Derleme
BibTex RIS Kaynak Göster

Diabetic Animal Models and Its Importance

Yıl 2018, Cilt: 27 Sayı: 3, 311 - 327, 30.09.2018
https://doi.org/10.17827/aktd.357580

Öz

Diabetes mellitus is a growing health problem all over the world because of complications and cost of treatment. In diabetic studies animal models are frequently used, as in other scientific studies. As in other scientific studies, diverse animal models are used in diabetes research. Increasingly experimental animal models have been developed to elucidate the underlying mechanisms of type 1 and type 2 diabetes pathologies, to prevent complications, and to develop new drug trials. Many animal species can be modeled with chemical drugs (streptozotocin and alloxane), surgically removed pancreas (pancreatectomy), and genetic methods to model type 1 and type 2 diabetes. In this review, animal models of diabetes and information on the latest developments about prevention have been focused.

Kaynakça

  • KAYNAKLAR
  • 1. A King. The use of animal models in diabetes research. British Journal of Pharmacology 2012; 166:877–894.
  • 2. G. Basta et al. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovascular Researc 2014; 63(4):582– 592.
  • 3. Vinay Kumar, Abul Abbas, Jon Aster. Robbins Temel Patoloji. 9. Baskı, Elsevier Limited, 2014: 739-751.
  • 4. Kitada et al. Molecular mechanisms of diabetic vascular complications. J Diabetes Invest 2010; 77-89.
  • 5. World Health Organization. The top ten causes of death.
  • 6. Chatzigeorgiou et al. The Use of Animal Models in the Study of Diabetes Mellitus. Department of Experimental Physiology, Medical School, Athens, Greece 2009; 23:245-258.
  • 7. Etuk, E.U. Animals models for studying diabetes mellitus. Agric. Biol. J. N. Am 2010; 1(2):130-134.
  • 8. Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med 2005; 22:359-70.
  • 9. Williamson E.M, Okpoko D.T, Evans F.J. Pharmacological methods in phytotherapy research. John Wiley and sons, Inc. Third Avenue, New York, USA 1996; 155-167.
  • 10. Federiuk IF, Casey HM, Quinn MJ, Wood MD, Ward WK. Induction of type 1 diabetes mellitus in laboratory rats by use of alloxan; route of administration, pitfalls, and insulin treatment. Comprehensive Medicine 2004; 54:252-257.
  • 11. Eleazu et al. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes & Metabolic Disorders 2013; 12:60.
  • 12. T. Lawrence. The Nuclear Factor NF-kB Pathway in Inflammation. Cold Spring Harb Perspect Biol 2009; 1:a001651.
  • 13. Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetolgia 2007; 43:1528–1533.
  • 14. Rerup CC. Drugs producing diabetes through damage of the insülin secreting cells. Pharmacol Rev 1970; 22:485–518.
  • 15. Dolan ME. Inhibition of DNA repair as a means of increasing the antitumor activity of DNA active agents. Adv Drug Del Rev 1997; 26:105–118.
  • 16. Stauffacher W, Burr I, Gutzeit I, Beaven D, Veleminsky J, Renold AE. Streptozotocin diabetes: time course of irreversible β-cell damage; further observations on prevention by nicotinamide. Proc Soc Exp Biol Med 1970; 133:194–200.
  • 17. Spinas GA. The dual role of nitric oxide in islets β-cells. News Physiol Sci 1999; 14:49–54.
  • 18. Gul M, Laaksonen DE, Atalay M, Vider L, Hannien O. Effects of endurance training on tissue glutathione homoestasis and lipid peroxidation in streptozotocin-induced diabetic rats. Scand J Med Sci Sports 2002; 12:163–170.
  • 19. Konrad RJ, Mikolaenko I, Tolar JF, Liu K, Kudlow JE. The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase. Biochem J 2001; 356:31–41.
  • 20. Joo HL, Si HY, Jung MOH, Myung GL. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol 2010; 62:1–23.
  • 21. Gajdošík A, Gajdošíkova A, Stefek M, Navarova J, Hozová R. Streptozotocin-Induced Experimental Diabetes In Male Wistar Rats. Gen Physiol Biophys 1999; 18(Focus Issue):54–62.
  • 22. Ar'Rajab A, Ahrén B. Long-term diabetogenic effect of streptozotocin in rats. Pancreas 1993; 8:50–57.
  • 23. Pascoe WS, Storlien LH. Inducement by fat feding of basal hyperglycemia in rats with abnormal betacell function. Model for study of etiology and pathogenesis of NIDDM. Diabetes. 1990; 39:226-33.
  • 24. Pellegrino M, Christopher B, Michelle M. Gerard R. Development of a new model of type II diabetes in adult rats administered with streptozotocin and nicotinamide. Diabetes 1998; 47: 224-230.
  • 25. Valentovic MA, Alejandro N, Betts Carpenter A, Brown PI, Ramos K. Streptozotocin (STZ) diabetes enhances benzo(alpha)pyrene induced renal injury in Sprague Dawley rats. Toxicol Lett 2006; 164:214-20.
  • 26. A. King, J. Bowe. Animal models for diabetes: Understanding the pathogenesis and finding new treatments. Biochemical Pharmacology 2016; 99:1–10.
  • 27. Joo HL, Si HY, Jung MOH, Myung GL. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol 2010; 62:1–23.
  • 28. Haematology Serum Biochemistry Parameters on STZ Induced CD1 Mice and Diabetic db/db Mice. J Drug Metab Toxicol 2012; 3:137.
  • 29. Viana G.S, Medeiros A.C, Lacerda A.M, Leal L.K, Vale T.G, Matos F.J. Hypoglycemic and anti-lipemic effects of the aqueous extract from Cissus sicyoides. BMC Pharmacol 2004; 8:4-9.
  • 30. Szkudelski T. The mechanism of alloxan and streptozotocin action B cells of the rat pancreas. Physiology Res 2001; 50:536-546.
  • 31. Antia B.S, Okokon J.E, Okon P.A. Hypoglyacaemic effect of aqueous leaf extract of Persea Americana (Mill) on alloxan induced diabetic rats. Indian J. Pharmacol 2005; 37:325-326.
  • 32. Lenzen S, Tiedge M, Jorns A, Munday R. Alloxan derivatives as a tool for the elucidation of the mechanism of the diabetogenic action of alloxan. In: Shafrir E, editor. Lessons from Animal Diabetes 1996; 113-22.
  • 33. K. Srinivasan, P. Ramarao. Animal models in type 2 diabetes research: an overview. Indian J. Med. Res 2007; 125:451–472.
  • 34. K. Hayashi, R. Kojima, M. Ito. Strain differences in the diabetogenic activity of streptozotocin in mice. Biol. Pharm. Bull 2006; 29:1110–1119.
  • 35. M.L. Lukic, S. Stosic-Grujicic, A. Shahin. Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev. Immunol 1998; 6:119–128.
  • 36. Awai M, Narasaki M, Yamonoi Y, Seno S. Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate: A model of experimental hemochromatosis. Am. J. Pathol 1979; (95)3: 663-673.
  • 37. Masiello P. Animal models of type11 diabetes with reduced pancreatic β-cell mass. The international Journal of Biochemistry and Cell Biology 2006; 38:873-893.
  • 38. Choi S.B, Park C.H, Choi M.K, Jun D.W, Park S. Improvement of insulin resistance and insülin secreation by water extracts of Cordiceps militaris, phellinus linteus and paecilomyce tenuipes in 90% pancreatectomized rats. J. Biotech. and Biochem 2004; 68:2257-2264.
  • 39. Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K and Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 1980; 29: 1-13.
  • 40. Atkinson M, Leiter EH. The NOD mouse model of insulin dependent diabetes: As good as it gets? Nat Med 1999; 5:601–604.
  • 41. Baxter AG and Duckworth RC. Models of type 1 (autoimmune) diabetes. Drug Discovery Today 2004; 4: 451-455.
  • 42. Mordes JP, Bortell R, Groen H, Guberski DL, Rossini AA, Greiner DL. Autoimmune diabetes mellitus in the BB rat. Harwood Academic 2001; 1–41.
  • 43. Yoon JW, Yoon CS, Lim HW, Huang QQ, Kang Y, Pyun KH et al. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in β cells. Science 1999; 284:1183–1187.
  • 44. Chung YH, Jun HS, Son M, Bao M, Bae HY, Kang Y et al. Cellular and molecular mechanisms for Kilham rat virus-induced autoimmune diabetes in DR-BB rats. J Immunol 2000; 165:2866–2876.
  • 45. McInerney MF, Pek SB, Thomas DW. Prevention of insulitis and diabetes onset by treatment with complete Freund’s adjuvant in NOD mice. Diabetes 1991; 40:715–725.
  • 46. Sadelain MW, Qin HY, Sumoski W, Parfrey N, Singh B, Rabinovitch A. Prevention of diabetes in the BB rat by early immunotherapy using Freund’s adjuvant. J Autoimmun 1990; 3: 671–680.
  • 47. Elliott RB, Pilcher CC, Stewart A, Fergusson D, McGregor MA. The use of nicotinamide in the prevention of type 1 diabetes. Ann NY Acad Sci 1993; 696:333–341.
  • 48. Stride A, Hattersley AT. Different genes, different diabetes. Lessons from maturity-onset diabetes of the young. Ann Med 2002; 34:207–216.
  • 49. Krook A, O’Rahilly S. Mutant insulin receptors in syndromes of insülin resistance. Baillieres Clin Endocrinol Metab 1996; 10:97–122.
  • 50. Maassen JA, ‘T Hart LM, Van Essen E, Heine RJ, Nijpels G, Jahangir Tafrechi RS et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 2004; 53:103-109.
  • 51. Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J. Exp Med 1976; 119:85–90.
  • 52. Miralles F and Portha B. Early development of beta-cells is impaired in the gk rat model of type 2 diabetes. Diabetes 2001; 84-88.
  • 53. Portha B. Transmitted beta-cell dysfunction as a cause for type 2- diabetes. Med Sci (Paris) 2003; 19:847-853.
  • 54. Gill-Randall RG, Adams D, Ollerton RL, Alcolado JC. Is human Type 2 diabetes maternally inherited? Insights from an animal model. Diabet Med 2004; 21:759–762.
  • 55. Nakamura M, Yamada K. Studies on a diabetic (KK) strain of the mouse. Diabetologia 1967; 3:121–221.
  • 56. Ziv E, Shafrir E, Kalman R, Galer S, Bar-On H. Changing pattern of prevalence of insulin resistance in Psammomys obesus, a model of nutritionally induced type 2 diabetes. Metabolism 1999; 48:1549–1554.
  • 57. Henson MS and O’Brien TD. Feline models of type 2 diabetes mellitus. ILAR J 2006; 47:234-242.
  • 58. Bellinger DA, Merricks EP and Nichols TC. Swine models of type 2 diabetes mellitus: Insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J 2006; 47:243-258.
  • 59. Van der Werf N, Kroese FG, Rozing J, Hillebrands JL. Viral infections as potential triggers of type 1 diabetes. Diabetes Metab Res Rev 2007; 23:169–183.
  • 60. Von Herrath MG, Filippi C, Coppieters K. How viral infections enhance or prevent type 1 diabetes-from mouse to man. J Med Virol 2011; 83:1672.
  • 61. Gill-Randall RJ, Adams D, Lewis M, Alcolado JC. Type 2 diabetes mellitus; genes or intrauterine environment? An embryo transfer paradigm. Diabetologia 2004; 47:1354–1359.

Diyabetik Hayvan Modelleri ve Önemi

Yıl 2018, Cilt: 27 Sayı: 3, 311 - 327, 30.09.2018
https://doi.org/10.17827/aktd.357580

Öz

Diabetes mellitus günümüzde sıklığı, sebep olduğu komplikasyonlar ve tedavi maliyeti nedeniyle tüm dünyada önemi gittikçe artan bir sağlık problemi olarak karşımıza çıkmaktadır. Diğer bilimsel çalışmalarda olduğu gibi diyabet araştırmalarında da çeşitli hayvan modelleri kullanılmaktadır. Tip 1 ve tip 2 diabet patolojisinin altında yatan mekanizmaları ortaya çıkarmak, komplikasyonlarını önlemek ve yeni ilaç denemeleri için deneysel hayvan modelleri geliştirilmektedir. Birçok hayvan türünde kimyasal bazı ilaçlarla (streptozotosin ve alloksan), cerrahi olarak pankreasın çıkarılmasıyla (pankreatektomi) ve genetik yöntemlerle tip 1 ve tip 2 diyabet modeli oluşturulabilmektedir. Bu derlemede, diyabetik hayvan modelleri ve önemi hakkında son gelişmeler ışığında bilgiler verilmiştir.

Kaynakça

  • KAYNAKLAR
  • 1. A King. The use of animal models in diabetes research. British Journal of Pharmacology 2012; 166:877–894.
  • 2. G. Basta et al. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovascular Researc 2014; 63(4):582– 592.
  • 3. Vinay Kumar, Abul Abbas, Jon Aster. Robbins Temel Patoloji. 9. Baskı, Elsevier Limited, 2014: 739-751.
  • 4. Kitada et al. Molecular mechanisms of diabetic vascular complications. J Diabetes Invest 2010; 77-89.
  • 5. World Health Organization. The top ten causes of death.
  • 6. Chatzigeorgiou et al. The Use of Animal Models in the Study of Diabetes Mellitus. Department of Experimental Physiology, Medical School, Athens, Greece 2009; 23:245-258.
  • 7. Etuk, E.U. Animals models for studying diabetes mellitus. Agric. Biol. J. N. Am 2010; 1(2):130-134.
  • 8. Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med 2005; 22:359-70.
  • 9. Williamson E.M, Okpoko D.T, Evans F.J. Pharmacological methods in phytotherapy research. John Wiley and sons, Inc. Third Avenue, New York, USA 1996; 155-167.
  • 10. Federiuk IF, Casey HM, Quinn MJ, Wood MD, Ward WK. Induction of type 1 diabetes mellitus in laboratory rats by use of alloxan; route of administration, pitfalls, and insulin treatment. Comprehensive Medicine 2004; 54:252-257.
  • 11. Eleazu et al. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes & Metabolic Disorders 2013; 12:60.
  • 12. T. Lawrence. The Nuclear Factor NF-kB Pathway in Inflammation. Cold Spring Harb Perspect Biol 2009; 1:a001651.
  • 13. Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetolgia 2007; 43:1528–1533.
  • 14. Rerup CC. Drugs producing diabetes through damage of the insülin secreting cells. Pharmacol Rev 1970; 22:485–518.
  • 15. Dolan ME. Inhibition of DNA repair as a means of increasing the antitumor activity of DNA active agents. Adv Drug Del Rev 1997; 26:105–118.
  • 16. Stauffacher W, Burr I, Gutzeit I, Beaven D, Veleminsky J, Renold AE. Streptozotocin diabetes: time course of irreversible β-cell damage; further observations on prevention by nicotinamide. Proc Soc Exp Biol Med 1970; 133:194–200.
  • 17. Spinas GA. The dual role of nitric oxide in islets β-cells. News Physiol Sci 1999; 14:49–54.
  • 18. Gul M, Laaksonen DE, Atalay M, Vider L, Hannien O. Effects of endurance training on tissue glutathione homoestasis and lipid peroxidation in streptozotocin-induced diabetic rats. Scand J Med Sci Sports 2002; 12:163–170.
  • 19. Konrad RJ, Mikolaenko I, Tolar JF, Liu K, Kudlow JE. The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase. Biochem J 2001; 356:31–41.
  • 20. Joo HL, Si HY, Jung MOH, Myung GL. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol 2010; 62:1–23.
  • 21. Gajdošík A, Gajdošíkova A, Stefek M, Navarova J, Hozová R. Streptozotocin-Induced Experimental Diabetes In Male Wistar Rats. Gen Physiol Biophys 1999; 18(Focus Issue):54–62.
  • 22. Ar'Rajab A, Ahrén B. Long-term diabetogenic effect of streptozotocin in rats. Pancreas 1993; 8:50–57.
  • 23. Pascoe WS, Storlien LH. Inducement by fat feding of basal hyperglycemia in rats with abnormal betacell function. Model for study of etiology and pathogenesis of NIDDM. Diabetes. 1990; 39:226-33.
  • 24. Pellegrino M, Christopher B, Michelle M. Gerard R. Development of a new model of type II diabetes in adult rats administered with streptozotocin and nicotinamide. Diabetes 1998; 47: 224-230.
  • 25. Valentovic MA, Alejandro N, Betts Carpenter A, Brown PI, Ramos K. Streptozotocin (STZ) diabetes enhances benzo(alpha)pyrene induced renal injury in Sprague Dawley rats. Toxicol Lett 2006; 164:214-20.
  • 26. A. King, J. Bowe. Animal models for diabetes: Understanding the pathogenesis and finding new treatments. Biochemical Pharmacology 2016; 99:1–10.
  • 27. Joo HL, Si HY, Jung MOH, Myung GL. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol 2010; 62:1–23.
  • 28. Haematology Serum Biochemistry Parameters on STZ Induced CD1 Mice and Diabetic db/db Mice. J Drug Metab Toxicol 2012; 3:137.
  • 29. Viana G.S, Medeiros A.C, Lacerda A.M, Leal L.K, Vale T.G, Matos F.J. Hypoglycemic and anti-lipemic effects of the aqueous extract from Cissus sicyoides. BMC Pharmacol 2004; 8:4-9.
  • 30. Szkudelski T. The mechanism of alloxan and streptozotocin action B cells of the rat pancreas. Physiology Res 2001; 50:536-546.
  • 31. Antia B.S, Okokon J.E, Okon P.A. Hypoglyacaemic effect of aqueous leaf extract of Persea Americana (Mill) on alloxan induced diabetic rats. Indian J. Pharmacol 2005; 37:325-326.
  • 32. Lenzen S, Tiedge M, Jorns A, Munday R. Alloxan derivatives as a tool for the elucidation of the mechanism of the diabetogenic action of alloxan. In: Shafrir E, editor. Lessons from Animal Diabetes 1996; 113-22.
  • 33. K. Srinivasan, P. Ramarao. Animal models in type 2 diabetes research: an overview. Indian J. Med. Res 2007; 125:451–472.
  • 34. K. Hayashi, R. Kojima, M. Ito. Strain differences in the diabetogenic activity of streptozotocin in mice. Biol. Pharm. Bull 2006; 29:1110–1119.
  • 35. M.L. Lukic, S. Stosic-Grujicic, A. Shahin. Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev. Immunol 1998; 6:119–128.
  • 36. Awai M, Narasaki M, Yamonoi Y, Seno S. Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate: A model of experimental hemochromatosis. Am. J. Pathol 1979; (95)3: 663-673.
  • 37. Masiello P. Animal models of type11 diabetes with reduced pancreatic β-cell mass. The international Journal of Biochemistry and Cell Biology 2006; 38:873-893.
  • 38. Choi S.B, Park C.H, Choi M.K, Jun D.W, Park S. Improvement of insulin resistance and insülin secreation by water extracts of Cordiceps militaris, phellinus linteus and paecilomyce tenuipes in 90% pancreatectomized rats. J. Biotech. and Biochem 2004; 68:2257-2264.
  • 39. Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K and Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 1980; 29: 1-13.
  • 40. Atkinson M, Leiter EH. The NOD mouse model of insulin dependent diabetes: As good as it gets? Nat Med 1999; 5:601–604.
  • 41. Baxter AG and Duckworth RC. Models of type 1 (autoimmune) diabetes. Drug Discovery Today 2004; 4: 451-455.
  • 42. Mordes JP, Bortell R, Groen H, Guberski DL, Rossini AA, Greiner DL. Autoimmune diabetes mellitus in the BB rat. Harwood Academic 2001; 1–41.
  • 43. Yoon JW, Yoon CS, Lim HW, Huang QQ, Kang Y, Pyun KH et al. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in β cells. Science 1999; 284:1183–1187.
  • 44. Chung YH, Jun HS, Son M, Bao M, Bae HY, Kang Y et al. Cellular and molecular mechanisms for Kilham rat virus-induced autoimmune diabetes in DR-BB rats. J Immunol 2000; 165:2866–2876.
  • 45. McInerney MF, Pek SB, Thomas DW. Prevention of insulitis and diabetes onset by treatment with complete Freund’s adjuvant in NOD mice. Diabetes 1991; 40:715–725.
  • 46. Sadelain MW, Qin HY, Sumoski W, Parfrey N, Singh B, Rabinovitch A. Prevention of diabetes in the BB rat by early immunotherapy using Freund’s adjuvant. J Autoimmun 1990; 3: 671–680.
  • 47. Elliott RB, Pilcher CC, Stewart A, Fergusson D, McGregor MA. The use of nicotinamide in the prevention of type 1 diabetes. Ann NY Acad Sci 1993; 696:333–341.
  • 48. Stride A, Hattersley AT. Different genes, different diabetes. Lessons from maturity-onset diabetes of the young. Ann Med 2002; 34:207–216.
  • 49. Krook A, O’Rahilly S. Mutant insulin receptors in syndromes of insülin resistance. Baillieres Clin Endocrinol Metab 1996; 10:97–122.
  • 50. Maassen JA, ‘T Hart LM, Van Essen E, Heine RJ, Nijpels G, Jahangir Tafrechi RS et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 2004; 53:103-109.
  • 51. Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J. Exp Med 1976; 119:85–90.
  • 52. Miralles F and Portha B. Early development of beta-cells is impaired in the gk rat model of type 2 diabetes. Diabetes 2001; 84-88.
  • 53. Portha B. Transmitted beta-cell dysfunction as a cause for type 2- diabetes. Med Sci (Paris) 2003; 19:847-853.
  • 54. Gill-Randall RG, Adams D, Ollerton RL, Alcolado JC. Is human Type 2 diabetes maternally inherited? Insights from an animal model. Diabet Med 2004; 21:759–762.
  • 55. Nakamura M, Yamada K. Studies on a diabetic (KK) strain of the mouse. Diabetologia 1967; 3:121–221.
  • 56. Ziv E, Shafrir E, Kalman R, Galer S, Bar-On H. Changing pattern of prevalence of insulin resistance in Psammomys obesus, a model of nutritionally induced type 2 diabetes. Metabolism 1999; 48:1549–1554.
  • 57. Henson MS and O’Brien TD. Feline models of type 2 diabetes mellitus. ILAR J 2006; 47:234-242.
  • 58. Bellinger DA, Merricks EP and Nichols TC. Swine models of type 2 diabetes mellitus: Insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J 2006; 47:243-258.
  • 59. Van der Werf N, Kroese FG, Rozing J, Hillebrands JL. Viral infections as potential triggers of type 1 diabetes. Diabetes Metab Res Rev 2007; 23:169–183.
  • 60. Von Herrath MG, Filippi C, Coppieters K. How viral infections enhance or prevent type 1 diabetes-from mouse to man. J Med Virol 2011; 83:1672.
  • 61. Gill-Randall RJ, Adams D, Lewis M, Alcolado JC. Type 2 diabetes mellitus; genes or intrauterine environment? An embryo transfer paradigm. Diabetologia 2004; 47:1354–1359.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Zehra Çiçek

Zehra Gül Koçaklı Bu kişi benim

Kübra Akıllıoğlu

Ayşe Doğan Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2018
Kabul Tarihi 12 Şubat 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 27 Sayı: 3

Kaynak Göster

AMA Çiçek Z, Koçaklı ZG, Akıllıoğlu K, Doğan A. Diyabetik Hayvan Modelleri ve Önemi. aktd. Eylül 2018;27(3):311-327. doi:10.17827/aktd.357580