Araştırma Makalesi
BibTex RIS Kaynak Göster

Hydrogeochemical Investigation of Water Resources in the Aksu Stream Basin (Tefenni-Burdur)

Yıl 2022, , 390 - 404, 30.04.2022
https://doi.org/10.35414/akufemubid.1036061

Öz

Drinking water supply has become an important problem today. In urban areas, drinking water is generally supplied from surface water storages such as dams and ponds. In this study, the hydrogeochemical and quality characteristics of Aksu stream waters, which will feed the dam planned to meet the long-term drinking water needs of Burdur city center, were investigated. Marmaris peridotite and Kızılcadağ melange and olistrochrome crop out in large areas in the Aksu stream basin. It has been determined that the waters in the study area are of MgHCO3 hydrogeochemical facies. The major ion contents of waters were used to define hydrogeochemical processes that control the chemical composition of surface and ground waters. It has been determined that the chemistry of the surface and ground waters in the basin, depending on the rock-water interaction, is affected by both carbonate and silicate weathering processes. The EC value of the spring waters discharged from the study area varies between 460 and 550 μS/cm, and the EC value of the stream waters varies between 460 and 620 μS/cm. The pH value of the water samples is between 8.50 and 8.73. It has been determined that the physical parameters, major ions and trace element contents of the surface and spring waters feeding the Aksu stream do not exceed the drinking water standards of Turkey and the World Health Organization and are suitable for usage as drinking water. Different diagrams and equations were used to evaluate the usability of water as irrigation water. In general, it has been determined that Aksu stream waters are suitable for use for irrigation water, except for the Magnesium Hazard (MT) value. High Mg+2 contents of the waters will have a negative effect when used as irrigation water.

Kaynakça

  • Back, W., 1966. Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain, Professional paper. 498-A, 1-42.
  • Barnes, I. and O’Neil, J.R., 1969. The relationship between fluids in some fresh alpinetype ultramafics and possible modern serpentinization, western United States. Geological Society of America Bulletin, 80, 1947-1960.
  • Baumeister, J.L., Hausrath, E.M., Olsen, A.A., Tschauner, O., Adcock, C.T. and Metcalf, R.V., 2015. Biogeochemical weathering of serpentinites: an examination of incipient dissolution affecting serpentine soil formation. Applied Geochemistry, 54, 74-84.
  • Bilgin, Z.R., Karaman, T., Öztürk, Z., Şen, M.A. ve Şenel, M., 1990. Yeşilova-Acıgöl civarının jeolojisi raporu. MTA Rap: 9071, Ankara.
  • Cerling, T.E., Pederson, B.L. and Damm, K.L.V., 1989. Sodium calcium ion exchange in weathering of shale; implication for global weathering. Budget. 17, 552–554.
  • Chebotarev, I.J., 1955. Metamorphism of natural waters in the crust of weathering-I. Geochimica et Cosmochima Acta, 8, 22–48.
  • Çiftçi, T., 2010. Datça (Muğla) ve Yakın Dolayının Jeolojisi. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 103.
  • Datta, P.S. and Tyagi, S.K., 1996. Major ion chemistry of groundwater in delhi area: chemical weathering processes and groundwater flow regime. Journal of the Geological Society of India, 47, 179–188.
  • Davraz, A. and Batur, B., 2021. Hydrogeochemistry characteristics of groundwater and health risk assessment in Yalvaç–Gelendost basin (Turkey). Applied Water Science, 11, 67, 1-21.
  • Davraz, A. ve Ünver, Ö., 2014. İnegöl Havzası (Bursa) hidrojeolojisi ve yeraltısularının kalite değerlendirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18, 2, 7-21.
  • Davraz, A. ve Yılmaz, E.İ., 2016. Gölhisar (Burdur) ovasının hidrojeoloji incelemesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22, 6, 535-544.
  • Doneen, L.D., 1964. Water quality for agriculture. department of irrigation, University of Calfornia, Davis, 48.
  • Fisher, R.S. and Mullican, F.W., 1997. Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans- Pecos, Texas, USA. Hydrogeology Journal. 10, 4, 455–474.
  • Garcia, M.G, Hidalgo, M. and Blesa, M.A., 2001. Geochemistry of groundwater in the alluvial plain of Tucum´an province, Argentina. Hydrogeology Journal, 9, 597–610.
  • Giampouras, M., Garrido, C.J., Zwicker, J., Vadillo; I., Smrzka, D., Bach, W., Peckmann, J., Jimenez, P., Benavente, J. and García-Ruiz, J.M., 2019. Geochemistry and mineralogy of serpentinization-driven hyperalkaline springs in the Ronda peridotites. Lithos, 350,351, 105215, 1-22.
  • Gibbs, R.J., 1970. Mechanism controlling world water chemistry. Science, 170, 795-840.
  • Gupta, S.K. and Gupta, I.C., 1987. Management of saline soils and waters. Oxford and IBH Publishing and Co, New Delhi, 339.
  • IAH (International Association of Hydrogeologists), 1979. Map of Mineral and Thermal Water of Europe Scale: 1:500000, United Kingdom.
  • İTASHY, 2005. İnsani tüketim amaçlı sular hakkında yönetmelik. Türk İçme Suyu Standartları TS 266 sayılı standart -Türk Standartları Enstitüsü –Ankara.
  • Kelley, W.P., 1963. Use of saline irrigation water. Soil Science, 95,4, 355-391.
  • Keren, R., 1984. Potassium, magnesium and boron in soils under saline and sodic conditions. In: Shainberg, I., Shalhevet, J. (Eds.), Soil Salinity Under Irrigation Processes and Management. Springer-Verlag, Berlin, Germany, 77–90.
  • Kumar Singh, A., Mondal, G.C., Singh, T.B., Singh, S., Tewary, B.K. and Sinha, A., 2012. Hydrogeochemical processes and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Environmental Earth Science, 67, 2175–2191.
  • Kumar, M., Kumari, K., Kumar Singh, U. and Ramanathan, A.L., 2009. Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environmental Geology, 57, 873–884.
  • Kumar, M., Ramanathan, A.L., Rao, M.S. and Kumar, B., 2006. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039.
  • Lakshmanan, E., Kannan, R. and Senthil Kumar, M., 2003. Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10, 4, 157–166.
  • Levy, G.J., 2012. Sodicity. Chapter 18. In: Huang, P.M., Li, Y., Sumner, M.E. (Eds.), Handbook of Soil Sciences, Resource Management and Environmental Impact, 2nd Ed CRC Press, Boca Raton, FL, USA, 28.
  • Maguire, M.E. and Cowan, J.A., 2002. Magnesium chemistry and biochemistry. Biometals, 15, 203-210.
  • Margiotta, S., Mongelli, G., Summa, V., Paternoster, M. and Fiore, S., 2012. Trace element distribution and Cr (VI) speciation in Ca-HCO3 and Mg-HCO3 spring waters from the northern sector of the Pollino massif, southern Italy. Journal of Geochemical Exploration, 115, 1e12.
  • Mayback, M., 1987. Global Chemical Weathering of Surficial Rocks Estimated from River-Dissolved Loads., American Journal of Science, 287, 401–428.
  • MTA, 2010. Maden Tetkik ve Arama Genel Müdürlüğü, 1/100000 ölçekli Türkiye Jeoloji Haritaları No:17, Denizli-N23 paftası (İkinci Baskı)
  • Mthembu, P.P., Elumalai, V., Brindha, K. and Li, P., 2020. Hydrogeochemical processes and trace metal contamination in groundwater: impact on human health in the Maputaland coastal aquifer, South Africa. Exposure and Health, 12, 403–426.
  • Okiongbo, K.S. and Akpofure, E., 2014. Identification of hydrogeochemical processes in groundwater using major ion chemistry: A case study of Yenagoa and Environs, Southern Nigeria. Global Journal of Geological Sciences, 12, 39-52.
  • Paukert, A.N., Matter, J.M., Kelemen, P.B., Shock, E.L. and Havig, J.R., 2012. Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman. Chemical Geology, 330, 86-100.
  • Piper, A.M., 1944. A Graphic Procedure in the Geochemical Interpretation of Water Analyses. Transactions of the American Geophysical Union, 25, 914-923.
  • Poisson, A., 1977. Recherces geologiques dans les Taurides occidentales (Turquie). These Univ. Paris- Sud, Orsay, 795.
  • Qadir, M., Schubert, S., Oster, J.D., Sposito, G., Minhas, P.S., Cheraghi, S.A.M., Murtaza, G., Mirzabaev, A. and Saqib, M., 2018. High magnesium waters and soils: Emerging environmental and food security constraints. Science of the Total Environment, 642, 1108–1117.
  • Ragunath, H.M., 1987. Groundwater. New Delhi: Wiley, 563.
  • Rengasamy, P. and Marchuk, A., 2011. Cation ratio of soil structural stability (CROSS). Soil Research, 49, 280-285.
  • Rengasamy, P., Greene, R.S.B., Ford, G.W. and Mehanni, A.H., 1984. Identification of dispersive behavior and the management of Red-Brown earths. Australian Journal of Soil Research, 22, 413-431.
  • Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. Agricultural hand book 60. U.S. Dept. of Agriculture, Washington D.C., 160.
  • Sarp, H., 1976. Etude geologi que et petrographique du cortege ophiolitique de la region situee au nord-ouest de Yeşilova (Burdur- Turquie). These department de mineralogie, Univerte’de Geneve, Geneve, 160.
  • Schoeller, H., 1967. Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigation and development. Water Research, Series-33, Paris: UNESCO, 44-52.
  • Singh, A.K. and Hasnain, S.I., 1999. Environmental geochemistry of Damodar river basin- east coast of India. Environmental Geology, 37, 124-136.
  • Singh, A.K., Mahato, M.K., Neogi, B., Tewary, B.K. and Sinha, A., 2012. Environmental geochemistry and quality assessment of mine water of Jharia coalfield, India. Environmental Geology, 65, 49-65.
  • Singh, K., Hundal, H.S., Singh, D., 2011. Geochemistry and assessment of hydrogeochemical processes in groundwater in the southern part of Bathinda District of Punjab, Northwest India. Environmental Earth Sciences, 64, 1823-1833.
  • Smith, C., Oster, J.D. and Sposito, G., 2015. Potassium and magnesiumin irrigation water quality assessment. Agricultural Water Management, 157, 59-64.
  • Sposito, G., 2016. The chemistry of soils. Third edition. Oxford University Press, New York, USA, 272.
  • Srinivasamoorthy, K., Chidambaram, S., Prasanna, M.V., Vasanthavihar, M., Peter, J. and Anandhan, P., 2008. Identification of major sources controlling groundwater chemistry from a hard rock terrain – A case study from Mettur Taluk, Salem district, Tamil Nadu, India. Journal of Earth System Sciences, 117, 49-58.
  • Subramani, T., Rajmohan, N. and Elango, L., 2010. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring Assessment, 162, 123-137.
  • Sumner, M.E., 1993. Sodic soils: new perspectives. Australian Journal of Soil Research, 31, 683-750.
  • Szabolcs, I., Darab, C., 1964. The Influence of irrigation water of high sodium carbonate content on soils. In I. Szabolics (Ed.), Proc 8th International Congress Soil Science Sodics Soils, Res Inst Soil Sci Agric Chem Hungarian Acad Sci, ISSS Trans II, 802–812.
  • Şahinci, A., 1991. Doğal suların jeokimyası, Reform matbaası, İzmir, 546.
  • Şenel, M., Selçuk, H., Bilgin, Z.R., Şen, A.M., Karaman, T., Dinçer, M.A., Durukan, E., Arbas, A., Örçen, S. ve Bilgi, C., 1989. Çameli (Denizli)- Yeşilova (Burdur)- Elmalı (Antalya) ve kuzeyinin jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü (MTA) Rap: 9429 (yayımlanmamış), Ankara.
  • Şener, Ş., Şener, E., Davraz, A. and Varol, S., 2020. Hydrogeological and hydrochemical investigation in the Burdur Saline Lake Basin, southwest Turkey. Geochemistry, 80, 125592,1-14.
  • Tay, C.K., 2012. Hydrochemistry of groundwater in the Savelugu–Nanton District, Northern Ghana. Environmental Earth Science, 67, 2077-2087.
  • Vinnarasi, F., Srinivasamoorthy, K., Saravanan, K., Gopinath, S., Prakash, R., Ponnumani, G. and Babu, C., 2021. Chemical weathering and atmospheric carbon dioxide (CO2) consumption in Shanmuganadhi, South India: Evidences from groundwater geochemistry. Environmental Geochemistry and Health, 43, 771-790.
  • Wang, Q., Dong, S., Wang, H., Yang, J., Huang, H., Dong, X. and Yu, B., 2020. Hydrogeochemical processes and groundwater quality assessment for different aquifers in the Caojiatan coal mine of Ordos Basin, northwestern China. Environmental Earth Sciences, 79, 199, 1-16.
  • WHO, 2017. Guidelines for drinking-water quality: fourth edition incorporating the first addendum WHO Library Cataloguing-in-Publication Data, 631.
  • Wilcox, L.V. 1955. Classification and use of irrigation waters, USDA Circular No. 969, 19.
  • Xu, P., Feng, W., Qian, H. and Zhang, Q., 2019. Hydrogeochemical characterization and ırrigation quality assessment of shallow groundwater in the central-western Guanzhong Basin, China. International Journal of Environmental Research and Public Health, 27, 16(9), 1492, 1-14.
  • İnternet kaynakları 1- https://stringfixer.com/tr/Peridotite (07.12.2021) 2-http://www.alexstrekeisen.it/english/meta/ carbonatedperidotite (07.12.2021)

Aksu Çayı Havzası (Tefenni-Burdur) Su Kaynaklarının Hidrojeokimyasal İncelemesi

Yıl 2022, , 390 - 404, 30.04.2022
https://doi.org/10.35414/akufemubid.1036061

Öz

İçme suyu temini günümüzde önemli bir problem halini almaya başlamıştır. Kentsel alanlarda genel olarak içme suyu temini baraj ve gölet gibi yüzey suyu depolamalarından sağlanmaktadır. Bu çalışmada, Burdur kent merkezinin uzun dönem içme suyu ihtiyacının karşılanması için yapılması planlanan barajı besleyecek olan, Aksu Çayı sularının hidrojeokimyasal ve kalite özellikleri araştırılmıştır. Aksu Çayı havzasında Marmaris peridotiti ve Kızılcadağ melanj ve olistrosromu geniş alanlarda yüzeylemektedir. İnceleme alanında suların MgHCO3 hidrojeokimyasal fasiyesinde olduğu tespit edilmiştir. Yüzey ve yeraltısularının kimyasal yapısını denetleyen hidrojeokimyasal süreçlerin tanımlanmasında suların majör iyon içeriklerinden yararlanılmıştır. Havzada yüzey ve yeraltısularının kaya-su etkileşimine bağlı olarak kimyasının hem karbonat hem de silikat ayrışma süreçlerinden etkilendiği tespit edilmiştir. İnceleme alanı içerisinden boşalan kaynak sularının EC değeri 460-550 μS/cm arasında, dere sularının EC değeri 460-620 μS/cm arasında değişmektedir. Su örneklerinin pH değeri ise 8.50-8.73 arasındadır. Aksu Çayını besleyen yüzey ve kaynak sularının fiziksel parametre, major iyon ve iz element içeriklerinin Türkiye ve Dünya Sağlık Örgütü içme suyu standartlarını aşmadığı ve içme suyu olarak kullanıma uygun olduğu belirlenmiştir. Suların sulama suyu olarak kullanılabilirliğinin değerlendirmesinde farklı diyagram ve eşitliklerden yararlanılmıştır. Genel olarak Aksu Çayı sularının Magnezyum Tehlikesi (MT) değeri dışında sulama suyu için kullanıma uygun olduğu belirlenmiştir. Sulama suyu olarak kullanımda suların yüksek Mg+2 içerikleri olumsuz etki oluşturacaktır.

Kaynakça

  • Back, W., 1966. Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain, Professional paper. 498-A, 1-42.
  • Barnes, I. and O’Neil, J.R., 1969. The relationship between fluids in some fresh alpinetype ultramafics and possible modern serpentinization, western United States. Geological Society of America Bulletin, 80, 1947-1960.
  • Baumeister, J.L., Hausrath, E.M., Olsen, A.A., Tschauner, O., Adcock, C.T. and Metcalf, R.V., 2015. Biogeochemical weathering of serpentinites: an examination of incipient dissolution affecting serpentine soil formation. Applied Geochemistry, 54, 74-84.
  • Bilgin, Z.R., Karaman, T., Öztürk, Z., Şen, M.A. ve Şenel, M., 1990. Yeşilova-Acıgöl civarının jeolojisi raporu. MTA Rap: 9071, Ankara.
  • Cerling, T.E., Pederson, B.L. and Damm, K.L.V., 1989. Sodium calcium ion exchange in weathering of shale; implication for global weathering. Budget. 17, 552–554.
  • Chebotarev, I.J., 1955. Metamorphism of natural waters in the crust of weathering-I. Geochimica et Cosmochima Acta, 8, 22–48.
  • Çiftçi, T., 2010. Datça (Muğla) ve Yakın Dolayının Jeolojisi. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 103.
  • Datta, P.S. and Tyagi, S.K., 1996. Major ion chemistry of groundwater in delhi area: chemical weathering processes and groundwater flow regime. Journal of the Geological Society of India, 47, 179–188.
  • Davraz, A. and Batur, B., 2021. Hydrogeochemistry characteristics of groundwater and health risk assessment in Yalvaç–Gelendost basin (Turkey). Applied Water Science, 11, 67, 1-21.
  • Davraz, A. ve Ünver, Ö., 2014. İnegöl Havzası (Bursa) hidrojeolojisi ve yeraltısularının kalite değerlendirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18, 2, 7-21.
  • Davraz, A. ve Yılmaz, E.İ., 2016. Gölhisar (Burdur) ovasının hidrojeoloji incelemesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22, 6, 535-544.
  • Doneen, L.D., 1964. Water quality for agriculture. department of irrigation, University of Calfornia, Davis, 48.
  • Fisher, R.S. and Mullican, F.W., 1997. Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans- Pecos, Texas, USA. Hydrogeology Journal. 10, 4, 455–474.
  • Garcia, M.G, Hidalgo, M. and Blesa, M.A., 2001. Geochemistry of groundwater in the alluvial plain of Tucum´an province, Argentina. Hydrogeology Journal, 9, 597–610.
  • Giampouras, M., Garrido, C.J., Zwicker, J., Vadillo; I., Smrzka, D., Bach, W., Peckmann, J., Jimenez, P., Benavente, J. and García-Ruiz, J.M., 2019. Geochemistry and mineralogy of serpentinization-driven hyperalkaline springs in the Ronda peridotites. Lithos, 350,351, 105215, 1-22.
  • Gibbs, R.J., 1970. Mechanism controlling world water chemistry. Science, 170, 795-840.
  • Gupta, S.K. and Gupta, I.C., 1987. Management of saline soils and waters. Oxford and IBH Publishing and Co, New Delhi, 339.
  • IAH (International Association of Hydrogeologists), 1979. Map of Mineral and Thermal Water of Europe Scale: 1:500000, United Kingdom.
  • İTASHY, 2005. İnsani tüketim amaçlı sular hakkında yönetmelik. Türk İçme Suyu Standartları TS 266 sayılı standart -Türk Standartları Enstitüsü –Ankara.
  • Kelley, W.P., 1963. Use of saline irrigation water. Soil Science, 95,4, 355-391.
  • Keren, R., 1984. Potassium, magnesium and boron in soils under saline and sodic conditions. In: Shainberg, I., Shalhevet, J. (Eds.), Soil Salinity Under Irrigation Processes and Management. Springer-Verlag, Berlin, Germany, 77–90.
  • Kumar Singh, A., Mondal, G.C., Singh, T.B., Singh, S., Tewary, B.K. and Sinha, A., 2012. Hydrogeochemical processes and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Environmental Earth Science, 67, 2175–2191.
  • Kumar, M., Kumari, K., Kumar Singh, U. and Ramanathan, A.L., 2009. Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environmental Geology, 57, 873–884.
  • Kumar, M., Ramanathan, A.L., Rao, M.S. and Kumar, B., 2006. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039.
  • Lakshmanan, E., Kannan, R. and Senthil Kumar, M., 2003. Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10, 4, 157–166.
  • Levy, G.J., 2012. Sodicity. Chapter 18. In: Huang, P.M., Li, Y., Sumner, M.E. (Eds.), Handbook of Soil Sciences, Resource Management and Environmental Impact, 2nd Ed CRC Press, Boca Raton, FL, USA, 28.
  • Maguire, M.E. and Cowan, J.A., 2002. Magnesium chemistry and biochemistry. Biometals, 15, 203-210.
  • Margiotta, S., Mongelli, G., Summa, V., Paternoster, M. and Fiore, S., 2012. Trace element distribution and Cr (VI) speciation in Ca-HCO3 and Mg-HCO3 spring waters from the northern sector of the Pollino massif, southern Italy. Journal of Geochemical Exploration, 115, 1e12.
  • Mayback, M., 1987. Global Chemical Weathering of Surficial Rocks Estimated from River-Dissolved Loads., American Journal of Science, 287, 401–428.
  • MTA, 2010. Maden Tetkik ve Arama Genel Müdürlüğü, 1/100000 ölçekli Türkiye Jeoloji Haritaları No:17, Denizli-N23 paftası (İkinci Baskı)
  • Mthembu, P.P., Elumalai, V., Brindha, K. and Li, P., 2020. Hydrogeochemical processes and trace metal contamination in groundwater: impact on human health in the Maputaland coastal aquifer, South Africa. Exposure and Health, 12, 403–426.
  • Okiongbo, K.S. and Akpofure, E., 2014. Identification of hydrogeochemical processes in groundwater using major ion chemistry: A case study of Yenagoa and Environs, Southern Nigeria. Global Journal of Geological Sciences, 12, 39-52.
  • Paukert, A.N., Matter, J.M., Kelemen, P.B., Shock, E.L. and Havig, J.R., 2012. Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman. Chemical Geology, 330, 86-100.
  • Piper, A.M., 1944. A Graphic Procedure in the Geochemical Interpretation of Water Analyses. Transactions of the American Geophysical Union, 25, 914-923.
  • Poisson, A., 1977. Recherces geologiques dans les Taurides occidentales (Turquie). These Univ. Paris- Sud, Orsay, 795.
  • Qadir, M., Schubert, S., Oster, J.D., Sposito, G., Minhas, P.S., Cheraghi, S.A.M., Murtaza, G., Mirzabaev, A. and Saqib, M., 2018. High magnesium waters and soils: Emerging environmental and food security constraints. Science of the Total Environment, 642, 1108–1117.
  • Ragunath, H.M., 1987. Groundwater. New Delhi: Wiley, 563.
  • Rengasamy, P. and Marchuk, A., 2011. Cation ratio of soil structural stability (CROSS). Soil Research, 49, 280-285.
  • Rengasamy, P., Greene, R.S.B., Ford, G.W. and Mehanni, A.H., 1984. Identification of dispersive behavior and the management of Red-Brown earths. Australian Journal of Soil Research, 22, 413-431.
  • Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. Agricultural hand book 60. U.S. Dept. of Agriculture, Washington D.C., 160.
  • Sarp, H., 1976. Etude geologi que et petrographique du cortege ophiolitique de la region situee au nord-ouest de Yeşilova (Burdur- Turquie). These department de mineralogie, Univerte’de Geneve, Geneve, 160.
  • Schoeller, H., 1967. Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigation and development. Water Research, Series-33, Paris: UNESCO, 44-52.
  • Singh, A.K. and Hasnain, S.I., 1999. Environmental geochemistry of Damodar river basin- east coast of India. Environmental Geology, 37, 124-136.
  • Singh, A.K., Mahato, M.K., Neogi, B., Tewary, B.K. and Sinha, A., 2012. Environmental geochemistry and quality assessment of mine water of Jharia coalfield, India. Environmental Geology, 65, 49-65.
  • Singh, K., Hundal, H.S., Singh, D., 2011. Geochemistry and assessment of hydrogeochemical processes in groundwater in the southern part of Bathinda District of Punjab, Northwest India. Environmental Earth Sciences, 64, 1823-1833.
  • Smith, C., Oster, J.D. and Sposito, G., 2015. Potassium and magnesiumin irrigation water quality assessment. Agricultural Water Management, 157, 59-64.
  • Sposito, G., 2016. The chemistry of soils. Third edition. Oxford University Press, New York, USA, 272.
  • Srinivasamoorthy, K., Chidambaram, S., Prasanna, M.V., Vasanthavihar, M., Peter, J. and Anandhan, P., 2008. Identification of major sources controlling groundwater chemistry from a hard rock terrain – A case study from Mettur Taluk, Salem district, Tamil Nadu, India. Journal of Earth System Sciences, 117, 49-58.
  • Subramani, T., Rajmohan, N. and Elango, L., 2010. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring Assessment, 162, 123-137.
  • Sumner, M.E., 1993. Sodic soils: new perspectives. Australian Journal of Soil Research, 31, 683-750.
  • Szabolcs, I., Darab, C., 1964. The Influence of irrigation water of high sodium carbonate content on soils. In I. Szabolics (Ed.), Proc 8th International Congress Soil Science Sodics Soils, Res Inst Soil Sci Agric Chem Hungarian Acad Sci, ISSS Trans II, 802–812.
  • Şahinci, A., 1991. Doğal suların jeokimyası, Reform matbaası, İzmir, 546.
  • Şenel, M., Selçuk, H., Bilgin, Z.R., Şen, A.M., Karaman, T., Dinçer, M.A., Durukan, E., Arbas, A., Örçen, S. ve Bilgi, C., 1989. Çameli (Denizli)- Yeşilova (Burdur)- Elmalı (Antalya) ve kuzeyinin jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü (MTA) Rap: 9429 (yayımlanmamış), Ankara.
  • Şener, Ş., Şener, E., Davraz, A. and Varol, S., 2020. Hydrogeological and hydrochemical investigation in the Burdur Saline Lake Basin, southwest Turkey. Geochemistry, 80, 125592,1-14.
  • Tay, C.K., 2012. Hydrochemistry of groundwater in the Savelugu–Nanton District, Northern Ghana. Environmental Earth Science, 67, 2077-2087.
  • Vinnarasi, F., Srinivasamoorthy, K., Saravanan, K., Gopinath, S., Prakash, R., Ponnumani, G. and Babu, C., 2021. Chemical weathering and atmospheric carbon dioxide (CO2) consumption in Shanmuganadhi, South India: Evidences from groundwater geochemistry. Environmental Geochemistry and Health, 43, 771-790.
  • Wang, Q., Dong, S., Wang, H., Yang, J., Huang, H., Dong, X. and Yu, B., 2020. Hydrogeochemical processes and groundwater quality assessment for different aquifers in the Caojiatan coal mine of Ordos Basin, northwestern China. Environmental Earth Sciences, 79, 199, 1-16.
  • WHO, 2017. Guidelines for drinking-water quality: fourth edition incorporating the first addendum WHO Library Cataloguing-in-Publication Data, 631.
  • Wilcox, L.V. 1955. Classification and use of irrigation waters, USDA Circular No. 969, 19.
  • Xu, P., Feng, W., Qian, H. and Zhang, Q., 2019. Hydrogeochemical characterization and ırrigation quality assessment of shallow groundwater in the central-western Guanzhong Basin, China. International Journal of Environmental Research and Public Health, 27, 16(9), 1492, 1-14.
  • İnternet kaynakları 1- https://stringfixer.com/tr/Peridotite (07.12.2021) 2-http://www.alexstrekeisen.it/english/meta/ carbonatedperidotite (07.12.2021)
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Ayşen Davraz 0000-0003-2442-103X

Simge Varol 0000-0002-1905-9454

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 13 Aralık 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Davraz, A., & Varol, S. (2022). Aksu Çayı Havzası (Tefenni-Burdur) Su Kaynaklarının Hidrojeokimyasal İncelemesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(2), 390-404. https://doi.org/10.35414/akufemubid.1036061
AMA Davraz A, Varol S. Aksu Çayı Havzası (Tefenni-Burdur) Su Kaynaklarının Hidrojeokimyasal İncelemesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Nisan 2022;22(2):390-404. doi:10.35414/akufemubid.1036061
Chicago Davraz, Ayşen, ve Simge Varol. “Aksu Çayı Havzası (Tefenni-Burdur) Su Kaynaklarının Hidrojeokimyasal İncelemesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 2 (Nisan 2022): 390-404. https://doi.org/10.35414/akufemubid.1036061.
EndNote Davraz A, Varol S (01 Nisan 2022) Aksu Çayı Havzası (Tefenni-Burdur) Su Kaynaklarının Hidrojeokimyasal İncelemesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 2 390–404.
IEEE A. Davraz ve S. Varol, “Aksu Çayı Havzası (Tefenni-Burdur) Su Kaynaklarının Hidrojeokimyasal İncelemesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 2, ss. 390–404, 2022, doi: 10.35414/akufemubid.1036061.
ISNAD Davraz, Ayşen - Varol, Simge. “Aksu Çayı Havzası (Tefenni-Burdur) Su Kaynaklarının Hidrojeokimyasal İncelemesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/2 (Nisan 2022), 390-404. https://doi.org/10.35414/akufemubid.1036061.
JAMA Davraz A, Varol S. Aksu Çayı Havzası (Tefenni-Burdur) Su Kaynaklarının Hidrojeokimyasal İncelemesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:390–404.
MLA Davraz, Ayşen ve Simge Varol. “Aksu Çayı Havzası (Tefenni-Burdur) Su Kaynaklarının Hidrojeokimyasal İncelemesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 2, 2022, ss. 390-04, doi:10.35414/akufemubid.1036061.
Vancouver Davraz A, Varol S. Aksu Çayı Havzası (Tefenni-Burdur) Su Kaynaklarının Hidrojeokimyasal İncelemesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(2):390-404.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.