Research Article
BibTex RIS Cite

Investigation of Magnesium Production from Magnesium Oxide and Dolomite Reduced by Aluminum, Ferrosilicon, and Calcium Carbide

Year 2025, Volume: 3 Issue: 3, 154 - 174, 31.12.2025
https://doi.org/10.70988/ajeas.1835402

Abstract

In this study, metallic magnesium was produced using the Magnetherm process with different magnesium sources and various reducing agents. Magnesium oxide (MgO) and dolomite (CaO·MgO) were used as magnesium sources, while aluminum chips (Al), ferrosilicon (FeSi), and calcium carbide (CaC2) served as reducing agents. The effects of using different magnesium sources and reductants under identical experimental parameters on both reduction efficiency and recovery yield were investigated. The experiments were carried out for 1.5 minutes at a current of 600 A in the Al- CaO·MgO, FeSi-MgO, FeSi-CaO·MgO, CaC2-MgO, and CaC2-CaO·MgO systems. Thermodynamic modeling was performed using the FactSage software, and the results were compared with experimental findings. The produced magnesium was obtained in powder form, and various analyses were performed on both magnesium powders and slags. XRD and carbon determination tests were applied to the magnesium powders and slags; atomic absorption spectroscopy (AAS) was used for the magnesium powders; and XRF analysis was conducted on the slags. According to the experimental results, the highest reduction efficiency was obtained in the FeSi-CaO·MgO system with 98.17%, while the highest recovery yield was achieved in the Al- CaO·MgO system with 93.75%.

Ethical Statement

This study was conducted in accordance with ethical principles.

Supporting Institution

The experimental studies of this article were conducted in the laboratories of the Department of Metallurgical and Materials Engineering at Yıldız Technical University.

Project Number

This study was not supported by any project.

Thanks

This article was written as part of my doctoral dissertation, and I would like to express my gratitude to Prof. Dr. Ahmet Ekerim, who passed away in 2024, for his invaluable support and contributions during my doctoral studies.

References

  • S. Ramakrishnan, P. Koltun, “Global warming impact of the magnesium produced in China using the Pidgeon process”, Resources, Conservation and Recycling 42:1 (2004) 49–64. doi:10.1016/j.resconrec.2004.02.003.
  • Zhang, J. Miao, N. Balasubramani, D. H. Cho, T. Avey, C.-Y. Chang, A. A. Luo, “Magnesium research and applications: Past, present and future”, Journal of Magnesium and Alloys 11:11 (2023) 3867–3895. doi:10.1016/j.jma.2023.11.007.
  • M. Bugdayci, A. Turan, O. Yücel, “Production of magnesium–strontium alloys through vacuum metallothermic process”, Metallurgical and Materials Transactions B 51:3 (2020) 1254–1262. doi:10.1007/s11663-020-01825-9.
  • Y. Si Che, G. Peng Mai, S. Long Li, J. Lin He, J. Xun Song, J. Hong Yi, “Kinetic mechanism of magnesium production by silicothermic reduction of CaO·MgO in vacuum”, Transactions of Nonferrous Metals Society of China 30:10 (2020) 2812–2822. doi:10.1016/S1003-6326(20)65423-1.
  • Y. Tian, T. Qu, B. Yang, Y. N. Dai, B. Q. Xu, S. Geng, “Behavior analysis of CaF₂ in magnesia carbothermic reduction process in vacuum”, Metallurgical and Materials Transactions B 43:3 (2012) 657–661. doi:10.1007/s11663-011-9622-2.
  • L. Rongti, P. Wei & M. Sano, Kinetics and mechanism of carbothermic reduction of magnesia, Metallurgical and Materials Transactions B, 34(4), 433–437, 2003, doi:10.1007/s11663-003-0069-y.
  • M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, P. Beggs, “Magnesium alloy applications in automotive structures”, JOM: The Journal of the Minerals, Metals & Materials Society 60:11 (2008) 57–62. doi:10.1007/s11837-008-0150-8.
  • D. Wang, T. Zhang, J. Xu, K. Wang, “Current status and progress of research on vacuum method of refining magnesium”, Journal of Magnesium and Alloys 13:6 (2025) 2470–2499. doi:10.1016/j.jma.2025.04.013.
  • Y. Che, Z. Hao, J. Zhu, Z. Fu, J. He, J. Song, “Kinetic mechanism of magnesium production by silicothermy in argon flowing”, Thermochimica Acta 681 (2019) 178397. doi:10.1016/j.tca.2019.178397.
  • D. Fu, Y. Wang, J. Peng, Y. Di, S. Tao, and N. Feng, “Comparison of extracting magnesium by aluminothermic reduction and Pidgeon process,” in Advanced Materials Research, 2012, pp. 1779–1783. doi: 10.4028/www.scientific.net/AMR.550-553.1779.
  • D. Fu, Y. Wang, T. Zhang, and N. Feng, “Review on the silicothermic process for primary magnesium production”, Metallurgical and Materials Transactions B 54 (2023) 1–21. doi:10.1007/s11663-022-02695-z.
  • Y. Aviezer, L. Birnhack, A. Leon, E. Aghion, O. Lahav, “A new thermal-reduction-based approach for producing Mg from seawater”, Hydrometallurgy 169 (2017) 520–533. doi:10.1016/j.hydromet.2017.03.011.
  • L. Hong, K. Okumura, M. Sano, “Nonisothermal gravimetric investigation on kinetics of reduction of magnesia by aluminum”, Metallurgical and Materials Transactions B 30:6 (1999) 1003–1008. doi:10.1007/s11663-999-0105-7
  • D. X. Fu, T. A. Zhang, L. K. Guan, Z. H. Dou, M. Wen, “Magnesium production by silicothermic reduction of dolime in pre-prepared dolomite pellets”, JOM 68:12 (2016) 3208–3213. doi:10.1007/s11837-016-2034-7.
  • D. Fu, T. A. Zhang, Z. H. Dou, L. Guan, M. Wen, “Numerical study of magnesium production by pidgeon process and pre-prepared pellets silicothermic process: Comparison of heat transfer”, Minerals, Metals and Materials Series (2017) 107–111. doi:10.1007/978-3-319-52392-7_18.
  • P. Deng, Y. Q. Liu, W. G. Yao, H. W. Ma, “Production of primary magnesium by the aluminothermic reduction of magnesia extracted from dolomite ore”, Materials Science Forum (2014) 28–33. doi:10.4028/www.scientific.net/MSF.788.28.
  • G. Brooks, S. Trang, P. Witt, M. Khan, M. Nagle, “The carbothermic route to magnesium”, JOM: The Journal of the Minerals, Metals & Materials Society 58:5 (2006) 51–55. doi:10.1007/s11837-006-0024-x.
  • M. Chen, B. J. Zhao, Y. H. Chen, F. L. Han, L. E. Wu, “Reaction mechanisms in the silicothermic production of magnesium”, Minerals, Metals and Materials Series (2017) 239–249. doi:10.1007/978-3-319-51091-0_22.
  • E. S. Minaev, A. A. Vertman, V. T. Burtsev, Y. A. Minaev, “Thermodynamics of reduction of sintered dolomite”, Russian Journal of Non-Ferrous Metals 52:4 (2011) 353–356. doi:10.3103/S1067821211040109.
  • F. Cherubini, M. Raugei, S. Ulgiati, “LCA of magnesium production: Technological overview and worldwide estimation of environmental burdens”, Resources, Conservation and Recycling 52:8–9 (2008) 1093–1100. doi:10.1016/j.resconrec.2008.05.001.
  • D. Xue Fu, Y. Wu Wang, Y. Zhong Di, J. Ping Peng, N. Xiang Feng, “Factors affecting reduction efficiency in industrial retorts for Mg production by aluminothermic process”, Transactions of Nonferrous Metals Society of China 34:4 (2024) 1288–1299. doi:10.1016/S1003-6326(24)66471-X.
  • J. M. Avery, “Aluminothermic production of magnesium and an oxidic slag containing recoverable alumina”, U.S. Patent No. 3,782,922, United States Patent Office, USA, 1974.
  • O. D. Neikov, V. G. Gopienko, Production of Magnesium and Magnesium Alloy Powders, 2nd ed., Elsevier Ltd., 2018. doi:10.1016/B978-0-08-100543-9.00017-8.
  • M. Bugdayci et al., “Effect of reductant type on the metallothermic magnesium production process”, High Temperature Materials and Processes 37:1 (2018) 1–8. doi:10.1515/htmp-2016-0197.
  • A. Shahraki, S. Ghasemi-Kahrizsangi, A. Nemati, “Performance improvement of MgO–CaO refractories by the addition of nano-sized Al₂O₃”, Materials Chemistry and Physics 198 (2017) 354–359. doi:10.1016/j.matchemphys.2017.06.026.
  • M. Halmann, A. Frei, A. Steinfeld, “Magnesium production by the Pidgeon process involving dolomite calcination and MgO silicothermic reduction: Thermodynamic and environmental analyses”, Industrial & Engineering Chemistry Research 47:7 (2008) 2146–2154. doi:10.1021/ie071234v.
  • X. Xu, J. Liu, Y. Zhu, M. Song, Y. Zhao, W. Zhang, X. Li, P. Yang, W. Tang, S. Zhang, “Research on the mechanism of magnesium smelting by CaC₂ thermal reduction”, Journal of Cleaner Production 505 (2025) 145526. doi:10.1016/j.jclepro.2025.145526.
  • B. R. Davis, M. S. Moats, S. Wang, D. Gregurek, J. Kapusta, T. P. Battle, M. E. Schlesinger, G. R. A. Flores, E. Jak, G. Goodall, M. L. Free, E. Asselin, A. Chagnes, D. Dreisinger, M. Jeffrey, J. Lee, G. Miller, J. Petersen, V. S. T. Ciminelli, Q. Xu, R. Molnar, J. Adams, W. Liu, N. Verbaan, J. Goode, I. M. London, G. Azimi, A. Forstner, R. Kappes, T. Bhambhani (Eds.), Extraction 2018: Proceedings of the First Global Conference on Extractive Metallurgy, Springer, Cham, Switzerland, 2018.
  • W. Wang, G. Zhang, X. Ling, L. Zhang, L. Liu, X. Luo, T. Gu, H. Liu, C. Ling, “New elucidating into the microstructural evolution mechanisms and micromechanical properties of C4AF and gypsum synergistic hydration”, Construction and Building Materials 449 (2024) 138575. doi:10.1016/j.conbuildmat.2024.138575.
  • H. Wang, D. De Leon, H. Farzam, “C4AF reactivity–chemistry and hydration of industrial cement”, ACI Materials Journal 111:2 (2014) 201–210. doi:10.14359/51686504.
  • F. P. Hu, J. Pan, X. Ma, X. Zhang, J. Chen, W. D. Xie, “Preparation of Mg and Ca metal by carbothermic reduction method – A thermodynamics approach”, Journal of Magnesium and Alloys 1:3 (2013) 263–266. doi:10.1016/j.jma.2013.08.004.
  • D. X. Fu, N. X. Feng, Y. W. Wang, J. P. Peng, Y. Z. Di, “Kinetics of extracting magnesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction”, Transactions of Nonferrous Metals Society of China 24:3 (2014) 839–847. doi:10.1016/S1003-6326(14)63133-2.
  • D. X. Fu, Y. W. Wang, J. P. Peng, Y. Z. Di, S. H. Tao, N. X. Feng, “Mechanism of extracting magnesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction”, Oral Oncology 50:10 (2014) 2677–2686. doi:10.1016/S1003-6326(14)63398-7.
  • B. Matović, A. Saponjić, A. Devečerski, M. Miljković, “Fabrication of SiC by carbothermal-reduction reactions of diatomaceous earth”, Journal of Materials Science 42:14 (2007) 5448–5451. doi:10.1007/s10853-006-0780-6.

Alüminyum, Ferrosilisyum ve Kalsiyum Karbür ile Magnezyum Oksit ve Dolomitin Redüksiyonunda Magnezyum Üretiminin İncelenmesi

Year 2025, Volume: 3 Issue: 3, 154 - 174, 31.12.2025
https://doi.org/10.70988/ajeas.1835402

Abstract

Bu çalışmada, Magnetherm prosesi ile farklı magnezyum kaynakları ve farklı redükleyicilerle metalik magnezyum üretimi gerçekleştirilmiştir. Magnezyum kaynağı olarak magnezyum oksit (MgO) ve dolomit (CaO·MgO); redükleyici ajan olarak alüminyum talaşları (Al), ferosilisyum (FeSi) ve kalsiyum karbür (CaC2) kullanılmıştır. Bu çalışmada aynı deney parametrelerinde farklı magnezyum kaynağı kullanarak farklı redükleyici kullanımının redüksiyon verimi ve geri kazanım verimi üzerindeki etkisi araştırılmıştır. Deneyler, 1,5 dakikalık deney süresi ve 600 amperlik akım değerinde, Al- CaO·MgO, FeSi-MgO, FeSi-CaO·MgO, CaC2-MgO ve CaC2-CaO·MgO sistemlerinde gerçekleştirilmiştir. FactSage programı kullanılarak termodinamik modelleme yapılmış ve sonuçlar deneysel bulgularla karşılaştırılmıştır. Üretilen magnezyumlar toz formunda elde edilmiş ve magnezyum tozları ile cüruflara çeşitli analizler uygulanmıştır. Magnezyum tozları ve cüruflara XRD ve karbon tayini; magnezyum tozlarına atomik absorbsiyon analizi (AAS); cüruflara ise XRF analizi yapılmıştır. Deney sonuçlarına göre, en yüksek redüksiyon verimi %98,17 ile FeSi-CaO·MgO redüksiyonunda, en yüksek geri kazanım verimi ise %93,75 ile Al- CaO·MgO redüksiyonunda elde edilmiştir.

Ethical Statement

Bu çalışma, etik kurallarına göre yapılmıştır.

Supporting Institution

Bu makalenin deneysel çalışmaları Yıldız Teknik Üniversitesi, Metalürji ve Malzeme Müh. bölüm laboratuvarlarında yapılmıştır.

Project Number

This study was not supported by any project.

Thanks

Bu makale, doktora tezim kapsamında yazılmış olup, doktora tezim esnasında benden emeklerini esirgemeyen ve 2024 yılında vefat eden Prof. Dr. Ahmet EKERİM'e teşekkürlerimi sunarım.

References

  • S. Ramakrishnan, P. Koltun, “Global warming impact of the magnesium produced in China using the Pidgeon process”, Resources, Conservation and Recycling 42:1 (2004) 49–64. doi:10.1016/j.resconrec.2004.02.003.
  • Zhang, J. Miao, N. Balasubramani, D. H. Cho, T. Avey, C.-Y. Chang, A. A. Luo, “Magnesium research and applications: Past, present and future”, Journal of Magnesium and Alloys 11:11 (2023) 3867–3895. doi:10.1016/j.jma.2023.11.007.
  • M. Bugdayci, A. Turan, O. Yücel, “Production of magnesium–strontium alloys through vacuum metallothermic process”, Metallurgical and Materials Transactions B 51:3 (2020) 1254–1262. doi:10.1007/s11663-020-01825-9.
  • Y. Si Che, G. Peng Mai, S. Long Li, J. Lin He, J. Xun Song, J. Hong Yi, “Kinetic mechanism of magnesium production by silicothermic reduction of CaO·MgO in vacuum”, Transactions of Nonferrous Metals Society of China 30:10 (2020) 2812–2822. doi:10.1016/S1003-6326(20)65423-1.
  • Y. Tian, T. Qu, B. Yang, Y. N. Dai, B. Q. Xu, S. Geng, “Behavior analysis of CaF₂ in magnesia carbothermic reduction process in vacuum”, Metallurgical and Materials Transactions B 43:3 (2012) 657–661. doi:10.1007/s11663-011-9622-2.
  • L. Rongti, P. Wei & M. Sano, Kinetics and mechanism of carbothermic reduction of magnesia, Metallurgical and Materials Transactions B, 34(4), 433–437, 2003, doi:10.1007/s11663-003-0069-y.
  • M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, P. Beggs, “Magnesium alloy applications in automotive structures”, JOM: The Journal of the Minerals, Metals & Materials Society 60:11 (2008) 57–62. doi:10.1007/s11837-008-0150-8.
  • D. Wang, T. Zhang, J. Xu, K. Wang, “Current status and progress of research on vacuum method of refining magnesium”, Journal of Magnesium and Alloys 13:6 (2025) 2470–2499. doi:10.1016/j.jma.2025.04.013.
  • Y. Che, Z. Hao, J. Zhu, Z. Fu, J. He, J. Song, “Kinetic mechanism of magnesium production by silicothermy in argon flowing”, Thermochimica Acta 681 (2019) 178397. doi:10.1016/j.tca.2019.178397.
  • D. Fu, Y. Wang, J. Peng, Y. Di, S. Tao, and N. Feng, “Comparison of extracting magnesium by aluminothermic reduction and Pidgeon process,” in Advanced Materials Research, 2012, pp. 1779–1783. doi: 10.4028/www.scientific.net/AMR.550-553.1779.
  • D. Fu, Y. Wang, T. Zhang, and N. Feng, “Review on the silicothermic process for primary magnesium production”, Metallurgical and Materials Transactions B 54 (2023) 1–21. doi:10.1007/s11663-022-02695-z.
  • Y. Aviezer, L. Birnhack, A. Leon, E. Aghion, O. Lahav, “A new thermal-reduction-based approach for producing Mg from seawater”, Hydrometallurgy 169 (2017) 520–533. doi:10.1016/j.hydromet.2017.03.011.
  • L. Hong, K. Okumura, M. Sano, “Nonisothermal gravimetric investigation on kinetics of reduction of magnesia by aluminum”, Metallurgical and Materials Transactions B 30:6 (1999) 1003–1008. doi:10.1007/s11663-999-0105-7
  • D. X. Fu, T. A. Zhang, L. K. Guan, Z. H. Dou, M. Wen, “Magnesium production by silicothermic reduction of dolime in pre-prepared dolomite pellets”, JOM 68:12 (2016) 3208–3213. doi:10.1007/s11837-016-2034-7.
  • D. Fu, T. A. Zhang, Z. H. Dou, L. Guan, M. Wen, “Numerical study of magnesium production by pidgeon process and pre-prepared pellets silicothermic process: Comparison of heat transfer”, Minerals, Metals and Materials Series (2017) 107–111. doi:10.1007/978-3-319-52392-7_18.
  • P. Deng, Y. Q. Liu, W. G. Yao, H. W. Ma, “Production of primary magnesium by the aluminothermic reduction of magnesia extracted from dolomite ore”, Materials Science Forum (2014) 28–33. doi:10.4028/www.scientific.net/MSF.788.28.
  • G. Brooks, S. Trang, P. Witt, M. Khan, M. Nagle, “The carbothermic route to magnesium”, JOM: The Journal of the Minerals, Metals & Materials Society 58:5 (2006) 51–55. doi:10.1007/s11837-006-0024-x.
  • M. Chen, B. J. Zhao, Y. H. Chen, F. L. Han, L. E. Wu, “Reaction mechanisms in the silicothermic production of magnesium”, Minerals, Metals and Materials Series (2017) 239–249. doi:10.1007/978-3-319-51091-0_22.
  • E. S. Minaev, A. A. Vertman, V. T. Burtsev, Y. A. Minaev, “Thermodynamics of reduction of sintered dolomite”, Russian Journal of Non-Ferrous Metals 52:4 (2011) 353–356. doi:10.3103/S1067821211040109.
  • F. Cherubini, M. Raugei, S. Ulgiati, “LCA of magnesium production: Technological overview and worldwide estimation of environmental burdens”, Resources, Conservation and Recycling 52:8–9 (2008) 1093–1100. doi:10.1016/j.resconrec.2008.05.001.
  • D. Xue Fu, Y. Wu Wang, Y. Zhong Di, J. Ping Peng, N. Xiang Feng, “Factors affecting reduction efficiency in industrial retorts for Mg production by aluminothermic process”, Transactions of Nonferrous Metals Society of China 34:4 (2024) 1288–1299. doi:10.1016/S1003-6326(24)66471-X.
  • J. M. Avery, “Aluminothermic production of magnesium and an oxidic slag containing recoverable alumina”, U.S. Patent No. 3,782,922, United States Patent Office, USA, 1974.
  • O. D. Neikov, V. G. Gopienko, Production of Magnesium and Magnesium Alloy Powders, 2nd ed., Elsevier Ltd., 2018. doi:10.1016/B978-0-08-100543-9.00017-8.
  • M. Bugdayci et al., “Effect of reductant type on the metallothermic magnesium production process”, High Temperature Materials and Processes 37:1 (2018) 1–8. doi:10.1515/htmp-2016-0197.
  • A. Shahraki, S. Ghasemi-Kahrizsangi, A. Nemati, “Performance improvement of MgO–CaO refractories by the addition of nano-sized Al₂O₃”, Materials Chemistry and Physics 198 (2017) 354–359. doi:10.1016/j.matchemphys.2017.06.026.
  • M. Halmann, A. Frei, A. Steinfeld, “Magnesium production by the Pidgeon process involving dolomite calcination and MgO silicothermic reduction: Thermodynamic and environmental analyses”, Industrial & Engineering Chemistry Research 47:7 (2008) 2146–2154. doi:10.1021/ie071234v.
  • X. Xu, J. Liu, Y. Zhu, M. Song, Y. Zhao, W. Zhang, X. Li, P. Yang, W. Tang, S. Zhang, “Research on the mechanism of magnesium smelting by CaC₂ thermal reduction”, Journal of Cleaner Production 505 (2025) 145526. doi:10.1016/j.jclepro.2025.145526.
  • B. R. Davis, M. S. Moats, S. Wang, D. Gregurek, J. Kapusta, T. P. Battle, M. E. Schlesinger, G. R. A. Flores, E. Jak, G. Goodall, M. L. Free, E. Asselin, A. Chagnes, D. Dreisinger, M. Jeffrey, J. Lee, G. Miller, J. Petersen, V. S. T. Ciminelli, Q. Xu, R. Molnar, J. Adams, W. Liu, N. Verbaan, J. Goode, I. M. London, G. Azimi, A. Forstner, R. Kappes, T. Bhambhani (Eds.), Extraction 2018: Proceedings of the First Global Conference on Extractive Metallurgy, Springer, Cham, Switzerland, 2018.
  • W. Wang, G. Zhang, X. Ling, L. Zhang, L. Liu, X. Luo, T. Gu, H. Liu, C. Ling, “New elucidating into the microstructural evolution mechanisms and micromechanical properties of C4AF and gypsum synergistic hydration”, Construction and Building Materials 449 (2024) 138575. doi:10.1016/j.conbuildmat.2024.138575.
  • H. Wang, D. De Leon, H. Farzam, “C4AF reactivity–chemistry and hydration of industrial cement”, ACI Materials Journal 111:2 (2014) 201–210. doi:10.14359/51686504.
  • F. P. Hu, J. Pan, X. Ma, X. Zhang, J. Chen, W. D. Xie, “Preparation of Mg and Ca metal by carbothermic reduction method – A thermodynamics approach”, Journal of Magnesium and Alloys 1:3 (2013) 263–266. doi:10.1016/j.jma.2013.08.004.
  • D. X. Fu, N. X. Feng, Y. W. Wang, J. P. Peng, Y. Z. Di, “Kinetics of extracting magnesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction”, Transactions of Nonferrous Metals Society of China 24:3 (2014) 839–847. doi:10.1016/S1003-6326(14)63133-2.
  • D. X. Fu, Y. W. Wang, J. P. Peng, Y. Z. Di, S. H. Tao, N. X. Feng, “Mechanism of extracting magnesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction”, Oral Oncology 50:10 (2014) 2677–2686. doi:10.1016/S1003-6326(14)63398-7.
  • B. Matović, A. Saponjić, A. Devečerski, M. Miljković, “Fabrication of SiC by carbothermal-reduction reactions of diatomaceous earth”, Journal of Materials Science 42:14 (2007) 5448–5451. doi:10.1007/s10853-006-0780-6.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Research Article
Authors

Yahya Bayrak 0000-0003-3900-2807

Ahmet Ekerim 0000-0003-3858-1077

Project Number This study was not supported by any project.
Submission Date December 3, 2025
Acceptance Date December 15, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 3 Issue: 3

Cite

IEEE Y. Bayrak and A. Ekerim, “Alüminyum, Ferrosilisyum ve Kalsiyum Karbür ile Magnezyum Oksit ve Dolomitin Redüksiyonunda Magnezyum Üretiminin İncelenmesi”, AJEAS, vol. 3, no. 3, pp. 154–174, 2025, doi: 10.70988/ajeas.1835402.

Alpha Journal of Engineering and Applied Sciences © 2023 is licensed under the Creative Commons Attribution 4.0 International License (CC BY)