Ajiferuke, I., Burell, Q., & Tague, J. (1988). Collaborative coefficient: A single measure of the degree of collaboration in research. Scientometrics, 14(5–6), 421–433.
Akehurst, G. (2009). User generated content: The use of blogs for tourism organisations and tourism consumers. Service Business, 3(1), 51–61. https://doi.org/10.1007/s11628-008-0054-2
Andreu, L., Bigne, E., Amaro, S., & Palomo, J. (2020). Airbnb research: an analysis in tourism and hospitality journals. International Journal of Culture, Tourism, and Hospitality Research, 14(1), 2–20. https://doi.org/10.1108/IJCTHR-06-2019-0113
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Askun, V., & Cizel, R. (2019). Kompleks problem çözme üzerine R programı ile bir bibliyometrik analiz. Mediterranean Journal of Humanities, 9(1), 37–47. https://doi.org/10.13114/mjh.2019.445
Askun, V., & Cizel, R. (2020). Twenty years of research on mixed methods. Journal of Mixed Methods Research, 1(1), 28–43. https://doi.org/10.14689/jomes.2020.1.2
Barrios, M., Borrego, A., Vilaginés, A., Ollé, C., & Somoza, M. (2008). A bibliometric study of psychological research on tourism. Scientometrics, 77(3), 453–467. https://doi.org/10.1007/s11192-007-1952-0
Benckendorff, P. (2009). Themes and trends in Australian and New Zealand tourism research: A social network analysis of citations in two leading journals (1994-2007). Journal of Hospitality and Tourism Management, 16(1), 1–15. https://doi.org/10.1375/jhtm.16.1.1
Benckendorff, P., & Zehrer, A. (2013). A network analysis of tourism research. Annals of Tourism Research, 43, 121–149. https://doi.org/10.1016/j.annals.2013.04.005
Börner, K., Chen, C., & Boyack, K. W. (2005). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255. https://doi.org/10.1002/aris.1440370106
Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A survey. Expert Systems with Applications, 41, 7370–7389. https://doi.org/10.1016/j.eswa.2014.06.007
Bowen, J., & Whalen, E. (2017). Trends that are changing travel and tourism. Worldwide Hospitality and Tourism Themes, 9(6), 592–602. https://doi.org/10.1108/WHATT-09-2017-0045
Buhalis, D. (2003). eTourism: Information technology for strategic tourism management. London: Pearson Education.
Buhalis, D., Harwood, T., Bogicevic, V., Viglia, G., Beldona, S., & Hofacker, C. (2019). Technological disruptions in services: Lessons from tourism and hospitality. Journal of Service Management, 30(4), 484–506. https://doi.org/10.1108/JOSM-12-2018-0398
Buhalis, D., & Sinarta, Y. (2019). Real-time co-creation and nowness service: Lessons from tourism and hospitality. Journal of Travel & Tourism Marketing, 36(5), 563–582. https://doi.org/10.1080/10548408.2019.1592059
Cahlik, T. (2000). Search for fundamental articles in economics. Scientometrics, 49(3), 389–402.
Cain, L. N., Thomas, J. H., & Alonso, M. (2019). From sci-fi to sci-fact: The state of robotics and AI in the hospitality industry. Journal of Hospitality and Tourism Technology, 10(4), 624–650. https://doi.org/10.1108/JHTT-07-2018-0066
Casteleiro-Roca, J.-L., Gomez-Gonzalez, J. F., Calvo-Rolle, J. L., Jove, E., Quintian, H., Acosta Martin, J. F., … Mendez-Perez, J. A. (2018). Prediction of the energy demand of a hotel using an artificial intelligence-based model. In J. F. de Cos Juez, J. R. Villar, E. A. de la Cal & A. Herrero (Eds.), Hybrid Artificial Intelligent Systems (Vol. 1, pp. 586–596). Cham: Springer. https://doi.org/10.1007/978-3-319-92639-1
Chiu, W. T., & Ho, Y. S. (2007). Bibliometric analysis of tsunami research. Scientometrics, 73(1), 3–17. https://doi.org/10.1007/s11192-005-1523-1
Cho, V. (2003). A comparison of three different approaches to tourist arrival forecasting. Tourism Management, 24(3), 323–330. https://doi.org/10.1016/S0261-5177(02)00068-7
Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Malhotra, S. (2018). Notes from the AI frontier: Insights from hundreds of use cases. In McKinsey& Company. Retrieved September 10, 2020, from https://www.mckinsey.com/~/media/mckinsey/featured%20insights/artificial%20intelligence/notes%20from%20the%20ai%20frontier%20applications%20and%20value%20of%20deep%20learning/notes-from-the-ai-frontier-insights-from-hundreds-of-use-cases-discussion-paper.ashx.
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525
Comerio, N., & Strozzi, F. (2019). Tourism and its economic impact: A literature review using bibliometric tools. Tourism Economics, 25(1), 109–131. https://doi.org/10.1177/1354816618793762
Corchado, J. M., & Lees, B. (1998). Cognitive models for integrating artificial intelligence approaches. AII Workshop on Knowledge Discovery. Glasgow, UK.
Cunill, O. M., Salvá, A. S., Gonzalez, L. O., & Mulet-Forteza, C. (2019). Thirty-fifth anniversary of the International Journal of Hospitality Management: A bibliometric overview. International Journal of Hospitality Management, 78, 89–101. https://doi.org/10.1016/j.ijhm.2018.10.013
Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: A review and bibliometric analysis. TQM Journal, 32(4), 869–896. https://doi.org/10.1108/TQM-10-2019-0243
Ferràs, X., Hitchen, E. L., Tarrats-Pons, E., & Arimany-Serrat, N. (2020). Smart tourism empowered by artificial intelligence: The case of Lanzarote. Journal of Cases on Information Technology, 22(1), 1–13. https://doi.org/10.4018/JCIT.2020010101
Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35- 41. https://doi.org/10.2307/3033543
Gajdošík, T., & Marciš, M. (2019). Artificial intelligence tools for smart tourism development. In R. Silhavy (Ed.), Artificial Intelligence Methods in Intelligent Algorithms (Vol. 985, pp. 392–402). Cham: Springer. https://doi.org/10.1007/978-3-030-19810-7_39
García-Lillo, F., Úbeda-García, M., & Marco-Lajara, B. (2016). The intellectual structure of research in hospitality management: A literature review using bibliometric methods of the journal International Journal of Hospitality Management. International Journal of Hospitality Management, 52, 121–130. https://doi.org/10.1016/j.ijhm.2015.10.007
Glänzel, W., & Schubert, A. (2005). Analysing scientifc networks through co-authorship. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 257–276). Berlin: Springer.
González-Rodríguez, M. R., Díaz-Fernández, M. C., & Pacheco Gómez, C. (2020). Facial-expression recognition: An emergent approach to the measurement of tourist satisfaction through emotions. Telematics and Informatics, 51. https://doi.org/10.1016/j.tele.2020.101404
Gretzel, U. (2011). Intelligent systems in tourism. A social science perspective. Annals of Tourism Research, 38(3), 757–779. https://doi.org/10.1016/j.annals.2011.04.014
Gretzel, U., Fesenmaier, D. R., & O’Leary, J. T. (2006). The transformation of consumer behaviour. In D. Buhalis & C. Costa (Eds.), Tourism Business Frontiers: Consumers, Products and Industry (pp. 9–18). Oxford: Elsevier. https://doi.org/10.1016/b978-0-7506-6377-9.50009-2
Gretzel, U., Fuchs, M., Baggio, R., Hoepken, W., Law, R., Neidhardt, J., … Xiang, Z. (2020). e-Tourism beyond COVID-19: a call for transformative research. Information Technology and Tourism, 22(2), 187–203. https://doi.org/10.1007/s40558-020-00181-3
Gunbayi, I., & Sorm, S. (2018). Social paradigms in guiding social research design: The functional, interpretive, radical humanist and radical structural paradigms. International Journal on New Trends in Education and Their Implications, 9(2), 57-76.
Guns, R., Liu, Y. X., & Mahbuba, D. (2011). Q-measures and betweenness centrality in a collaboration network: A case study of the field of informetrics. Scientometrics, 87(1), 133–147. https://doi.org/10.1007/s11192-010-0332-3
Guzeller, C. O., & Celiker, N. (2019). Bibliometrical analysis of Asia Pacific Journal of Tourism Research. Asia Pacific Journal of Tourism Research, 24(1), 108–120. https://doi.org/10.1080/10941665.2018.1541182
Güzeller, C. O., & Çeli̇ker, N. (2018). Bibliometric analysis of tourism research for the period 2007-2016. Advances in Hospitality and Tourism Research, 6(1), 1–22. https://doi.org/10.30519/ahtr.446248
Hadavandi, E., Ghanbari, A., Shahanaghi, K., & Abbasian-Naghneh, S. (2011). Tourist arrival forecasting by evolutionary fuzzy systems. Tourism Management, 32(5), 1196–1203. https://doi.org/10.1016/j.tourman.2010.09.015
Inanc-Demir, M., & Kozak, M. (2019). Big data and its supporting elements: implications for tourism and hospitality marketing. In M. Sigala, R. Rahimi, & M. Thelwall (Eds.), Big Data and Innovation in Tourism, Travel, and Hospitality: Managerial Approaches, Techniques, and Applications (pp. 213-223). Singapore: Springer. https://doi.org/10.1007/978-981-13-6339-9
Ivanov, S., & Webster, C. (2017). Adoption of robots, artificial intelligence and service automation by travel, tourism and hospitality companies – a cost-benefit analysis. In V. Marinov, M. Vodenska, M. Assenova & E. Dogramadjieva (Eds.) Traditions and Innovations in Contemporary Tourism (pp. 190-203). UK: Cambridge Scholars Publishing.
Johnson, A. G., & Samakovlis, I. (2019). A bibliometric analysis of knowledge development in smart tourism research. Journal of Hospitality and Tourism Technology, 10(4), 600–623. https://doi.org/10.1108/JHTT-07-2018-0065
Kazak, A. N., Chetyrbok, P. V., & Oleinikov, N. N. (2020). Artificial intelligence in the tourism sphere. IOP Conference Series: Earth and Environmental Science, 421(4). https://doi.org/10.1088/1755-1315/421/4/042020
Kirilenko, A. P., Stepchenkova, S. O., Kim, H., & Li, X. (Robert). (2018). Automated sentiment analysis in tourism: Comparison of approaches. Journal of Travel Research, 57(8), 1012–1025. https://doi.org/10.1177/0047287517729757
Köseoglu, M. A., Okumus, F., Putra, E. D., Yildiz, M., & Dogan, I. C. (2018). Authorship trends, collaboration patterns, and co-authorship networks in lodging studies (1990–2016). Journal of Hospitality Marketing and Management, 27(5), 561–582. https://doi.org/10.1080/19368623.2018.1399192
Koseoglu, M. A., Rahimi, R., Okumus, F., & Liu, J. (2016). Bibliometric studies in tourism. Annals of Tourism Research, 61, 180–198. https://doi.org/10.1016/j.annals.2016.10.006
Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago press.
Law, R. (1998). Room occupancy rate forecasting: A neural network approach. International Journal of Contemporary Hospitality Management, 10(6), 234–239. https://doi.org/10.1108/09596119810232301
Law, R. (2000). Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting. Tourism Management, 21(4), 331–340. https://doi.org/10.1016/S0261-5177(99)00067-9
Law, R., Leung, R., & Buhalis, D. (2010). An analysis of academic leadership in hospitality and tourism journals. Journal of Hospitality and Tourism Research, 34(4), 455–477. https://doi.org/10.1177/1096348010370866
Lei, Y., & Liu, Z. (2019). The development of artificial intelligence: A bibliometric analysis, 2007-2016. Journal of Physics: Conference Series, 1168(2). https://doi.org/10.1088/1742-6596/1168/2/022027
Leung, X. Y., Sun, J., & Bai, B. (2017). Bibliometrics of social media research: A co-citation and co-word analysis. International Journal of Hospitality Management, 66, 35–45. https://doi.org/10.1016/j.ijhm.2017.06.012
Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis. New York: Oxford University Press.
McCarthy, J., Minksy, M., Rochester, L., & Shannon, C. E. (1955). A proposal for the Dartmouth summer research project on artificial intelligence. AI magazine, 27(4), 12-12. Retrieved December 5, 2020, from http://www-formal.stanford.edu/jmc/history/dartmouth.pdf
Merigó, J. M., Mulet-Forteza, C., Valencia, C., & Lew, A. A. (2019). Twenty years of Tourism Geographies: A bibliometric overview. Tourism Geographies, 21(5), 881–910. https://doi.org/10.1080/14616688.2019.1666913
Mich, L. (2020). Artificial intelligence and machine learning. In Z. Xiang, M. Fuchs, U. Gretzel, & W. Höpken (Eds.), Handbook of e-Tourism. Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-05324-6_25-1
Niu, J., Tang, W., Xu, F., Zhou, X., & Song, Y. (2016). Global research on artificial intelligence from 1990-2014: Spatially-explicit bibliometric analysis. ISPRS International Journal of Geo-Information, 5(5), 1–19. https://doi.org/10.3390/ijgi5050066
Norris, M., & Oppenheim, C. (2007). Comparing alternatives to the Web of Science for coverage of the social sciences’ literature. Journal of Informetrics, 1(2), 161–169. https://doi.org/10.1016/j.joi.2006.12.001
Núñez-Tabales, J. M., Solano-Sánchez, M. Á., & Caridad-y-López-del-Río, L. (2020). Ten years of Airbnb phenomenon research: A bibliometric approach (2010–2019). Sustainability, 12(15). https://doi.org/10.3390/su12156205
Okumus, B., Koseoglu, M. A., & Ma, F. (2018). Food and gastronomy research in tourism and hospitality: A bibliometric analysis. International Journal of Hospitality Management, 73, 64–74. https://doi.org/10.1016/j.ijhm.2018.01.020
Okumus, F., Köseoglu, M. A., Putra, E. D., Dogan, I. C., & Yildiz, M. (2019). A bibliometric analysis of lodging-context research from 1990 to 2016. Journal of Hospitality and Tourism Research, 43(2), 210–225. https://doi.org/10.1177/1096348018765321
Palys, T. (2008). Purposive sampling. In L. M. Given (Ed.), The Sage encyclopedia of qualitative research methods (pp. 697–698). California: Sage.
Pannu, A. (2015). Artificial intelligence and its application in different areas. International Journal of Engineering and Innovative Technology, 4(10), 79–84.
Pappas, N. (2019). UK outbound travel and Brexit complexity. Tourism Management, 72, 12–22. https://doi.org/10.1016/j.tourman.2018.11.004
Pavaloiu, A., Köse, U., & Boz, H. (2017). How to apply artificial intelligence in social sciences. IASOS - Congress of International Applied Social Sciences, (September). Uşak, Turkey. Retrieved September 10, 2020, from https://www.researchgate.net/publication/325398286_How_to_Apply_Artificial_Intelligence_in_Social_Sciences
Perrault, R., Shoham, Y., Brynjolfsson, E., Clark, J., Etchemendy, J., Grosz Harvard, B., … Mishra, S. (2019). The AI Index 2019 Annual Report. In AI Index Steering Committee, Human-Centered AI Institute. Stanford. Retrieved September 10, 2020, from https://hai.stanford.edu/sites/g/files/sbiybj10986/f/ai_index_2019_report.pdf
Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348–349.
Qian, J., Law, R., & Wei, J. (2019). Knowledge mapping in travel website studies: A scientometric review. Scandinavian Journal of Hospitality and Tourism, 19(2), 192–209. https://doi.org/10.1080/15022250.2018.1526113
Ritchie, B. W. (2004). Chaos, crises and disasters: A strategic approach to crisis management in the tourism industry. Tourism Management, 25(6), 669–683. https://doi.org/10.1016/j.tourman.2003.09.004
Ruhanen, L., Weiler, B., Moyle, B. D., & McLennan, C. J. (2015). Trends and patterns in sustainable tourism research: A 25-year bibliometric analysis. Journal of Sustainable Tourism, 23(4), 517–535. https://doi.org/10.1080/09669582.2014.978790
Ruiz-Real, J. L., Uribe-Toril, J., Valenciano, J. de P., & Gázquez-Abad, J. C. (2020). Rural tourism and development: Evolution in scientific literature and trends. Journal of Hospitality and Tourism Research, 1–25. https://doi.org/10.1177/1096348020926538
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd ed.). Harlow: Pearson Education.
Samara, D., Magnisalis, I., & Peristeras, V. (2020). Artificial intelligence and big data in tourism: A systematic literature review. Journal of Hospitality and Tourism Technology, 11(2), 343-367. https://doi.org/10.1108/JHTT-12-2018-0118
Sánchez, A. D., de la Cruz Del Río Rama, M., & García, J. Á. (2017). Bibliometric analysis of publications on wine tourism in the databases Scopus and WoS. European Research on Management and Business Economics, 23(1), 8–15. https://doi.org/10.1016/j.iedeen.2016.02.001
Shukla, A. K., Janmaijaya, M., Abraham, A., & Muhuri, P. K. (2019). Engineering applications of artificial intelligence: A bibliometric analysis of 30 years (1988–2018). Engineering Applications of Artificial Intelligence, 85, 517–532. https://doi.org/10.1016/j.engappai.2019.06.010
Singh, S. K., Rathore, S., & Park, J. H. (2020). BlockIoTIntelligence: A blockchain-enabled intelligent IoT architecture with artificial intelligence. Future Generation Computer Systems, 110, 721–743. https://doi.org/10.1016/j.future.2019.09.002
Song, H., Qiu, R. T. R., & Park, J. (2019). A review of research on tourism demand forecasting. Annals of Tourism Research, 75, 338–362. https://doi.org/10.1016/j.annals.2018.12.001
Teixeira, S. J., & Ferreira, J. J. D. M. (2018). A bibliometric study of regional competitiveness and tourism innovation. International Journal of Tourism Policy, 8(3), 214–243. https://doi.org/10.1504/IJTP.2018.094483
Thomas, R. (2019). The AI ladder: Demystifying AI challenges. In: IBM and O’Reilly. Retrieved September 10, 2020, from https://www.oreilly.com/online-learning/report/The-AI-Ladder.pdf.
Todeschini, R., & Baccini, A. (2016). Handbook of bibliometric indicators : Quantitative tools for studying and evaluating research. Weinheim, Germany: Wiley-VCH.
Topal, I., & Uçar, M. K. (2018). In tourism, using artificial intelligence forecasting with Tripadvisor data : Year of Turkey in China. International Conference on Artificial Intelligence and Data Processing (IDAP), 1–5. Retrieved February 15, 2020, from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8620874
Tran, B., Vu, G., Ha, G., Vuong, Q.-H., Ho, M.-T., Vuong, T.-T., … Ho, R. (2019). Global evolution of research in artificial intelligence in health and medicine: A bibliometric study. Journal of Clinical Medicine, 8(360). https://doi.org/10.3390/jcm8030360
Tussyadiah, I. (2020). A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection on artificial intelligence and robotics in tourism. Annals of Tourism Research, 81, 102883. https://doi.org/10.1016/j.annals.2020.102883
Tussyadiah, I., & Miller, G. (2019). Perceived impacts of artificial intelligence and responses to positive behaviour change intervention. In Information and Communication Technologies in Tourism 2019 (pp. 359–370). Springer International Publishing. https://doi.org/10.1007/978-3-030-05940-8
van Nunen, K., Li, J., Reniers, G., & Ponnet, K. (2018). Bibliometric analysis of safety culture research. Safety Science, 108, 248–258. https://doi.org/10.1016/j.ssci.2017.08.011
van Raan, A. F. J. (2003). The use of bibliometric analysis in research performance assessment and monitoring of interdisciplinary scientific developments. TATuP - Zeitschrift Für Technikfolgenabschätzung in Theorie Und Praxis, 12(1), 20–29. https://doi.org/10.14512/tatup.12.1.20
Virani, A., Wellstead, A., & Howlett, M. P. (2019). Where is the policy? A bibliometric review of the state of policy research on medical tourism. Global Health Research and Policy, 5, 1–16. https://doi.org/10.2139/ssrn.3445235
Volchek, K., Liu, A., Song, H., & Buhalis, D. (2019). Forecasting tourist arrivals at attractions: Search engine empowered methodologies. Tourism Economics, 25(3), 425-447. https://doi.org/10.1177%2F1354816618811558
Zenker, S., & Kock, F. (2020). The coronavirus pandemic-A critical discussion of a tourism research agenda. Tourism Management, 81, 104164. https://doi.org/10.1016/j.tourman.2020.104164
Zhang, B., Li, N., Shi, F., & Law, R. (2020). A deep learning approach for daily tourist flow forecasting with consumer search data. Asia Pacific Journal of Tourism Research, 25(3), 323–339. https://doi.org/10.1080/10941665.2019.1709876
Zheng, W., Liao, Z., & Lin, Z. (2020). Navigating through the complex transport system: A heuristic approach for city tourism recommendation. Tourism Management, 81, 104162. https://doi.org/10.1016/j.tourman.2020.104162
Zlatanov, S., & Popesku, J. (2019). Current applications of artificial intelligence in tourism and hospitality. In International Scientific Conference on Information Technology and Data Related Research (pp. 84-90), Sinteza, Romania.
Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629
Artificial Intelligence in Tourism: A Review and Bibliometrics Research
Year 2021,
Volume: 9 Issue: 1, 205 - 233, 01.06.2021
Artificial Intelligence (AI) came up as an ambiguous concept from computer sciences and now it is being used in many areas of our life. It has stimulated academia’s interest due to its alternative insights into complex problems. Therefore, a bibliometric method was applied in this study to observe the progress of AI in the tourism field. A total of 102 papers were collected from Scopus database. Key factors such as most productive authors, collaborations and institutions were identified, and research hotspots were determined using co-occurrence network and most common author keywords. Progress of AI was visualized with thematic evolution analysis. Findings indicate that there is a progressive interest in AI after 2017, and average citations signify that papers are highly cited. Since this is the first study conducting a bibliometric on AI in the tourism context, it could be considered useful for academics and tourism professionals as it provides general overview of AI, demonstrates research trends and popular papers.
Ajiferuke, I., Burell, Q., & Tague, J. (1988). Collaborative coefficient: A single measure of the degree of collaboration in research. Scientometrics, 14(5–6), 421–433.
Akehurst, G. (2009). User generated content: The use of blogs for tourism organisations and tourism consumers. Service Business, 3(1), 51–61. https://doi.org/10.1007/s11628-008-0054-2
Andreu, L., Bigne, E., Amaro, S., & Palomo, J. (2020). Airbnb research: an analysis in tourism and hospitality journals. International Journal of Culture, Tourism, and Hospitality Research, 14(1), 2–20. https://doi.org/10.1108/IJCTHR-06-2019-0113
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Askun, V., & Cizel, R. (2019). Kompleks problem çözme üzerine R programı ile bir bibliyometrik analiz. Mediterranean Journal of Humanities, 9(1), 37–47. https://doi.org/10.13114/mjh.2019.445
Askun, V., & Cizel, R. (2020). Twenty years of research on mixed methods. Journal of Mixed Methods Research, 1(1), 28–43. https://doi.org/10.14689/jomes.2020.1.2
Barrios, M., Borrego, A., Vilaginés, A., Ollé, C., & Somoza, M. (2008). A bibliometric study of psychological research on tourism. Scientometrics, 77(3), 453–467. https://doi.org/10.1007/s11192-007-1952-0
Benckendorff, P. (2009). Themes and trends in Australian and New Zealand tourism research: A social network analysis of citations in two leading journals (1994-2007). Journal of Hospitality and Tourism Management, 16(1), 1–15. https://doi.org/10.1375/jhtm.16.1.1
Benckendorff, P., & Zehrer, A. (2013). A network analysis of tourism research. Annals of Tourism Research, 43, 121–149. https://doi.org/10.1016/j.annals.2013.04.005
Börner, K., Chen, C., & Boyack, K. W. (2005). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255. https://doi.org/10.1002/aris.1440370106
Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A survey. Expert Systems with Applications, 41, 7370–7389. https://doi.org/10.1016/j.eswa.2014.06.007
Bowen, J., & Whalen, E. (2017). Trends that are changing travel and tourism. Worldwide Hospitality and Tourism Themes, 9(6), 592–602. https://doi.org/10.1108/WHATT-09-2017-0045
Buhalis, D. (2003). eTourism: Information technology for strategic tourism management. London: Pearson Education.
Buhalis, D., Harwood, T., Bogicevic, V., Viglia, G., Beldona, S., & Hofacker, C. (2019). Technological disruptions in services: Lessons from tourism and hospitality. Journal of Service Management, 30(4), 484–506. https://doi.org/10.1108/JOSM-12-2018-0398
Buhalis, D., & Sinarta, Y. (2019). Real-time co-creation and nowness service: Lessons from tourism and hospitality. Journal of Travel & Tourism Marketing, 36(5), 563–582. https://doi.org/10.1080/10548408.2019.1592059
Cahlik, T. (2000). Search for fundamental articles in economics. Scientometrics, 49(3), 389–402.
Cain, L. N., Thomas, J. H., & Alonso, M. (2019). From sci-fi to sci-fact: The state of robotics and AI in the hospitality industry. Journal of Hospitality and Tourism Technology, 10(4), 624–650. https://doi.org/10.1108/JHTT-07-2018-0066
Casteleiro-Roca, J.-L., Gomez-Gonzalez, J. F., Calvo-Rolle, J. L., Jove, E., Quintian, H., Acosta Martin, J. F., … Mendez-Perez, J. A. (2018). Prediction of the energy demand of a hotel using an artificial intelligence-based model. In J. F. de Cos Juez, J. R. Villar, E. A. de la Cal & A. Herrero (Eds.), Hybrid Artificial Intelligent Systems (Vol. 1, pp. 586–596). Cham: Springer. https://doi.org/10.1007/978-3-319-92639-1
Chiu, W. T., & Ho, Y. S. (2007). Bibliometric analysis of tsunami research. Scientometrics, 73(1), 3–17. https://doi.org/10.1007/s11192-005-1523-1
Cho, V. (2003). A comparison of three different approaches to tourist arrival forecasting. Tourism Management, 24(3), 323–330. https://doi.org/10.1016/S0261-5177(02)00068-7
Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Malhotra, S. (2018). Notes from the AI frontier: Insights from hundreds of use cases. In McKinsey& Company. Retrieved September 10, 2020, from https://www.mckinsey.com/~/media/mckinsey/featured%20insights/artificial%20intelligence/notes%20from%20the%20ai%20frontier%20applications%20and%20value%20of%20deep%20learning/notes-from-the-ai-frontier-insights-from-hundreds-of-use-cases-discussion-paper.ashx.
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525
Comerio, N., & Strozzi, F. (2019). Tourism and its economic impact: A literature review using bibliometric tools. Tourism Economics, 25(1), 109–131. https://doi.org/10.1177/1354816618793762
Corchado, J. M., & Lees, B. (1998). Cognitive models for integrating artificial intelligence approaches. AII Workshop on Knowledge Discovery. Glasgow, UK.
Cunill, O. M., Salvá, A. S., Gonzalez, L. O., & Mulet-Forteza, C. (2019). Thirty-fifth anniversary of the International Journal of Hospitality Management: A bibliometric overview. International Journal of Hospitality Management, 78, 89–101. https://doi.org/10.1016/j.ijhm.2018.10.013
Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: A review and bibliometric analysis. TQM Journal, 32(4), 869–896. https://doi.org/10.1108/TQM-10-2019-0243
Ferràs, X., Hitchen, E. L., Tarrats-Pons, E., & Arimany-Serrat, N. (2020). Smart tourism empowered by artificial intelligence: The case of Lanzarote. Journal of Cases on Information Technology, 22(1), 1–13. https://doi.org/10.4018/JCIT.2020010101
Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35- 41. https://doi.org/10.2307/3033543
Gajdošík, T., & Marciš, M. (2019). Artificial intelligence tools for smart tourism development. In R. Silhavy (Ed.), Artificial Intelligence Methods in Intelligent Algorithms (Vol. 985, pp. 392–402). Cham: Springer. https://doi.org/10.1007/978-3-030-19810-7_39
García-Lillo, F., Úbeda-García, M., & Marco-Lajara, B. (2016). The intellectual structure of research in hospitality management: A literature review using bibliometric methods of the journal International Journal of Hospitality Management. International Journal of Hospitality Management, 52, 121–130. https://doi.org/10.1016/j.ijhm.2015.10.007
Glänzel, W., & Schubert, A. (2005). Analysing scientifc networks through co-authorship. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 257–276). Berlin: Springer.
González-Rodríguez, M. R., Díaz-Fernández, M. C., & Pacheco Gómez, C. (2020). Facial-expression recognition: An emergent approach to the measurement of tourist satisfaction through emotions. Telematics and Informatics, 51. https://doi.org/10.1016/j.tele.2020.101404
Gretzel, U. (2011). Intelligent systems in tourism. A social science perspective. Annals of Tourism Research, 38(3), 757–779. https://doi.org/10.1016/j.annals.2011.04.014
Gretzel, U., Fesenmaier, D. R., & O’Leary, J. T. (2006). The transformation of consumer behaviour. In D. Buhalis & C. Costa (Eds.), Tourism Business Frontiers: Consumers, Products and Industry (pp. 9–18). Oxford: Elsevier. https://doi.org/10.1016/b978-0-7506-6377-9.50009-2
Gretzel, U., Fuchs, M., Baggio, R., Hoepken, W., Law, R., Neidhardt, J., … Xiang, Z. (2020). e-Tourism beyond COVID-19: a call for transformative research. Information Technology and Tourism, 22(2), 187–203. https://doi.org/10.1007/s40558-020-00181-3
Gunbayi, I., & Sorm, S. (2018). Social paradigms in guiding social research design: The functional, interpretive, radical humanist and radical structural paradigms. International Journal on New Trends in Education and Their Implications, 9(2), 57-76.
Guns, R., Liu, Y. X., & Mahbuba, D. (2011). Q-measures and betweenness centrality in a collaboration network: A case study of the field of informetrics. Scientometrics, 87(1), 133–147. https://doi.org/10.1007/s11192-010-0332-3
Guzeller, C. O., & Celiker, N. (2019). Bibliometrical analysis of Asia Pacific Journal of Tourism Research. Asia Pacific Journal of Tourism Research, 24(1), 108–120. https://doi.org/10.1080/10941665.2018.1541182
Güzeller, C. O., & Çeli̇ker, N. (2018). Bibliometric analysis of tourism research for the period 2007-2016. Advances in Hospitality and Tourism Research, 6(1), 1–22. https://doi.org/10.30519/ahtr.446248
Hadavandi, E., Ghanbari, A., Shahanaghi, K., & Abbasian-Naghneh, S. (2011). Tourist arrival forecasting by evolutionary fuzzy systems. Tourism Management, 32(5), 1196–1203. https://doi.org/10.1016/j.tourman.2010.09.015
Inanc-Demir, M., & Kozak, M. (2019). Big data and its supporting elements: implications for tourism and hospitality marketing. In M. Sigala, R. Rahimi, & M. Thelwall (Eds.), Big Data and Innovation in Tourism, Travel, and Hospitality: Managerial Approaches, Techniques, and Applications (pp. 213-223). Singapore: Springer. https://doi.org/10.1007/978-981-13-6339-9
Ivanov, S., & Webster, C. (2017). Adoption of robots, artificial intelligence and service automation by travel, tourism and hospitality companies – a cost-benefit analysis. In V. Marinov, M. Vodenska, M. Assenova & E. Dogramadjieva (Eds.) Traditions and Innovations in Contemporary Tourism (pp. 190-203). UK: Cambridge Scholars Publishing.
Johnson, A. G., & Samakovlis, I. (2019). A bibliometric analysis of knowledge development in smart tourism research. Journal of Hospitality and Tourism Technology, 10(4), 600–623. https://doi.org/10.1108/JHTT-07-2018-0065
Kazak, A. N., Chetyrbok, P. V., & Oleinikov, N. N. (2020). Artificial intelligence in the tourism sphere. IOP Conference Series: Earth and Environmental Science, 421(4). https://doi.org/10.1088/1755-1315/421/4/042020
Kirilenko, A. P., Stepchenkova, S. O., Kim, H., & Li, X. (Robert). (2018). Automated sentiment analysis in tourism: Comparison of approaches. Journal of Travel Research, 57(8), 1012–1025. https://doi.org/10.1177/0047287517729757
Köseoglu, M. A., Okumus, F., Putra, E. D., Yildiz, M., & Dogan, I. C. (2018). Authorship trends, collaboration patterns, and co-authorship networks in lodging studies (1990–2016). Journal of Hospitality Marketing and Management, 27(5), 561–582. https://doi.org/10.1080/19368623.2018.1399192
Koseoglu, M. A., Rahimi, R., Okumus, F., & Liu, J. (2016). Bibliometric studies in tourism. Annals of Tourism Research, 61, 180–198. https://doi.org/10.1016/j.annals.2016.10.006
Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago press.
Law, R. (1998). Room occupancy rate forecasting: A neural network approach. International Journal of Contemporary Hospitality Management, 10(6), 234–239. https://doi.org/10.1108/09596119810232301
Law, R. (2000). Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting. Tourism Management, 21(4), 331–340. https://doi.org/10.1016/S0261-5177(99)00067-9
Law, R., Leung, R., & Buhalis, D. (2010). An analysis of academic leadership in hospitality and tourism journals. Journal of Hospitality and Tourism Research, 34(4), 455–477. https://doi.org/10.1177/1096348010370866
Lei, Y., & Liu, Z. (2019). The development of artificial intelligence: A bibliometric analysis, 2007-2016. Journal of Physics: Conference Series, 1168(2). https://doi.org/10.1088/1742-6596/1168/2/022027
Leung, X. Y., Sun, J., & Bai, B. (2017). Bibliometrics of social media research: A co-citation and co-word analysis. International Journal of Hospitality Management, 66, 35–45. https://doi.org/10.1016/j.ijhm.2017.06.012
Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis. New York: Oxford University Press.
McCarthy, J., Minksy, M., Rochester, L., & Shannon, C. E. (1955). A proposal for the Dartmouth summer research project on artificial intelligence. AI magazine, 27(4), 12-12. Retrieved December 5, 2020, from http://www-formal.stanford.edu/jmc/history/dartmouth.pdf
Merigó, J. M., Mulet-Forteza, C., Valencia, C., & Lew, A. A. (2019). Twenty years of Tourism Geographies: A bibliometric overview. Tourism Geographies, 21(5), 881–910. https://doi.org/10.1080/14616688.2019.1666913
Mich, L. (2020). Artificial intelligence and machine learning. In Z. Xiang, M. Fuchs, U. Gretzel, & W. Höpken (Eds.), Handbook of e-Tourism. Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-05324-6_25-1
Niu, J., Tang, W., Xu, F., Zhou, X., & Song, Y. (2016). Global research on artificial intelligence from 1990-2014: Spatially-explicit bibliometric analysis. ISPRS International Journal of Geo-Information, 5(5), 1–19. https://doi.org/10.3390/ijgi5050066
Norris, M., & Oppenheim, C. (2007). Comparing alternatives to the Web of Science for coverage of the social sciences’ literature. Journal of Informetrics, 1(2), 161–169. https://doi.org/10.1016/j.joi.2006.12.001
Núñez-Tabales, J. M., Solano-Sánchez, M. Á., & Caridad-y-López-del-Río, L. (2020). Ten years of Airbnb phenomenon research: A bibliometric approach (2010–2019). Sustainability, 12(15). https://doi.org/10.3390/su12156205
Okumus, B., Koseoglu, M. A., & Ma, F. (2018). Food and gastronomy research in tourism and hospitality: A bibliometric analysis. International Journal of Hospitality Management, 73, 64–74. https://doi.org/10.1016/j.ijhm.2018.01.020
Okumus, F., Köseoglu, M. A., Putra, E. D., Dogan, I. C., & Yildiz, M. (2019). A bibliometric analysis of lodging-context research from 1990 to 2016. Journal of Hospitality and Tourism Research, 43(2), 210–225. https://doi.org/10.1177/1096348018765321
Palys, T. (2008). Purposive sampling. In L. M. Given (Ed.), The Sage encyclopedia of qualitative research methods (pp. 697–698). California: Sage.
Pannu, A. (2015). Artificial intelligence and its application in different areas. International Journal of Engineering and Innovative Technology, 4(10), 79–84.
Pappas, N. (2019). UK outbound travel and Brexit complexity. Tourism Management, 72, 12–22. https://doi.org/10.1016/j.tourman.2018.11.004
Pavaloiu, A., Köse, U., & Boz, H. (2017). How to apply artificial intelligence in social sciences. IASOS - Congress of International Applied Social Sciences, (September). Uşak, Turkey. Retrieved September 10, 2020, from https://www.researchgate.net/publication/325398286_How_to_Apply_Artificial_Intelligence_in_Social_Sciences
Perrault, R., Shoham, Y., Brynjolfsson, E., Clark, J., Etchemendy, J., Grosz Harvard, B., … Mishra, S. (2019). The AI Index 2019 Annual Report. In AI Index Steering Committee, Human-Centered AI Institute. Stanford. Retrieved September 10, 2020, from https://hai.stanford.edu/sites/g/files/sbiybj10986/f/ai_index_2019_report.pdf
Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348–349.
Qian, J., Law, R., & Wei, J. (2019). Knowledge mapping in travel website studies: A scientometric review. Scandinavian Journal of Hospitality and Tourism, 19(2), 192–209. https://doi.org/10.1080/15022250.2018.1526113
Ritchie, B. W. (2004). Chaos, crises and disasters: A strategic approach to crisis management in the tourism industry. Tourism Management, 25(6), 669–683. https://doi.org/10.1016/j.tourman.2003.09.004
Ruhanen, L., Weiler, B., Moyle, B. D., & McLennan, C. J. (2015). Trends and patterns in sustainable tourism research: A 25-year bibliometric analysis. Journal of Sustainable Tourism, 23(4), 517–535. https://doi.org/10.1080/09669582.2014.978790
Ruiz-Real, J. L., Uribe-Toril, J., Valenciano, J. de P., & Gázquez-Abad, J. C. (2020). Rural tourism and development: Evolution in scientific literature and trends. Journal of Hospitality and Tourism Research, 1–25. https://doi.org/10.1177/1096348020926538
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd ed.). Harlow: Pearson Education.
Samara, D., Magnisalis, I., & Peristeras, V. (2020). Artificial intelligence and big data in tourism: A systematic literature review. Journal of Hospitality and Tourism Technology, 11(2), 343-367. https://doi.org/10.1108/JHTT-12-2018-0118
Sánchez, A. D., de la Cruz Del Río Rama, M., & García, J. Á. (2017). Bibliometric analysis of publications on wine tourism in the databases Scopus and WoS. European Research on Management and Business Economics, 23(1), 8–15. https://doi.org/10.1016/j.iedeen.2016.02.001
Shukla, A. K., Janmaijaya, M., Abraham, A., & Muhuri, P. K. (2019). Engineering applications of artificial intelligence: A bibliometric analysis of 30 years (1988–2018). Engineering Applications of Artificial Intelligence, 85, 517–532. https://doi.org/10.1016/j.engappai.2019.06.010
Singh, S. K., Rathore, S., & Park, J. H. (2020). BlockIoTIntelligence: A blockchain-enabled intelligent IoT architecture with artificial intelligence. Future Generation Computer Systems, 110, 721–743. https://doi.org/10.1016/j.future.2019.09.002
Song, H., Qiu, R. T. R., & Park, J. (2019). A review of research on tourism demand forecasting. Annals of Tourism Research, 75, 338–362. https://doi.org/10.1016/j.annals.2018.12.001
Teixeira, S. J., & Ferreira, J. J. D. M. (2018). A bibliometric study of regional competitiveness and tourism innovation. International Journal of Tourism Policy, 8(3), 214–243. https://doi.org/10.1504/IJTP.2018.094483
Thomas, R. (2019). The AI ladder: Demystifying AI challenges. In: IBM and O’Reilly. Retrieved September 10, 2020, from https://www.oreilly.com/online-learning/report/The-AI-Ladder.pdf.
Todeschini, R., & Baccini, A. (2016). Handbook of bibliometric indicators : Quantitative tools for studying and evaluating research. Weinheim, Germany: Wiley-VCH.
Topal, I., & Uçar, M. K. (2018). In tourism, using artificial intelligence forecasting with Tripadvisor data : Year of Turkey in China. International Conference on Artificial Intelligence and Data Processing (IDAP), 1–5. Retrieved February 15, 2020, from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8620874
Tran, B., Vu, G., Ha, G., Vuong, Q.-H., Ho, M.-T., Vuong, T.-T., … Ho, R. (2019). Global evolution of research in artificial intelligence in health and medicine: A bibliometric study. Journal of Clinical Medicine, 8(360). https://doi.org/10.3390/jcm8030360
Tussyadiah, I. (2020). A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection on artificial intelligence and robotics in tourism. Annals of Tourism Research, 81, 102883. https://doi.org/10.1016/j.annals.2020.102883
Tussyadiah, I., & Miller, G. (2019). Perceived impacts of artificial intelligence and responses to positive behaviour change intervention. In Information and Communication Technologies in Tourism 2019 (pp. 359–370). Springer International Publishing. https://doi.org/10.1007/978-3-030-05940-8
van Nunen, K., Li, J., Reniers, G., & Ponnet, K. (2018). Bibliometric analysis of safety culture research. Safety Science, 108, 248–258. https://doi.org/10.1016/j.ssci.2017.08.011
van Raan, A. F. J. (2003). The use of bibliometric analysis in research performance assessment and monitoring of interdisciplinary scientific developments. TATuP - Zeitschrift Für Technikfolgenabschätzung in Theorie Und Praxis, 12(1), 20–29. https://doi.org/10.14512/tatup.12.1.20
Virani, A., Wellstead, A., & Howlett, M. P. (2019). Where is the policy? A bibliometric review of the state of policy research on medical tourism. Global Health Research and Policy, 5, 1–16. https://doi.org/10.2139/ssrn.3445235
Volchek, K., Liu, A., Song, H., & Buhalis, D. (2019). Forecasting tourist arrivals at attractions: Search engine empowered methodologies. Tourism Economics, 25(3), 425-447. https://doi.org/10.1177%2F1354816618811558
Zenker, S., & Kock, F. (2020). The coronavirus pandemic-A critical discussion of a tourism research agenda. Tourism Management, 81, 104164. https://doi.org/10.1016/j.tourman.2020.104164
Zhang, B., Li, N., Shi, F., & Law, R. (2020). A deep learning approach for daily tourist flow forecasting with consumer search data. Asia Pacific Journal of Tourism Research, 25(3), 323–339. https://doi.org/10.1080/10941665.2019.1709876
Zheng, W., Liao, Z., & Lin, Z. (2020). Navigating through the complex transport system: A heuristic approach for city tourism recommendation. Tourism Management, 81, 104162. https://doi.org/10.1016/j.tourman.2020.104162
Zlatanov, S., & Popesku, J. (2019). Current applications of artificial intelligence in tourism and hospitality. In International Scientific Conference on Information Technology and Data Related Research (pp. 84-90), Sinteza, Romania.
Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629
Kırtıl, İ. G., & Aşkun, V. (2021). Artificial Intelligence in Tourism: A Review and Bibliometrics Research. Advances in Hospitality and Tourism Research (AHTR), 9(1), 205-233. https://doi.org/10.30519/ahtr.801690