094/PDIS.2000.84.4.377
  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. ve Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. https://doi.org/10.1038/nrmicro797
  • Hazar, D. ve Baktır, İ. (2013). Topraksız tarım kesme gül yetiştiriciliği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(2), 21-27.
  • Hermosa, R., Viterbo, A., Chet, I. ve Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(1), 17-25. https://doi.org/10.1099/mic.0.052274-0
  • Keskin, G. (2021). Türkiye’nin domates üretimindeki kayıpları ve rekabet gücü. Eurasıan Journal of Agricultural Economics (Ejae), 1(2), 18-37.
  • Kirk, J. T. O. ve Allen, R. L. (1965). Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochemical and Biophysical Research Communications, 21(6), 523-530. https://doi.org/10.1016/0006-291X(65)90516-4
  • Koide, R. T. ve Mosse, B. (2004). A history of research on arbuscular mycorrhiza. Mycorrhiza, 14, 145-163. https://doi.org/10.1007/s00572-004-0307-4
  • Kubicek, C. P., Herrera-Estrella, A., Seidl-Seiboth, V., Martinez, D. A., Druzhinina, I. S., Thon, M., ve Grigoriev, I. V. (2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 12, 1-15. https://doi.org/10.1186/gb-2011-12-4-r40
  • Liu, J., Fang, L., Pei, W., Li, F. ve Zhao, J. (2023). Effects of magnesium application on the arbuscular mycorrhizal symbiosis in tomato. Symbiosis, 89, 1-10. https://doi.org/10.1007/s13199-022-00862-z
  • Martínez-Medina, A., Del Mar Alguacil, M., Pascual, J. A. ve Van Wees, S. C. (2014). Phytohormone profiles induced by Trichoderma correspond with their biocontrol and plant growth-promoting activity on melon plants. Journal of Chemical Ecology, 40, 804-815. https://doi.org/10.1007/s10886-014-0478-1
  • Mastouri, F., Björkman, T. ve Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213-1221. https://doi.org/10.1094/PHYTO-03-10-0091
  • McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12), 1254-1255.
  • Meriç, M. K. ve Öztekin, G. B. (2008). Topraksız tarımda kapilar sistemler. Ege Üniversitesi Ziraat Fakültesi Dergisi, 45(2), 145-152.
  • Michałojć, Z., Jarosz, Z., Pitura, K. ve Dzida, K. (2015). Effect of mycorrhizal colonization and nutrient solutions concentration on the yielding and chemical composition of tomato grown in rockwool and straw medium. Acta Scientiarum Polonorum Hortorum Cultus, 14(6), 15-27.
  • Nagata, M. ve Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi, 39(10), 925-928. https://doi.org/10.3136/nskkk1962.39.925
  • Nisar, N., Li, L., Lu, S., Khin, N. C. ve Pogson, B. J. (2015). Carotenoid metabolism in plants. Molecular Plant, 8(1), 68-82.
  • Ortaş, I. (2012). The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Research, 125, 35-48. https://doi.org/10.1016/j.fcr.2011.08.005
  • Özbucak, T., Kabul, D. ve Ergen Akçin, Ö. (2020). Mikoriza ve fungusit uygulamalarının domates bitkisinin bazı büyüme ve gelişim parametreleri üzerine etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 529-543. https://doi.org/10.35193/bseufbd.716195
  • Özdemir, R. ve Demirbaş, N. (2020). Meyve ve sebze meyveleri ortaya çıkan kayıplar üzerinde etkili olan faktörler: İzmir ili örneği. Akdeniz Tarım Bilimleri, 33(1), 85-91. https://doi.org/10.29136/mediterranean.659011
  • Öztekin, G. B., Tuzel, Y. ve Tüzel, I. H. (2013). Does mycorrhiza improve salinity tolerance in grafted plants?. Scientia Horticulturae, 149, 55-60. https://doi.org/10.1016/j.scienta.2012.02.033
  • Öztekin, GB ve Ece, M. (2014). Sera Domates Yetiştiriciliğinde Symbion VAM (Glomus fasciculatum) İnokulasyonunun Bitki Gelişimi, Verim ve Meyve Kalitesi Üzerine Etkisinin Belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 1 (1), 35-42. https://doi.org/10.19159/tutad.65880
  • Pasković, I., Soldo, B., Ban, S. G., Radić, T., Lukić, M., Urlić, B., Mimica, M., Bubola, K. B., Colla, G., Rouphael, Y., Major, N., Šimpraga, M., Ban, D., Palčić, I., Franić, M., Grozić, K. ve Lukić, I. (2021). Fruit quality and volatile compound composition of processing tomato as affected by fertilisation practices and arbuscular mycorrhizal fungi application. Food Chemistry, 359, 129961. https://doi.org/10.1016/j.foodchem.2021.129961
  • Porras-Soriano, A., Soriano-Martín, M. L., Porras-Piedra, A. ve Azcón, R. (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of Plant Physiology, 166(13), 1350-1359. https://doi.org/10.1016/j.jplph.2009.02.010
  • Pozo, M. J., Verhage, A., García-Andrade, J., García, J. M. ve Azcón-Aguilar, C. (2009). Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In Mycorrhizas-Functional Processes and Ecological Impact. (pp. 123-135) https://doi.org/10.1007/978-3-540-87978-7_9
  • Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S. L., Morton, J. B. ve Walker, C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23, 515-531. https://doi.org/10.1007/s00572-013-0486-y
  • Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P. ve Colla, G. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 196, 91-108. https://doi.org/10.1016/j.scienta.2015.09.002
  • Sanmartín, N., Sánchez-Bel, P., Pastor, V., Pastor-Fernandez, J., Mateu, D., Pozo, M. J., Cerezo, M. ve Flors, V. (2020). Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. Plant Science, 298, 110595. https://doi.org/10.1016/j.plantsci.2020.110595
  • Savvas, D. ve Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry—A review. European Journal of Horticultural Science, 83(5), 280-293. https://doi.org/10.17660/eJHS.2018/83.5.2
  • Shoresh, M., Harman, G. E. ve Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. https://doi.org/10.1146/annurev-phyto-073009-114450
  • Smith, S. E. ve Read, D. J. (2010). Mycorrhizal Symbiosis. Academic Press.
  • Smith, S. E. ve Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250. https://doi.org/10.1146/annurev-arplant-042110-103846
  • Song, Y. Y., Zeng, R. S., Xu, J. F., Li, J., Shen, X. ve Yihdego, W. G. (2010). Interplant communication of tomato plants through underground common mycorrhizal networks. PloS One, 5(10), e13324. https://doi.org/10.1371/journal.pone.0013324
  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L. ve Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10. https://doi.org/10.1016/j.soilbio.2007.07.002
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sebze Yetiştirme ve Islahı, Sera Bitkileri Yetiştirme ve Islahı
Bölüm Araştırma Makaleleri
Yazarlar

Hakan Aktaş 0000-0001-8280-5758

Yunus Hor 0000-0001-6377-7085

Erken Görünüm Tarihi 8 Eylül 2024
Yayımlanma Tarihi 12 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 1

Kaynak Göster

APA Aktaş, H., & Hor, Y. (2024). Topraksız domates (Solanum lycopersicum) yetiştiriciliğinde mikoriza ve Trichoderma aşılamasının bitki gelişimi, verim ve meyve kalitesi üzerine etkisi. AgriTR Science, 6(1), 19-32.