Research Article
BibTex RIS Cite

Comparing the Performance of Ensemble Methods in Predicting Emergency Department Admissions Using Machine Learning Techniques

Year 2024, Volume: 4 Issue: 1, 11 - 21, 01.05.2024

Abstract

Healthcare data collection, storage, retrieval, and analysis are enabled by various technologies and tools in health information systems. These systems include health information exchanges, telemedicine platforms, clinical decision support systems, and electronic health records. They aim to improve patient outcomes, provider communication, and healthcare workflows. Machine learning is being used in emergency rooms to address challenges such as increasing patient volume, limited resources, and the need for quick decisions. Machine learning algorithms can assist in triage and risk stratification by identifying patients requiring urgent care and predicting the severity of their condition. By analyzing various patient data sources, machine learning can detect patterns and indicators that human clinicians may miss, enabling early intervention and potentially saving lives. However, there is a lack of comparative evaluation of ensemble methods used in analysis. Therefore, this study aims to thoroughly examine and analyze various ensemble methods to understand their efficacy and performance, contributing valuable insights to researchers and practitioners.

References

  • [1] Medicana (n.d.). Tıbbi Servisler ve Acil servis. https://www.medicana.com.tr/tibbi-birimler/acil-servis
  • [2] Hoot, N. R., & Aronsky, D. (2008). Systematic review of emergency department crowding: causes, effects, and solutions. Annals of emergency medicine, 52(2), 126-136.
  • [3] ] Mamlin, B. W., Biondich, P. G., Wolfe, B. A., Fraser, H., Jazayeri, D., Allen, C., ... & Tierney, W. M. (2006). Cooking up an open source EMR for developing countries: OpenMRS–a recipe for successful collaboration. In AMIA Annual Symposium Proceedings (Vol. 2006, p. 529). American Medical Informatics Association.
  • [4] McGinn, C. A., Grenier, S., Duplantie, J., Shaw, N., Sicotte, C., Mathieu, L., ... & Gagnon, M. P. (2011). Comparison of user groups' perspectives of barriers and facilitators to implementing electronic health records: a systematic review. BMC medicine, 9(1), 1-10.
  • [5] Kawamoto, K., Houlihan, C. A., Balas, E. A., & Lobach, D. F. (2005). Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. Bmj, 330(7494), 765.
  • [6] Agency for Healthcare Research and Quality (n.d.). Clinical Decision Support. https://www.ahrq.gov/cpi/about/otherwebsites/clinical-decision-support/index.html#:~:text=Clinical%20decision%20support%20(CDS)%20provides,team%20and%20patient%20to%20consider
  • [7] HealthIT.gov (n.d.). What is an electronic health record (EHR)?. https://www.healthit.gov/faq/what-electronic-health-record-ehr#:~:text=EHRs%20are%20a%20vital%20part,decisions%20about%20a%20patient's%20care
  • [8] Nemati, S., Holder, A., Razmi, F., Stanley, M. D., Clifford, G. D., & Buchman, T. G. (2018). An interpretable machine learning model for accurate prediction of sepsis in the ICU. Critical care medicine, 46(4), 547.
  • [9] Kunt, M. M. (2021). Emergency Medicine and Artificial Intelligence. https://dergipark.org.tr/en/download/article-file/1985451
  • [10] Sun, J., Zhang, Y., & Tang, L. (2019). Predicting patient deterioration in the emergency department: A machine learning approach. Journal of Biomedical Informatics, 98, 103267.
  • [11] Barak-Corren, Y., Chaudhari, P., Perniciaro, J., Waltzman, M., Fine, A. M., & Reis, B. Y. (2021). Prediction across healthcare settings: a case study in predicting emergency department disposition. npj Digital Medicine, 4(1), 169.
  • [12] Lee, S. H., Chinnam, R. B., Dalkiran, E., Krupp, S., & Nauss, M. (2020). Prediction of emergency department patient disposition decision for proactive resource allocation for admission. Health Care Management Science, 23(3), 339–359. https://doi.org/10.1007/s10729-019-09496-y
  • [13] Chen, C., Hsieh, J., Cheng, S., Lin, Y., Lin, P., & Jeng, J. (2020). Emergency department disposition prediction using a deep neural network with integrated clinical narratives and structured data. International Journal of Medical Informatics, 139, 104146. https://doi.org/10.1016/j.ijmedinf.2020.104146
  • [14] LaMantia, M. A., Platts-Mills, T. F., Biese, K., Khandelwal, C., Forbach, C. R., Cairns, C. B., Busby-Whitehead, J., & Kizer, J. S. (2010). Predicting Hospital Admission and Returns to the Emergency Department for Elderly Patients. Academic Emergency Medicine, 17(3), 252–259. https://doi.org/10.1111/j.1553-2712.2009.00675.x
  • [15] Parker, C. A., Liu, N., Wu, S. X., Shen, Y., Lam, S. S. W., & Ong, M. E. H. (2019). Predicting hospital admission at the emergency department triage: A novel prediction model. American Journal of Emergency Medicine, 37(8), 1498–1504. https://doi.org/10.1016/j.ajem.2018.10.060
  • [16] Graham, B., Bond, R., Quinn, M., & Mulvenna, M. (2018). Using data mining to predict hospital admissions from the emergency department. IEEE Access, 6, 10458-10469.
  • [17] Zhang, X., Kim, J., Patzer, R. E., Pitts, S. R., Patzer, A., & Schrager, J. D. (2017). Prediction of emergency department hospital admission based on natural language processing and neural networks. Methods of information in medicine, 56(05), 377-389.
  • [18] Peck, J. S., Gaehde, S. A., Nightingale, D. J., Gelman, D. Y., Huckins, D. S., Lemons, M. F., ... & Benneyan, J. C. (2013). Generalizability of a simple approach for predicting hospital admission from an emergency department. Academic Emergency Medicine, 20(11), 1156-1163.
  • [19] Sun, Y., Heng, B. H., Tay, S. Y., & Seow, E. (2011). Predicting hospital admissions at emergency department triage using routine administrative data. Academic Emergency Medicine, 18(8), 844-850.
  • [20] Roquette, B. P., Nagano, H., Marujo, E. C., & Maiorano, A. C. (2020). Prediction of admission in pediatric emergency department with deep neural networks and triage textual data. Neural Networks, 126, 170-177.
  • [21] Mowbray, F., Zargoush, M., Jones, A., de Wit, K., & Costa, A. (2020). Predicting hospital admission for older emergency department patients: Insights from machine learning. International Journal of Medical Informatics, 140, 104163.
  • [22] Peck, J. S., Benneyan, J. C., Nightingale, D. J., & Gaehde, S. A. (2012). Predicting emergency department inpatient admissions to improve same‐day patient flow. Academic Emergency Medicine, 19(9), E1045-E1054.
  • [23] Leegon, J., Jones, I., Lanaghan, K., & Aronsky, D. (2005). Predicting hospital admission for Emergency Department patients using a Bayesian network. In AMIA Annual Symposium Proceedings (Vol. 2005, p. 1022). American Medical Informatics Association.
  • [24] Hong, W. S., Haimovich, A. D., & Taylor, R. A. (2018). Predicting hospital admission at emergency department triage using machine learning. PloS one, 13(7), e0201016.
  • [25] Kaggle (2021, August 28). Emergency Service - Triage Application. https://www.kaggle.com/datasets/ilkeryildiz/emergency-service-triage-application
  • [26] Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons.
  • [27] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
  • [28] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
  • [29] Freund, Y., & Mason, L. (1999, June). The alternating decision tree learning algorithm. In icml (Vol. 99, pp. 124-133).
  • [30] Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2009). RUSBoost: A hybrid approach to alleviating class imbalance. IEEE transactions on systems, man, and cybernetics-part A: systems and humans, 40(1), 185-197.
  • [31] Hong, W. S., Haimovich, A. D., & Taylor, R. A. (2018). Predicting hospital admission at emergency department triage using machine learning. PloS one, 13(7), e0201016.
  • [32] Moon, S. H., Shim, J. L., Park, K. S., & Park, C. S. (2019). Triage accuracy and causes of mistriage using the Korean Triage and Acuity Scale. PloS one, 14(9), e0216972.
Year 2024, Volume: 4 Issue: 1, 11 - 21, 01.05.2024

Abstract

References

  • [1] Medicana (n.d.). Tıbbi Servisler ve Acil servis. https://www.medicana.com.tr/tibbi-birimler/acil-servis
  • [2] Hoot, N. R., & Aronsky, D. (2008). Systematic review of emergency department crowding: causes, effects, and solutions. Annals of emergency medicine, 52(2), 126-136.
  • [3] ] Mamlin, B. W., Biondich, P. G., Wolfe, B. A., Fraser, H., Jazayeri, D., Allen, C., ... & Tierney, W. M. (2006). Cooking up an open source EMR for developing countries: OpenMRS–a recipe for successful collaboration. In AMIA Annual Symposium Proceedings (Vol. 2006, p. 529). American Medical Informatics Association.
  • [4] McGinn, C. A., Grenier, S., Duplantie, J., Shaw, N., Sicotte, C., Mathieu, L., ... & Gagnon, M. P. (2011). Comparison of user groups' perspectives of barriers and facilitators to implementing electronic health records: a systematic review. BMC medicine, 9(1), 1-10.
  • [5] Kawamoto, K., Houlihan, C. A., Balas, E. A., & Lobach, D. F. (2005). Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. Bmj, 330(7494), 765.
  • [6] Agency for Healthcare Research and Quality (n.d.). Clinical Decision Support. https://www.ahrq.gov/cpi/about/otherwebsites/clinical-decision-support/index.html#:~:text=Clinical%20decision%20support%20(CDS)%20provides,team%20and%20patient%20to%20consider
  • [7] HealthIT.gov (n.d.). What is an electronic health record (EHR)?. https://www.healthit.gov/faq/what-electronic-health-record-ehr#:~:text=EHRs%20are%20a%20vital%20part,decisions%20about%20a%20patient's%20care
  • [8] Nemati, S., Holder, A., Razmi, F., Stanley, M. D., Clifford, G. D., & Buchman, T. G. (2018). An interpretable machine learning model for accurate prediction of sepsis in the ICU. Critical care medicine, 46(4), 547.
  • [9] Kunt, M. M. (2021). Emergency Medicine and Artificial Intelligence. https://dergipark.org.tr/en/download/article-file/1985451
  • [10] Sun, J., Zhang, Y., & Tang, L. (2019). Predicting patient deterioration in the emergency department: A machine learning approach. Journal of Biomedical Informatics, 98, 103267.
  • [11] Barak-Corren, Y., Chaudhari, P., Perniciaro, J., Waltzman, M., Fine, A. M., & Reis, B. Y. (2021). Prediction across healthcare settings: a case study in predicting emergency department disposition. npj Digital Medicine, 4(1), 169.
  • [12] Lee, S. H., Chinnam, R. B., Dalkiran, E., Krupp, S., & Nauss, M. (2020). Prediction of emergency department patient disposition decision for proactive resource allocation for admission. Health Care Management Science, 23(3), 339–359. https://doi.org/10.1007/s10729-019-09496-y
  • [13] Chen, C., Hsieh, J., Cheng, S., Lin, Y., Lin, P., & Jeng, J. (2020). Emergency department disposition prediction using a deep neural network with integrated clinical narratives and structured data. International Journal of Medical Informatics, 139, 104146. https://doi.org/10.1016/j.ijmedinf.2020.104146
  • [14] LaMantia, M. A., Platts-Mills, T. F., Biese, K., Khandelwal, C., Forbach, C. R., Cairns, C. B., Busby-Whitehead, J., & Kizer, J. S. (2010). Predicting Hospital Admission and Returns to the Emergency Department for Elderly Patients. Academic Emergency Medicine, 17(3), 252–259. https://doi.org/10.1111/j.1553-2712.2009.00675.x
  • [15] Parker, C. A., Liu, N., Wu, S. X., Shen, Y., Lam, S. S. W., & Ong, M. E. H. (2019). Predicting hospital admission at the emergency department triage: A novel prediction model. American Journal of Emergency Medicine, 37(8), 1498–1504. https://doi.org/10.1016/j.ajem.2018.10.060
  • [16] Graham, B., Bond, R., Quinn, M., & Mulvenna, M. (2018). Using data mining to predict hospital admissions from the emergency department. IEEE Access, 6, 10458-10469.
  • [17] Zhang, X., Kim, J., Patzer, R. E., Pitts, S. R., Patzer, A., & Schrager, J. D. (2017). Prediction of emergency department hospital admission based on natural language processing and neural networks. Methods of information in medicine, 56(05), 377-389.
  • [18] Peck, J. S., Gaehde, S. A., Nightingale, D. J., Gelman, D. Y., Huckins, D. S., Lemons, M. F., ... & Benneyan, J. C. (2013). Generalizability of a simple approach for predicting hospital admission from an emergency department. Academic Emergency Medicine, 20(11), 1156-1163.
  • [19] Sun, Y., Heng, B. H., Tay, S. Y., & Seow, E. (2011). Predicting hospital admissions at emergency department triage using routine administrative data. Academic Emergency Medicine, 18(8), 844-850.
  • [20] Roquette, B. P., Nagano, H., Marujo, E. C., & Maiorano, A. C. (2020). Prediction of admission in pediatric emergency department with deep neural networks and triage textual data. Neural Networks, 126, 170-177.
  • [21] Mowbray, F., Zargoush, M., Jones, A., de Wit, K., & Costa, A. (2020). Predicting hospital admission for older emergency department patients: Insights from machine learning. International Journal of Medical Informatics, 140, 104163.
  • [22] Peck, J. S., Benneyan, J. C., Nightingale, D. J., & Gaehde, S. A. (2012). Predicting emergency department inpatient admissions to improve same‐day patient flow. Academic Emergency Medicine, 19(9), E1045-E1054.
  • [23] Leegon, J., Jones, I., Lanaghan, K., & Aronsky, D. (2005). Predicting hospital admission for Emergency Department patients using a Bayesian network. In AMIA Annual Symposium Proceedings (Vol. 2005, p. 1022). American Medical Informatics Association.
  • [24] Hong, W. S., Haimovich, A. D., & Taylor, R. A. (2018). Predicting hospital admission at emergency department triage using machine learning. PloS one, 13(7), e0201016.
  • [25] Kaggle (2021, August 28). Emergency Service - Triage Application. https://www.kaggle.com/datasets/ilkeryildiz/emergency-service-triage-application
  • [26] Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons.
  • [27] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
  • [28] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
  • [29] Freund, Y., & Mason, L. (1999, June). The alternating decision tree learning algorithm. In icml (Vol. 99, pp. 124-133).
  • [30] Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2009). RUSBoost: A hybrid approach to alleviating class imbalance. IEEE transactions on systems, man, and cybernetics-part A: systems and humans, 40(1), 185-197.
  • [31] Hong, W. S., Haimovich, A. D., & Taylor, R. A. (2018). Predicting hospital admission at emergency department triage using machine learning. PloS one, 13(7), e0201016.
  • [32] Moon, S. H., Shim, J. L., Park, K. S., & Park, C. S. (2019). Triage accuracy and causes of mistriage using the Korean Triage and Acuity Scale. PloS one, 14(9), e0216972.
There are 32 citations in total.

Details

Primary Language English
Subjects Data Mining and Knowledge Discovery
Journal Section Research Articles
Authors

Murat Emre Yapıcı 0009-0005-5989-594X

Kadir Hızıroğlu 0000-0003-4582-3732

Ali Mert Erdoğan 0009-0006-3443-7253

Publication Date May 1, 2024
Submission Date October 30, 2023
Acceptance Date January 12, 2024
Published in Issue Year 2024 Volume: 4 Issue: 1

Cite

APA Yapıcı, M. E., Hızıroğlu, K., & Erdoğan, A. M. (2024). Comparing the Performance of Ensemble Methods in Predicting Emergency Department Admissions Using Machine Learning Techniques. Artificial Intelligence Theory and Applications, 4(1), 11-21.