İnceleme Makalesi
BibTex RIS Kaynak Göster

Advancements and Challenges in the Development of self-healing Concrete for Sustainable Construction- A Critical Review

Yıl 2024, Cilt: 2 Sayı: 1, 33 - 48, 30.04.2024

Öz

This review paper delves into the innovative realm of self-healing concrete as a sustainable solution in the construction industry. The paper critically examines the development and application of self-healing concrete, particularly focusing on its capacity to autonomously repair cracks and microfractures, thereby enhancing structural durability and reducing environmental impact. The review highlights the application of microbial methods, especially the use of bacteria such as Bacillus sp., in facilitating the repair process in an environmentally friendly manner. It explores the mechanisms of self-healing concrete, its sustainability benefits including prolonged lifespan of structures, reduced maintenance requirements, and decreased carbon emissions. However, the paper also addresses the challenges and limitations associated with the technology, such as the efficacy of bacteria over long-term applications and cost considerations. Furthermore, the manuscript provides insights into practical applications and case studies of self-healing concrete, showcasing its effectiveness in real-world scenarios. The incorporation of Life Cycle Assessment (LCA) in evaluating self-healing concrete is discussed, offering a comprehensive understanding of its environmental impact throughout its life cycle. Despite the challenges, the potential benefits of self-healing concrete are emphasized, positioning it as a promising avenue for sustainable construction practices in the context of growing global demand for concrete and the need for environmentally conscious solutions.

Kaynakça

  • [1] Kim H., Son H. M., Seo J., and Lee H. K., “Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: A review”, Constr Build Mater, 274:122094, (2021), doi: 10.1016/j.conbuildmat.2020.122094.
  • [2] Sirtoli D., Wyrzykowski M., Riva P., and Lura P., “Autogenous and drying shrinkage of mortars based on Portland and calcium sulfoaluminate cements,”, Mater Struct, 53(5): 126, (2020), doi: 10.1617/s11527-020-01561-1.
  • [3] Fang C., Plaza G., and Achal V., “A Review on Role of Enzymes and Microbes in Healing Cracks in Cementitious Materials”, in Building Materials for Sustainable and Ecological Environment, Singapore: Springer Singapore, 151–162, (2021), doi: 10.1007/978-981-16-1706-5_9.
  • [4] Shaikh F. U. A., “Effect of Cracking on Corrosion of Steel in Concrete”, Int J Concr Struct Mater, 12(1): 3, (2018), doi: 10.1186/s40069-018-0234-y.
  • [5] Dunford M. and Li L., “Earthquake reconstruction in Wenchuan: Assessing the state overall plan and addressing the ‘forgotten phase”, Applied Geography, 31(3): 998–1009, (2011), doi: 10.1016/j.apgeog.2011.01.001.
  • [6] Chang Y., Wilkinson S., Potangaroa R., and Seville E., “Identifying factors affecting resource availability for post‐disaster reconstruction: a case study in China”, Construction Management and Economics, 29(1): 37–48, (2011), doi: 10.1080/01446193.2010.521761.
  • [7] Vijay K., Murmu M., and Deo S. V., “Bacteria based self healing concrete – A review,” Constr Build Mater, 152: 1008–1014, (2017), doi: 10.1016/j.conbuildmat.2017.07.040.
  • [8] Islam S. and Bhat G., “Progress and challenges in self-healing composite materials”, Mater Adv, 2(6): 1896–1926, (2021), doi: 10.1039/D0MA00873G.
  • [9] Fernandez C. A. et al., “Progress and challenges in self-healing cementitious materials”, J Mater Sci, 56(1): 201–230, (2021), doi: 10.1007/s10853-020-05164-7.
  • [10] Li W., Jiang Z., Yang Z., Zhao N., and Yuan W., “Self-Healing Efficiency of Cementitious Materials Containing Microcapsules Filled with Healing Adhesive: Mechanical Restoration and Healing Process Monitored by Water Absorption”, PLoS One, 8(11): e81616, (2013), doi: 10.1371/journal.pone.0081616.
  • [11] Ghosh S. K., Ed., Self‐Healing Materials. Wiley, (2008). doi: 10.1002/9783527625376.
  • [12] Nie P., Dahanayake K. C., and Sumanarathna N., “Exploring UAE’s transition towards circular economy through construction and demolition waste management in the pre-construction stage–A case study approach”, Smart and Sustainable Built Environment, (2023), doi: 10.1108/SASBE-06-2022-0115.
  • [13] Sangadji S., “Can Self-healing Mechanism Helps Concrete Structures Sustainable?”, Procedia Eng, 171: 238–249, (2017), doi: 10.1016/j.proeng.2017.01.331.
  • [14] Alves C. and Sanjurjo-Sánchez J., “Conservation of stony materials in the built environment”, Environ Chem Lett, 13(4): 413–430, (2015), doi: 10.1007/s10311-015-0526-2.
  • [15] Garces J. I. T., Dollente I. J., Beltran A. B., Tan R. R., and Promentilla M. A. B., “Life cycle assessment of self-healing geopolymer concrete”, Clean Eng Technol, 4: 100147, (2021), doi: 10.1016/j.clet.2021.100147.
  • [16] Šovljanski O., Tomić A., and Markov S., “Relationship between Bacterial Contribution and Self-Healing Effect of Cement-Based Materials”, Microorganisms, 10(7): 1399, (2022), doi: 10.3390/microorganisms10071399.
  • [17] Gupta S., Pang S. D., and Kua H. W., “Autonomous healing in concrete by bio-based healing agents – A review”, Constr Build Mater, 146: 419–428, (2017), doi: 10.1016/j.conbuildmat.2017.04.111.
  • [18] Gupta S., Kua H. W., and Pang S. D., “Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration”, Cem Concr Compos, 86: 238–254, (2018), doi: 10.1016/j.cemconcomp.2017.11.015.
  • [19] Jonkers H. M., Thijssen A., Muyzer G., Copuroglu O., and Schlangen E., “Application of bacteria as self-healing agent for the development of sustainable concrete”, Ecol Eng, 36(2): 230–235, (2010), doi: 10.1016/j.ecoleng.2008.12.036.
  • [20] Feng J., Chen B., Sun W., and Wang Y., “Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization”, Constr Build Mater, 280: 122460, (2021), doi: 10.1016/j.conbuildmat.2021.122460.
  • [21] Seifan M. and Berenjian A., “Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete”, World Journal of Microbiology and Biotechnology, 34(11). (2018), doi: 10.1007/s11274-018-2552-2.
  • [22] Ekinci E., Türkmen İ., and Birhanli E., “Performance of self-healing geopolymer paste produced using Bacillus subtilis”, Constr Build Mater, 325: 126837, (2022), doi: 10.1016/j.conbuildmat.2022.126837.
  • [23] van Dijl J. M. and Hecker M., “Bacillus subtilis: from soil bacterium to super-secreting cell factory”, Microb Cell Fact, 12(1): 3, (2013), doi: 10.1186/1475-2859-12-3.
  • [24] Gardner D., Lark R., Jefferson T., and Davies R., “A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials”, Case Studies in Construction Materials, 8:238–247, ( 2018), doi: 10.1016/j.cscm.2018.02.002.
  • [25] Güler Ö., Başgöz Ö., and Yavuz Ç., “Production of new type insulation material: Expanded Perlite-Silica aerogel composite”, Turkish Journal of Engineering, 5(3): 95–99, (2021), doi: 10.31127/tuje.674035.
  • [26] Li V. C. and Herbert E., “Robust Self-Healing Concrete for Sustainable Infrastructure”, Journal of Advanced Concrete Technology, 10(6): 207–218, (2012), doi: 10.3151/jact.10.207.
  • [27] Xue Y., Gao W., and Zhao Y., “A Novel Method of Self-Healing Concrete to Improve Durability and Extend the Service Life of Civil Infrastructure”, Advances in Civil Engineering, 2023: 1–13, (2023), doi: 10.1155/2023/5591853.
  • [28] Xue C., Tapas M. J., and Sirivivatnanon V., “Cracking and stimulated autogenous self-healing on the sustainability of cement-based materials: a review”, J Sustain Cem Based Mater, 12(2): 184–206, (2023), doi: 10.1080/21650373.2022.2031334.
  • [29] Al-Ansari M., Abu-Taqa A. G., Hassan M. M., Senouci A., and Milla J., “Performance of modified self-healing concrete with calcium nitrate microencapsulation”, Constr Build Mater, 149: 525–534, (2017), doi: 10.1016/j.conbuildmat.2017.05.152.
  • [30] De Belie N. et al., “A Review of Self‐Healing Concrete for Damage Management of Structures” , Adv Mater Interfaces, 5(17), (2018), doi: 10.1002/admi.201800074.
  • [31] Kepir Y., Günöz A., and Kara M., “Repairing of damaged composite materials and self-healing composites”, Turkish Journal of Engineering, 6(2): 149–155, (2022), doi: 10.31127/tuje.866955.
  • [32] Kim C.-G., Choi Y.-W., Choi S., and Oh S.-R., “A Study on the Healing Performance of Mortar with Microcapsules Using Silicate-Based Inorganic Materials”, Materials, 15(24): 8907, (2022), doi: 10.3390/ma15248907.
  • [33] Huang R., “Research progress of self-healing concrete”, J Phys Conf Ser, 2608(1): 012055, ( 2023), doi: 10.1088/1742-6596/2608/1/012055.
  • [34] Sheen Y.-N., Wang H.-Y., Juang Y.-P., and Le D.-H., “Assessment on the engineering properties of ready-mixed concrete using recycled aggregates”, Constr Build Mater, 45: 298–305, ( 2013), doi: 10.1016/j.conbuildmat.2013.03.072.
  • [35] Ranade R., Li V. C., and Heard W. F., “Tensile Rate Effects in High Strength-High Ductility Concrete”, Cem Concr Res, 68: 94–104, (2015), doi: 10.1016/j.cemconres.2014.11.005.
  • [36] Huseien G. F., Shah K. W., and Sam A. R. M., “Sustainability of nanomaterials based self-healing concrete: An all-inclusive insight”, Journal of Building Engineering, 23: 155–171, (2019), doi: 10.1016/j.jobe.2019.01.032.
  • [37] De Belie N. et al., “A Review of Self‐Healing Concrete for Damage Management of Structures”, Adv Mater Interfaces, 5(17), (2018), doi: 10.1002/admi.201800074.
  • [38] Hossain Md. R., Sultana R., Patwary M. M., Khunga N., Sharma P., and Shaker S. J., “Self-healing concrete for sustainable buildings. A review”, Environ Chem Lett, 20(2): 1265–1273, (2022), doi: 10.1007/s10311-021-01375-9.
  • [39] Huseien G. F., Shah K. W., and Sam A. R. M., “Sustainability of nanomaterials based self-healing concrete: An all-inclusive insight”, Journal of Building Engineering, 23: 155–171, (2019), doi: 10.1016/j.jobe.2019.01.032.
  • [40] Galal M. K. et al., “Self-Healing Bio-Concrete: Overview, Importance and Limitations”, in 2022 Advances in Science and Engineering Technology International Conferences (ASET), IEEE, 1–6, (2022), doi: 10.1109/ASET53988.2022.9734969.
  • [41] Wiktor V. and Jonkers H. M., “Quantification of crack-healing in novel bacteria-based self-healing concrete”, Cem Concr Compos, 33(7): 763–770, (2011), doi: 10.1016/j.cemconcomp.2011.03.012.
  • [42] Silva F. B., Boon N., De Belie N., and Verstraete W., “Industrial Application of Biological Self-healing Concrete: Challenges and Economical Feasibility”, J Commer Biotechnol, 21(1), (2015), doi: 10.5912/jcb662.
  • [43] Van Mullem T., Gruyaert E., Caspeele R., and De Belie N., “First Large Scale Application with Self-Healing Concrete in Belgium: Analysis of the Laboratory Control Tests”, Materials, 13(4): 997, (2020), doi: 10.3390/ma13040997.
  • [44] Du W., Qian C., and Xie Y., “Demonstration application of microbial self-healing concrete in sidewall of underground engineering: A case study”, Journal of Building Engineering, 63: 105512, ( 2023), doi: 10.1016/j.jobe.2022.105512.
  • [45] Caspeele R., Taerwe L., and Frangopol D. M., Life cycle analysis and assessment in civil engineering : towards an integrated vision.
  • [46] De Belie N., Van Belleghem B., Erşan Y. Ç., and Van Tittelboom, K. “Durability of self-healing concrete”, in MATEC Web of Conferences, EDP Sciences, (2019). doi: 10.1051/matecconf/201928901003.
  • [47] Garces J. I. T., Dollente I. J., Beltran A. B., Tan R. R., and Promentilla M. A. B., “Life cycle assessment of self-healing geopolymer concrete”, Clean Eng Technol, 4: 100147, (2021), doi: 10.1016/j.clet.2021.100147.

Sürdürülebilir İnşaat için Kendiliğinden İyileşen Betonun Geliştirilmesindeki İlerlemeler ve Zorluklar - Eleştirel Bir İnceleme

Yıl 2024, Cilt: 2 Sayı: 1, 33 - 48, 30.04.2024

Öz

Bu inceleme makalesi, inşaat sektöründe sürdürülebilir bir çözüm olarak kendiliğinden iyileşen betonun yenilikçi alanına derinlemesine bir bakış atar. Makale, özellikle çatlakları ve mikro çatlakları otonom olarak onarma kapasitesine odaklanarak, kendiliğinden iyileşen betonun geliştirilmesi ve uygulanmasını eleştirel bir şekilde inceler, bu da yapısal dayanıklılığı artırır ve çevresel etkiyi azaltır. İnceleme, özellikle Bacillus sp. gibi bakterilerin kullanımı aracılığıyla, tamir sürecini çevre dostu bir şekilde kolaylaştıran mikrobiyal yöntemlerin uygulanmasını vurgular. Kendiliğinden iyileşen betonun mekanizmalarını, sürdürülebilirlik faydalarını, yapıların ömrünün uzamasını, bakım gereksinimlerinin azalmasını ve karbon emisyonlarının azalmasını araştırır. Ancak, makale aynı zamanda teknolojiyle ilişkili zorlukları ve sınırlamaları da ele alır, örneğin uzun süreli uygulamalarda bakterilerin etkinliği ve maliyet hususları gibi. Ayrıca, el yazması, kendiliğinden iyileşen betonun gerçek dünya senaryolarındaki etkinliğini sergileyen pratik uygulamalar ve vaka çalışmaları hakkında bilgiler sunar. Kendiliğinden iyileşen betonun değerlendirilmesinde Yaşam Döngüsü Değerlendirmesi'nin (LCA) dahil edilmesi tartışılmakta olup, bu da onun çevresel etkisine yaşam döngüsü boyunca kapsamlı bir anlayış sunar. Zorluklara rağmen, kendiliğinden iyileşen betonun potansiyel faydaları vurgulanmakta ve artan küresel beton talebi ve çevre bilinçli çözümlere duyulan ihtiyaç bağlamında sürdürülebilir inşaat uygulamaları için umut verici bir yol olarak konumlandırılmaktadır.

Kaynakça

  • [1] Kim H., Son H. M., Seo J., and Lee H. K., “Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: A review”, Constr Build Mater, 274:122094, (2021), doi: 10.1016/j.conbuildmat.2020.122094.
  • [2] Sirtoli D., Wyrzykowski M., Riva P., and Lura P., “Autogenous and drying shrinkage of mortars based on Portland and calcium sulfoaluminate cements,”, Mater Struct, 53(5): 126, (2020), doi: 10.1617/s11527-020-01561-1.
  • [3] Fang C., Plaza G., and Achal V., “A Review on Role of Enzymes and Microbes in Healing Cracks in Cementitious Materials”, in Building Materials for Sustainable and Ecological Environment, Singapore: Springer Singapore, 151–162, (2021), doi: 10.1007/978-981-16-1706-5_9.
  • [4] Shaikh F. U. A., “Effect of Cracking on Corrosion of Steel in Concrete”, Int J Concr Struct Mater, 12(1): 3, (2018), doi: 10.1186/s40069-018-0234-y.
  • [5] Dunford M. and Li L., “Earthquake reconstruction in Wenchuan: Assessing the state overall plan and addressing the ‘forgotten phase”, Applied Geography, 31(3): 998–1009, (2011), doi: 10.1016/j.apgeog.2011.01.001.
  • [6] Chang Y., Wilkinson S., Potangaroa R., and Seville E., “Identifying factors affecting resource availability for post‐disaster reconstruction: a case study in China”, Construction Management and Economics, 29(1): 37–48, (2011), doi: 10.1080/01446193.2010.521761.
  • [7] Vijay K., Murmu M., and Deo S. V., “Bacteria based self healing concrete – A review,” Constr Build Mater, 152: 1008–1014, (2017), doi: 10.1016/j.conbuildmat.2017.07.040.
  • [8] Islam S. and Bhat G., “Progress and challenges in self-healing composite materials”, Mater Adv, 2(6): 1896–1926, (2021), doi: 10.1039/D0MA00873G.
  • [9] Fernandez C. A. et al., “Progress and challenges in self-healing cementitious materials”, J Mater Sci, 56(1): 201–230, (2021), doi: 10.1007/s10853-020-05164-7.
  • [10] Li W., Jiang Z., Yang Z., Zhao N., and Yuan W., “Self-Healing Efficiency of Cementitious Materials Containing Microcapsules Filled with Healing Adhesive: Mechanical Restoration and Healing Process Monitored by Water Absorption”, PLoS One, 8(11): e81616, (2013), doi: 10.1371/journal.pone.0081616.
  • [11] Ghosh S. K., Ed., Self‐Healing Materials. Wiley, (2008). doi: 10.1002/9783527625376.
  • [12] Nie P., Dahanayake K. C., and Sumanarathna N., “Exploring UAE’s transition towards circular economy through construction and demolition waste management in the pre-construction stage–A case study approach”, Smart and Sustainable Built Environment, (2023), doi: 10.1108/SASBE-06-2022-0115.
  • [13] Sangadji S., “Can Self-healing Mechanism Helps Concrete Structures Sustainable?”, Procedia Eng, 171: 238–249, (2017), doi: 10.1016/j.proeng.2017.01.331.
  • [14] Alves C. and Sanjurjo-Sánchez J., “Conservation of stony materials in the built environment”, Environ Chem Lett, 13(4): 413–430, (2015), doi: 10.1007/s10311-015-0526-2.
  • [15] Garces J. I. T., Dollente I. J., Beltran A. B., Tan R. R., and Promentilla M. A. B., “Life cycle assessment of self-healing geopolymer concrete”, Clean Eng Technol, 4: 100147, (2021), doi: 10.1016/j.clet.2021.100147.
  • [16] Šovljanski O., Tomić A., and Markov S., “Relationship between Bacterial Contribution and Self-Healing Effect of Cement-Based Materials”, Microorganisms, 10(7): 1399, (2022), doi: 10.3390/microorganisms10071399.
  • [17] Gupta S., Pang S. D., and Kua H. W., “Autonomous healing in concrete by bio-based healing agents – A review”, Constr Build Mater, 146: 419–428, (2017), doi: 10.1016/j.conbuildmat.2017.04.111.
  • [18] Gupta S., Kua H. W., and Pang S. D., “Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration”, Cem Concr Compos, 86: 238–254, (2018), doi: 10.1016/j.cemconcomp.2017.11.015.
  • [19] Jonkers H. M., Thijssen A., Muyzer G., Copuroglu O., and Schlangen E., “Application of bacteria as self-healing agent for the development of sustainable concrete”, Ecol Eng, 36(2): 230–235, (2010), doi: 10.1016/j.ecoleng.2008.12.036.
  • [20] Feng J., Chen B., Sun W., and Wang Y., “Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization”, Constr Build Mater, 280: 122460, (2021), doi: 10.1016/j.conbuildmat.2021.122460.
  • [21] Seifan M. and Berenjian A., “Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete”, World Journal of Microbiology and Biotechnology, 34(11). (2018), doi: 10.1007/s11274-018-2552-2.
  • [22] Ekinci E., Türkmen İ., and Birhanli E., “Performance of self-healing geopolymer paste produced using Bacillus subtilis”, Constr Build Mater, 325: 126837, (2022), doi: 10.1016/j.conbuildmat.2022.126837.
  • [23] van Dijl J. M. and Hecker M., “Bacillus subtilis: from soil bacterium to super-secreting cell factory”, Microb Cell Fact, 12(1): 3, (2013), doi: 10.1186/1475-2859-12-3.
  • [24] Gardner D., Lark R., Jefferson T., and Davies R., “A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials”, Case Studies in Construction Materials, 8:238–247, ( 2018), doi: 10.1016/j.cscm.2018.02.002.
  • [25] Güler Ö., Başgöz Ö., and Yavuz Ç., “Production of new type insulation material: Expanded Perlite-Silica aerogel composite”, Turkish Journal of Engineering, 5(3): 95–99, (2021), doi: 10.31127/tuje.674035.
  • [26] Li V. C. and Herbert E., “Robust Self-Healing Concrete for Sustainable Infrastructure”, Journal of Advanced Concrete Technology, 10(6): 207–218, (2012), doi: 10.3151/jact.10.207.
  • [27] Xue Y., Gao W., and Zhao Y., “A Novel Method of Self-Healing Concrete to Improve Durability and Extend the Service Life of Civil Infrastructure”, Advances in Civil Engineering, 2023: 1–13, (2023), doi: 10.1155/2023/5591853.
  • [28] Xue C., Tapas M. J., and Sirivivatnanon V., “Cracking and stimulated autogenous self-healing on the sustainability of cement-based materials: a review”, J Sustain Cem Based Mater, 12(2): 184–206, (2023), doi: 10.1080/21650373.2022.2031334.
  • [29] Al-Ansari M., Abu-Taqa A. G., Hassan M. M., Senouci A., and Milla J., “Performance of modified self-healing concrete with calcium nitrate microencapsulation”, Constr Build Mater, 149: 525–534, (2017), doi: 10.1016/j.conbuildmat.2017.05.152.
  • [30] De Belie N. et al., “A Review of Self‐Healing Concrete for Damage Management of Structures” , Adv Mater Interfaces, 5(17), (2018), doi: 10.1002/admi.201800074.
  • [31] Kepir Y., Günöz A., and Kara M., “Repairing of damaged composite materials and self-healing composites”, Turkish Journal of Engineering, 6(2): 149–155, (2022), doi: 10.31127/tuje.866955.
  • [32] Kim C.-G., Choi Y.-W., Choi S., and Oh S.-R., “A Study on the Healing Performance of Mortar with Microcapsules Using Silicate-Based Inorganic Materials”, Materials, 15(24): 8907, (2022), doi: 10.3390/ma15248907.
  • [33] Huang R., “Research progress of self-healing concrete”, J Phys Conf Ser, 2608(1): 012055, ( 2023), doi: 10.1088/1742-6596/2608/1/012055.
  • [34] Sheen Y.-N., Wang H.-Y., Juang Y.-P., and Le D.-H., “Assessment on the engineering properties of ready-mixed concrete using recycled aggregates”, Constr Build Mater, 45: 298–305, ( 2013), doi: 10.1016/j.conbuildmat.2013.03.072.
  • [35] Ranade R., Li V. C., and Heard W. F., “Tensile Rate Effects in High Strength-High Ductility Concrete”, Cem Concr Res, 68: 94–104, (2015), doi: 10.1016/j.cemconres.2014.11.005.
  • [36] Huseien G. F., Shah K. W., and Sam A. R. M., “Sustainability of nanomaterials based self-healing concrete: An all-inclusive insight”, Journal of Building Engineering, 23: 155–171, (2019), doi: 10.1016/j.jobe.2019.01.032.
  • [37] De Belie N. et al., “A Review of Self‐Healing Concrete for Damage Management of Structures”, Adv Mater Interfaces, 5(17), (2018), doi: 10.1002/admi.201800074.
  • [38] Hossain Md. R., Sultana R., Patwary M. M., Khunga N., Sharma P., and Shaker S. J., “Self-healing concrete for sustainable buildings. A review”, Environ Chem Lett, 20(2): 1265–1273, (2022), doi: 10.1007/s10311-021-01375-9.
  • [39] Huseien G. F., Shah K. W., and Sam A. R. M., “Sustainability of nanomaterials based self-healing concrete: An all-inclusive insight”, Journal of Building Engineering, 23: 155–171, (2019), doi: 10.1016/j.jobe.2019.01.032.
  • [40] Galal M. K. et al., “Self-Healing Bio-Concrete: Overview, Importance and Limitations”, in 2022 Advances in Science and Engineering Technology International Conferences (ASET), IEEE, 1–6, (2022), doi: 10.1109/ASET53988.2022.9734969.
  • [41] Wiktor V. and Jonkers H. M., “Quantification of crack-healing in novel bacteria-based self-healing concrete”, Cem Concr Compos, 33(7): 763–770, (2011), doi: 10.1016/j.cemconcomp.2011.03.012.
  • [42] Silva F. B., Boon N., De Belie N., and Verstraete W., “Industrial Application of Biological Self-healing Concrete: Challenges and Economical Feasibility”, J Commer Biotechnol, 21(1), (2015), doi: 10.5912/jcb662.
  • [43] Van Mullem T., Gruyaert E., Caspeele R., and De Belie N., “First Large Scale Application with Self-Healing Concrete in Belgium: Analysis of the Laboratory Control Tests”, Materials, 13(4): 997, (2020), doi: 10.3390/ma13040997.
  • [44] Du W., Qian C., and Xie Y., “Demonstration application of microbial self-healing concrete in sidewall of underground engineering: A case study”, Journal of Building Engineering, 63: 105512, ( 2023), doi: 10.1016/j.jobe.2022.105512.
  • [45] Caspeele R., Taerwe L., and Frangopol D. M., Life cycle analysis and assessment in civil engineering : towards an integrated vision.
  • [46] De Belie N., Van Belleghem B., Erşan Y. Ç., and Van Tittelboom, K. “Durability of self-healing concrete”, in MATEC Web of Conferences, EDP Sciences, (2019). doi: 10.1051/matecconf/201928901003.
  • [47] Garces J. I. T., Dollente I. J., Beltran A. B., Tan R. R., and Promentilla M. A. B., “Life cycle assessment of self-healing geopolymer concrete”, Clean Eng Technol, 4: 100147, (2021), doi: 10.1016/j.clet.2021.100147.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Malzemeleri, Çevresel ve Sürdürülebilir Süreçler, Çimento Teknolojisi
Bölüm Derlemeler
Yazarlar

Farzin Asgharpour 0000-0003-3380-8359

Mahmood Hosseini 0000-0003-3142-4087

Erken Görünüm Tarihi 30 Nisan 2024
Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 25 Mart 2024
Kabul Tarihi 24 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 1

Kaynak Göster

IEEE F. Asgharpour ve M. Hosseini, “Advancements and Challenges in the Development of self-healing Concrete for Sustainable Construction- A Critical Review”, AMUBD, c. 2, sy. 1, ss. 33–48, 2024.