Araştırma Makalesi
BibTex RIS Kaynak Göster

Fiziksel Yöntemlerin Zeytin Acılık Bileşenleri Üzerindeki Etkilerinin Modellenmesi

Yıl 2022, , 154 - 164, 28.02.2022
https://doi.org/10.35414/akufemubid.1006595

Öz

Zeytin meyvesi, sağlıklı beslenmenin önemli bir bileşeni olarak yaygın olarak tüketilen, fenolikler ve antioksidanlar başta olmak üzere, çeşitli mikro besinler açısından zengin bir hammaddedir. Sofralık zeytin üretiminde acılığı azaltmak için uygulanan kimyasal uygulamalar hem kalite kaybına hem de son üründe tuz birikmesine ve işleme sırasında atık su oluşumuna neden olmaktadır. Tüm bu faktörler göz önünde bulundurularak, bu çalışma kapsamında, benzersiz olumlu ve başarılı uygulamaları olduğu bilinen sonikasyon, donma-çözülme ve kurutma işlemlerinin birleşik etkileri, yüzey tepki yöntemi ilkesi kullanılarak araştırılmıştır. Bu amaçla olgun Edremit (Ayvalık) zeytinlerinden kuru zeytin üretilirken toplam fenolik içerik (TPC) ve daha spesifik olarak oleuropein ve hidroksitirosol içeriği incelenmiştir. Ham Edremit zeytinlerinin 16.28±0.58 mg gallik asit eşdeğeri (GAE)/g kuru madde (DM)'de TPC'ye sahip olduğu tespit edilmiştir. Oleuropein ve hidroksitirosol içeriği sırasıyla 15.39±1.70 mg/g DM ve 0.544±0.06 mg/g DM'de olarak bulunmuştur. TPC’yi modelleme ve tanımlamada kullanılan ikinci dereceden model, deneysel verilerde en uygun olarak bulunmuştur. ANOVA sonuçlarına göre, sonikasyon süresi (A), kurutma sıcaklığı (C), sonikasyon süresi ve donma sıcaklığının etkileşimli etkisi (AB), sonikasyon süresi ve kurutma sıcaklığı (AC) ve sonikasyon süresinin ikinci dereceden (A2) etkisi TPC üzerinde en etkili parametreler olarak tespit edilmiştir. Sonikasyon, dondurma ve kurutma kombinasyonunun, parametre düzeyinden bağımsız olarak oleuropein içeriğini 0.307-0.501 mg/g DM'ye ve hidroksitirosol içeriğini 0.135-0.202 mg/g DM'ye düşürdüğü tespit edilmiştir (p>0.05). Sonuç olarak, sonikasyon uygulanarak, dondurularak-çözdürülerek ve kurutularak istenilen düzeyde TPC ve oleuropein sağlanabileceği kanıtlanmıştır. Sonraki çalışmalar kapsamında endüstriyel uygulanabilirliği tespit etmek için tüketici beklentisi ve duyusal değerlendirme çalışmaları gerekmektedir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

120O310

Teşekkür

Zeytin numuneleri için Aydar Zeytincilik Ltd'ye teşekkür ederiz

Kaynakça

  • Ahmad-Qasem, M. H., Cánovas, J., Barrajón-Catalán, E., Micol, V., Cárcel, J. A., García-Pérez, J. V. 2013. Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science and Emerging Technologies, 17, 120–129.
  • Ambra, R., Natella, F., Bello, C., Lucchetti, S., Forte, V., Pastore, G. 2017. Phenolics fate in table olives (Olea europaea L. cv. Nocellara del Belice) debittered using the Spanish and Castelvetrano methods. Food Research International, 100, 369–376.
  • Aydar, A. Y., Bağdatlıoğlu, N., Köseoğlu O. 2017a. Determination the Effect of Ultrasound on Olive Oil Extraction and Optimization of Ultrasound-Assisted Extraction of Extra Virgin Olive Oil by Response Surface Methodology (RSM). Grasas y Aceites. International Journal of Fats and Oils, 63(2) e189.
  • Aydar, A. Y., Öncü Öner, T., Üçok, E. F. 2017b. Effects of Hydroxytyrosol on Human Health. EC Nutrition, 11(October), 147–157.
  • Aydar, A. Y. 2020. Quality Parameters and Drying Kinetics of Ultrasound Pretreated Fermented Black Table Olives. Latin American Applied Research, 50(4), 271–276.
  • Aydar, A. Y., Özçelik, M., Pazarlıoğlu, B. 2019.. The Effects of Storage of Gemlik Olives at Different Temperatures on Oleuropein Degradation, 3rd International Conference on Agriculture, Food, Veterinary and Pharmacy Sciences (ICAFOP) 16-18 April 2019,Trabzon, Turkey
  • Aydar A. Y., Yılmaz T., Öncü Öner T. 2018. Methods for Reducing Bitterness of Table Olives, II. International University Industry Cooperation,R&D and Innovation Congress Manisa Celal Bayar University, 14-15 November 2018, Manisa, Turkey
  • Aydar, A. Y., Yılmaz, T., Tepekule, H., Çapan, G., Obuz, E. 2016. 4th International Food RD Brokerage Event. 24 Mayıs 2016. İzmir,Turkey.
  • Charoenprasert, S., Mitchell, A. 2012. Factors influencing phenolic compounds in table olives (Olea europaea). Journal of Agricultural and Food Chemistry, 60(29), 7081–7095.
  • Danahaliloğlu, H., Tekeli, Y., Göycıncık, S., Yıldırım, F. 2018. Hatay’da Farklı Bölgelerde Yetiştirilen Zeytin Yapraklarının Antioksidan Özelliklerinin Belirlenmesi. Karadeniz Fen Bilimleri Dergisi, 8(1), 77–86.
  • Ebringerová, A., Hromádková, Z. 2010. An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Central European Journal of Chemistry, 8(2), 243–257.
  • Elksibi, I., Haddar, W., Ticha, M. Ben, Mhenni, M. F. 2014. Development and optimisation of a non conventional extraction process of natural dye from olive solid waste using response surface methodology ( RSM ). Food Chemistry, 161, 345–352.
  • Feng, H., Barbosa-Canovas, G. V., Weiss, J. 2010. Ultrasound Technologies for Food and Bioprocessing. Springer, 1-643.
  • García, J. M., Yousfi, K., Mateos, R., Olmo, M., Cert, A. 2001. Reduction of oil bitterness by heating of olive (Olea europaea) fruits. Journal of Agricultural and Food Chemistry, 49(9), 4231–4235.
  • Habibi, M., Golmakani, M. T., Farahnaky, A., Mesbahi, G., Majzoobi, M. 2016. NaOH-free debittering of table olives using power ultrasound. Food Chemistry, 192, 775–781.
  • Habibi, M., Golmakani, M. T., Mesbahi, G., Majzoobi, M., Farahnaky, A. 2015. Ultrasound-accelerated debittering of olive fruits. Innovative Food Science and Emerging Technologies, 105–115.
  • Heldman, Dennis R., Daryl B. Lund, Christina Sabliov, E. 2006. Handbook of food engineering. CRC Press, 427-471.
  • Hromádková, Z., Kost’álová, Z., Ebringerová, A. 2008. Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrasonics Sonochemistry, 15(6), 1062–1068.
  • İçier, F., Baysal, T., Taştan, Ö., Özkan, G.2014. Microwave Drying Of Black Olive Slices : Effects On Total Phenolic Contents And Colour. Gıda, 39(6), 323–330.
  • Kara, S. 2013. Farklı Kurutma Yöntemlerinin Zeytin Yaprağındaki Fenolik Madde Dağılımına Ve Antioksidan Kapasitesine Etkisinin Araştırılması, (Yüksek Lisans Tezi), T.C. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir, 57.
  • Kardos, N., Luche, J. 2001. Sonochemistry of carbohydrate compounds. Carbohyrdate Research, 332(2), 115–131.
  • Kayguluoğlu, A. 2018. Sofralık Siyah Zeytin Kalitesi Üzerine Acılık Giderme İşlemlerinin Etkisi, (Doktora Tezi), T.C. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa, 163.
  • Khemakhem, I., Ahmad-Qasem, M. H., Catalán, E. B., Micol, V., García-Pérez, J. V., Ayadi, M. A., Bouaziz, M. 2017. Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrasonics Sonochemistry, 34, 466–473.
  • Mahdhaoui, B. Mechlouch ,R.F., Mahjoubi, A., Karim Zahafi, K., Ben Brahim, A.2013. Mathematical model on thin layer drying of olive fruit ( Olea europeae L. Journal of Agricultural Technology , 9(5), 1097-1110.
  • Marsilio, V., Campestre, C., Lanza, B. 2001. Phenolic compounds change during California-style ripe olive processing. Food Chemistry, 74(1), 55–60.
  • Mason, T. 1996. The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3(3), S253–S260.
  • Mason, T. J., Lorimer, J. P. 2002. Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing, Wiley, 225-266.
  • Mei, L., Zhen-Chang, W., Hao-Jie, D., Li, C., Qing-Gang, X., Jing, L. 2009. Response surface optimization of polysaccharides extraction from Liriope roots and its modulatory effect on Sjogren syndrome. International Journal of Biological Macromolecules, 45(3), 284–288.
  • Milić, P. S., Rajković, K. M., Stamenković, O. S., Veljković, V. B. 2013. Kinetic modeling and optimization of maceration and ultrasound-extraction of resinoid from the aerial parts of white lady’s bedstraw (Galium mollugo L.). Ultrasonics Sonochemistry, 20(1), 525–534.
  • Montgomery, D. C. 2000. Design and Analysis of Experiments, 5th Edition. John Wiley & Sons, New York, NY, 427-511.
  • Myers, R. H., Montgomery, D. C., Anderson-Cook, C. 2009. Response Surface Methodology: Process and Product Optimization Using Designed Experiments . Wiley Series in Probability and Statistics, June 2015, 631-693.
  • Piscopo, A., De Bruno, A., Zappia, A., Poiana, M. 2014. Antioxidant activity of dried green olives (Carolea cv.). LWT - Food Science and Technology, 58(1), 49–54.
  • Prakash Maran, J., Manikandan, S. 2012. Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit. Dyes and Pigments, 95, 465–472.
  • Singh, R. P., Heldman, D. 2013. Introduction to Food Engineering 5th Edition.Elsevier, 549-561.
  • Tokuşoǧlu, Ö., Alpas, H., Bozoǧlu, F. 2010. High hydrostatic pressure effects on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolics and antioxidant activity of black table olives. Innovative Food Science and Emerging Technologies, 11(2), 250–258.
  • Yousfi, K., Cayuela, J. a, García, J. M. 2008. Reduction of virgin olive oil bitterness by fruit cold storage. Journal of Agricultural and Food Chemistry, 56(21), 10085–10091.

Modeling the Effects of Physical Methods on Olive Bitterness Components

Yıl 2022, , 154 - 164, 28.02.2022
https://doi.org/10.35414/akufemubid.1006595

Öz

Olive fruit is rich in various micronutrients, especially phenolics and antioxidants, which are widely consumed as an important component of a healthy diet. In table olive production, chemical applications applied to reduce bitterness cause quality loss, salt accumulation and wastewater. Considering all these factors, within the scope of this study, the combined effects of sonication, freezing-thawing and drying processes, known as unique positive and successful applications, were investigated using RSM. For this purpose, total phenolic content (TPC), oleuropein and hydroxytyrosol content were examined while producing dry olives from ripe Edremit (Ayvalık) olives. It was found that raw Edremit olives had TPC at 16.28±0.58 mg gallic acid equivalents (GAE)/ g dry matter (DM). Oleuropein and hydroxytyrosol content at 15.39±1.70 mg/g DM and 0.544±0.06 mg/g DM, respectively. The quadratic model was found to be the most accurate in modeling and identifying TPC in experimental samples. According to ANOVA results, the most effective parameters on TPC were investigated as sonication time (A), drying temperature (C), interactive effect of sonication time and freezing temperature (AB), sonication time and drying temperature (AC) and the quadratic effect of sonication time (A2). It was evaluated that, the combination of sonication, freezing and drying reduced the oleuropein content to 0.307-0.501 mg/g DM and hydroxytyrosol content to 0.135-0.202 mg/g DM regardless of the level of parameters (p>0.05). Consequently, it was proven that sonication, freezing- thawing and drying for desired level of TPC and oleuropein can be provided. For further studies, consumer expectation and sensory evaluation are required for targeted industrial applications.

Proje Numarası

120O310

Kaynakça

  • Ahmad-Qasem, M. H., Cánovas, J., Barrajón-Catalán, E., Micol, V., Cárcel, J. A., García-Pérez, J. V. 2013. Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science and Emerging Technologies, 17, 120–129.
  • Ambra, R., Natella, F., Bello, C., Lucchetti, S., Forte, V., Pastore, G. 2017. Phenolics fate in table olives (Olea europaea L. cv. Nocellara del Belice) debittered using the Spanish and Castelvetrano methods. Food Research International, 100, 369–376.
  • Aydar, A. Y., Bağdatlıoğlu, N., Köseoğlu O. 2017a. Determination the Effect of Ultrasound on Olive Oil Extraction and Optimization of Ultrasound-Assisted Extraction of Extra Virgin Olive Oil by Response Surface Methodology (RSM). Grasas y Aceites. International Journal of Fats and Oils, 63(2) e189.
  • Aydar, A. Y., Öncü Öner, T., Üçok, E. F. 2017b. Effects of Hydroxytyrosol on Human Health. EC Nutrition, 11(October), 147–157.
  • Aydar, A. Y. 2020. Quality Parameters and Drying Kinetics of Ultrasound Pretreated Fermented Black Table Olives. Latin American Applied Research, 50(4), 271–276.
  • Aydar, A. Y., Özçelik, M., Pazarlıoğlu, B. 2019.. The Effects of Storage of Gemlik Olives at Different Temperatures on Oleuropein Degradation, 3rd International Conference on Agriculture, Food, Veterinary and Pharmacy Sciences (ICAFOP) 16-18 April 2019,Trabzon, Turkey
  • Aydar A. Y., Yılmaz T., Öncü Öner T. 2018. Methods for Reducing Bitterness of Table Olives, II. International University Industry Cooperation,R&D and Innovation Congress Manisa Celal Bayar University, 14-15 November 2018, Manisa, Turkey
  • Aydar, A. Y., Yılmaz, T., Tepekule, H., Çapan, G., Obuz, E. 2016. 4th International Food RD Brokerage Event. 24 Mayıs 2016. İzmir,Turkey.
  • Charoenprasert, S., Mitchell, A. 2012. Factors influencing phenolic compounds in table olives (Olea europaea). Journal of Agricultural and Food Chemistry, 60(29), 7081–7095.
  • Danahaliloğlu, H., Tekeli, Y., Göycıncık, S., Yıldırım, F. 2018. Hatay’da Farklı Bölgelerde Yetiştirilen Zeytin Yapraklarının Antioksidan Özelliklerinin Belirlenmesi. Karadeniz Fen Bilimleri Dergisi, 8(1), 77–86.
  • Ebringerová, A., Hromádková, Z. 2010. An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Central European Journal of Chemistry, 8(2), 243–257.
  • Elksibi, I., Haddar, W., Ticha, M. Ben, Mhenni, M. F. 2014. Development and optimisation of a non conventional extraction process of natural dye from olive solid waste using response surface methodology ( RSM ). Food Chemistry, 161, 345–352.
  • Feng, H., Barbosa-Canovas, G. V., Weiss, J. 2010. Ultrasound Technologies for Food and Bioprocessing. Springer, 1-643.
  • García, J. M., Yousfi, K., Mateos, R., Olmo, M., Cert, A. 2001. Reduction of oil bitterness by heating of olive (Olea europaea) fruits. Journal of Agricultural and Food Chemistry, 49(9), 4231–4235.
  • Habibi, M., Golmakani, M. T., Farahnaky, A., Mesbahi, G., Majzoobi, M. 2016. NaOH-free debittering of table olives using power ultrasound. Food Chemistry, 192, 775–781.
  • Habibi, M., Golmakani, M. T., Mesbahi, G., Majzoobi, M., Farahnaky, A. 2015. Ultrasound-accelerated debittering of olive fruits. Innovative Food Science and Emerging Technologies, 105–115.
  • Heldman, Dennis R., Daryl B. Lund, Christina Sabliov, E. 2006. Handbook of food engineering. CRC Press, 427-471.
  • Hromádková, Z., Kost’álová, Z., Ebringerová, A. 2008. Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrasonics Sonochemistry, 15(6), 1062–1068.
  • İçier, F., Baysal, T., Taştan, Ö., Özkan, G.2014. Microwave Drying Of Black Olive Slices : Effects On Total Phenolic Contents And Colour. Gıda, 39(6), 323–330.
  • Kara, S. 2013. Farklı Kurutma Yöntemlerinin Zeytin Yaprağındaki Fenolik Madde Dağılımına Ve Antioksidan Kapasitesine Etkisinin Araştırılması, (Yüksek Lisans Tezi), T.C. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir, 57.
  • Kardos, N., Luche, J. 2001. Sonochemistry of carbohydrate compounds. Carbohyrdate Research, 332(2), 115–131.
  • Kayguluoğlu, A. 2018. Sofralık Siyah Zeytin Kalitesi Üzerine Acılık Giderme İşlemlerinin Etkisi, (Doktora Tezi), T.C. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa, 163.
  • Khemakhem, I., Ahmad-Qasem, M. H., Catalán, E. B., Micol, V., García-Pérez, J. V., Ayadi, M. A., Bouaziz, M. 2017. Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrasonics Sonochemistry, 34, 466–473.
  • Mahdhaoui, B. Mechlouch ,R.F., Mahjoubi, A., Karim Zahafi, K., Ben Brahim, A.2013. Mathematical model on thin layer drying of olive fruit ( Olea europeae L. Journal of Agricultural Technology , 9(5), 1097-1110.
  • Marsilio, V., Campestre, C., Lanza, B. 2001. Phenolic compounds change during California-style ripe olive processing. Food Chemistry, 74(1), 55–60.
  • Mason, T. 1996. The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3(3), S253–S260.
  • Mason, T. J., Lorimer, J. P. 2002. Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing, Wiley, 225-266.
  • Mei, L., Zhen-Chang, W., Hao-Jie, D., Li, C., Qing-Gang, X., Jing, L. 2009. Response surface optimization of polysaccharides extraction from Liriope roots and its modulatory effect on Sjogren syndrome. International Journal of Biological Macromolecules, 45(3), 284–288.
  • Milić, P. S., Rajković, K. M., Stamenković, O. S., Veljković, V. B. 2013. Kinetic modeling and optimization of maceration and ultrasound-extraction of resinoid from the aerial parts of white lady’s bedstraw (Galium mollugo L.). Ultrasonics Sonochemistry, 20(1), 525–534.
  • Montgomery, D. C. 2000. Design and Analysis of Experiments, 5th Edition. John Wiley & Sons, New York, NY, 427-511.
  • Myers, R. H., Montgomery, D. C., Anderson-Cook, C. 2009. Response Surface Methodology: Process and Product Optimization Using Designed Experiments . Wiley Series in Probability and Statistics, June 2015, 631-693.
  • Piscopo, A., De Bruno, A., Zappia, A., Poiana, M. 2014. Antioxidant activity of dried green olives (Carolea cv.). LWT - Food Science and Technology, 58(1), 49–54.
  • Prakash Maran, J., Manikandan, S. 2012. Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit. Dyes and Pigments, 95, 465–472.
  • Singh, R. P., Heldman, D. 2013. Introduction to Food Engineering 5th Edition.Elsevier, 549-561.
  • Tokuşoǧlu, Ö., Alpas, H., Bozoǧlu, F. 2010. High hydrostatic pressure effects on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolics and antioxidant activity of black table olives. Innovative Food Science and Emerging Technologies, 11(2), 250–258.
  • Yousfi, K., Cayuela, J. a, García, J. M. 2008. Reduction of virgin olive oil bitterness by fruit cold storage. Journal of Agricultural and Food Chemistry, 56(21), 10085–10091.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Tuncay Yılmaz 0000-0001-8756-2724

Alev Yüksel Aydar 0000-0001-9780-0917

Melisa Özçelik Bu kişi benim 0000-0001-9835-5579

Proje Numarası 120O310
Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 8 Ekim 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Yılmaz, T., Aydar, A. Y., & Özçelik, M. (2022). Modeling the Effects of Physical Methods on Olive Bitterness Components. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 154-164. https://doi.org/10.35414/akufemubid.1006595
AMA Yılmaz T, Aydar AY, Özçelik M. Modeling the Effects of Physical Methods on Olive Bitterness Components. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Şubat 2022;22(1):154-164. doi:10.35414/akufemubid.1006595
Chicago Yılmaz, Tuncay, Alev Yüksel Aydar, ve Melisa Özçelik. “Modeling the Effects of Physical Methods on Olive Bitterness Components”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 1 (Şubat 2022): 154-64. https://doi.org/10.35414/akufemubid.1006595.
EndNote Yılmaz T, Aydar AY, Özçelik M (01 Şubat 2022) Modeling the Effects of Physical Methods on Olive Bitterness Components. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 1 154–164.
IEEE T. Yılmaz, A. Y. Aydar, ve M. Özçelik, “Modeling the Effects of Physical Methods on Olive Bitterness Components”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 1, ss. 154–164, 2022, doi: 10.35414/akufemubid.1006595.
ISNAD Yılmaz, Tuncay vd. “Modeling the Effects of Physical Methods on Olive Bitterness Components”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/1 (Şubat 2022), 154-164. https://doi.org/10.35414/akufemubid.1006595.
JAMA Yılmaz T, Aydar AY, Özçelik M. Modeling the Effects of Physical Methods on Olive Bitterness Components. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:154–164.
MLA Yılmaz, Tuncay vd. “Modeling the Effects of Physical Methods on Olive Bitterness Components”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 1, 2022, ss. 154-6, doi:10.35414/akufemubid.1006595.
Vancouver Yılmaz T, Aydar AY, Özçelik M. Modeling the Effects of Physical Methods on Olive Bitterness Components. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(1):154-6.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.