Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğrusal Olmayan Analiz Yöntemi ile Belirlenen Sıvılaşma Riskinin Coğrafi Bilgi Sistemleri Kullanılarak Haritalanması: Kütahya Örneği

Yıl 2022, , 858 - 872, 31.08.2022
https://doi.org/10.35414/akufemubid.1076436

Öz

Bu çalışmada, Kütahya ili Merkez ilçesine bağlı Gaybiefendi, Meydan ve Lala Hüseyin Paşa Mahallelerinde sıvılaşma risk haritaları oluşturulmuştur. Standart Penetrasyon Deney(SPT) sonuçları ve zemin parametrelerinden yararlanılarak toplam 112 adet sondaj kuyusu incelenmiştir. Analizlerde zemin sınıfına göre Matasovic/Vucetic veya Dobry/Matasovic boşluk suyu basıncı oluşum modeli kullanılmıştır. Analizler için 11 adet deprem seçilmiştir. Mahallelerin PGA(en büyük yer ivmesi) değerleri ile, seçilen depremler ölçeklendirilmiş ve toplamda 44 adet deprem kaydı oluşturulmuştur. Her sondaj kuyusu bu 44 adet deprem ile Deepsoil 6.1 programında analiz edilmiş ve sıvılaşma risk haritaları oluşturulmuştur. Analiz sonuçlarından elde edilen verilerin ortalaması alınarak, mahalleler için ortalama sıvılaşma riskleri bulunmuştur. Elde edilen sıvılaşma riskleri deprem düzeyine göre farklı sonuçlar vermektedir. Yönetmeliğin tasarım depremi olarak kabul ettiği Deprem Düzeyi-2 (DD-2)’ye göre yapılan sıvılaşma analiz sonuçları; Gaybiefendi Mahallesinde ortalama sıvılaşma riski % 40, Meydan Mahallesinde % 35 ve Lala Hüseyin Paşa Mahallesinde % 23 olarak hesaplanmıştır. En yüksek sıvılaşma riski DD1’e göre % 68 ile Meydan mahallesinde oluşurken, en düşük risk DD4’e göre % 3 olarak Lala Hüseyin Paşa mahallesinde hesaplanmıştır. Elde edilen sıvılaşma haritaları, bu bölgelerde yeni yapılacak yapılar için zeminin sıvılaşma durumunu göstererek önceden önlem alınmasına yardımcı olacaktır. Sıvılaşma riskinin yüksek olduğu mevcut yerleşim yerlerinde ise gerekli tedbirlerin alınması önerilmektedir.

Kaynakça

  • Afacan, K. B., 2019. Estimation of Excess Pore Pressure Generation and Nonlinear Site Response of Liquefied Areas. Geotechnical Engineering-Advances in Soil Mechanics and Foundation Engineering, 26, 1-21.
  • Darendeli, M. B., 2001. Development of A New Family of Normalized Modulus Reduction and Material Damping Curves. Architectural and Environmental Engineering, The University of Texas, Austin, Texas.
  • Gücek, S., 2020. Arazi Deneylerine Dayalı Zemin Büyütmesi ve Sıvılaşma Analizleri: Afyonkarahisar-Uydukent Yerleşim Alanı Örneği(Ph. D. Thesis), Afyon Kocatepe University Institute of Science and Technology, Afyonkarahisar, 162.
  • Hansbo, S., Jordmateriallära, 1975, Almqvist Wiksell Förlag AB, Stockholm, 218.
  • Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Groholski, D.R., Phillips, C.A., vd., 2016. DEEPSOIL 6.1, User Manual.
  • Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Ilhan, O., Xing, G., Numanoglu, O., Groholski, D.R., Phillips, C.A., and Park, D. 2020. “DEEPSOIL 7.0, User Manual”. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign.
  • Hatanaka, M. and Uchida, A., 1996. Empirical correlation between penetration resistance and internal friction angle of sandy soils, Soils and Foundations, 36, 1-9.
  • İyisan, R., 1996. Zeminlerde kayma dalgası hızı ile penetrasyon deney sonuçları arasındaki bağıntılar, Technical Journal, 7, 32.
  • Kabak, S., 2021. Kütahya İl Merkezinde Belirli Bir Bölge Zemininin Sıvılaşma Potansiyelinin Belirlenmesi(Master Thesis), Afyon Kocatepe University Institute of Science and Technology, Afyonkarahisar, 120.
  • Liao, S.S., and Whitman, R.V., 1986. Overburden Correction Factors for SPT In Sand, Journal Of Geotechnical Engineering, ASCE, 112, 373-377.
  • Matasovic, N., Vucetic, M., 1995. Generalized Cyclic Degradation-Pore Pressure Generation Model for Clays, ASCE Journal of Geotechnical and Geoenvironmental Engineering, 121, 33-42.
  • Matasovic, N., Vucetic, M., Cyclic Characterization of Liquefiable Sands, 1993. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 119, 1805-1822.
  • Okay, A. İ., Kaslılar-Ozcan, A., İmren, C., Boztepe-Guney, A., Demirbağ, E., ve Kuscu, İ. 2000. Active Faults And Evolving Strike-Slip Basin In The Marmara Sea, Northwest Turkey: A Multichannel Seismic Reflection Study, Tectonophysics, 321, 189-218.
  • Sezer, L. İ., 2010. Kütahya Yöresinin Depremselliği, Ege Journal of Geography, 19, 35-52.
  • Terzaghi, K., Peck, R. B., Mesri, G., 1996. Soil Mechanics In Engineering Practice. John Wiley-Sons.
  • Turkish Building Earthquake Code (TBDY), Disaster and Emergency Management Presidency, Official Newspaper, Date: 18 March 2018, 30364.
  • Internet References https://parselsorgu.tkgm.gov.tr/ , Date of access: January 3, 2021.
  • https://deprem.afad.gov.tr/depremkatalogu# , Date of access: January 2, 2021.

Liquefaction Risk Maps Determined By Nonlinear Analysis Method Using Geographical Information Systems: Kütahya Case

Yıl 2022, , 858 - 872, 31.08.2022
https://doi.org/10.35414/akufemubid.1076436

Öz

Liquefaction risk maps were created in Lala Hüseyin Paşa, Gaybiefendi and Meydan neighborhoods in Kütahya city center. A total of 112 boreholes were investigated by helping the SPT results (Standard Penetration Test) and soil parameters. Matasovic/Vucetic or Dobry/Matasovic model was used in the analyzes according to soil class. For analyzes, 11 earthquake were determined. The determined earthquakes were scaled with the Peak Ground Acceleration (PGA) of the neighborhoods and 44 earthquake data were found. Every borehole was analyzed with these 44 earthquake data in the Deepsoil 6.1 program and liquefaction risk maps were created. The average liquefaction risk data for neighborhoods were created by averaging the results obtained. The liquefaction data found show different results for earthquake levels. Liquefaction analysis results according to Earthquake Level-2 (DD-2), which the regulation accepts as a design earthquake; The average liquefaction risk was calculated as 23% in Lala Hüseyin Paşa neighborhood, 40% in Gaybiefendi neighborhood and 35% in Meydan neighborhood. While the highest risk of liquefaction occurred in the Meydan district with 68% according to DD1, the lowest risk was calculated in Lala Hüseyin Paşa District as 3% according to DD4. The liquefaction maps created can enable the necessary precautions to be taken for the construction in the neighborhoods.

Kaynakça

  • Afacan, K. B., 2019. Estimation of Excess Pore Pressure Generation and Nonlinear Site Response of Liquefied Areas. Geotechnical Engineering-Advances in Soil Mechanics and Foundation Engineering, 26, 1-21.
  • Darendeli, M. B., 2001. Development of A New Family of Normalized Modulus Reduction and Material Damping Curves. Architectural and Environmental Engineering, The University of Texas, Austin, Texas.
  • Gücek, S., 2020. Arazi Deneylerine Dayalı Zemin Büyütmesi ve Sıvılaşma Analizleri: Afyonkarahisar-Uydukent Yerleşim Alanı Örneği(Ph. D. Thesis), Afyon Kocatepe University Institute of Science and Technology, Afyonkarahisar, 162.
  • Hansbo, S., Jordmateriallära, 1975, Almqvist Wiksell Förlag AB, Stockholm, 218.
  • Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Groholski, D.R., Phillips, C.A., vd., 2016. DEEPSOIL 6.1, User Manual.
  • Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Ilhan, O., Xing, G., Numanoglu, O., Groholski, D.R., Phillips, C.A., and Park, D. 2020. “DEEPSOIL 7.0, User Manual”. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign.
  • Hatanaka, M. and Uchida, A., 1996. Empirical correlation between penetration resistance and internal friction angle of sandy soils, Soils and Foundations, 36, 1-9.
  • İyisan, R., 1996. Zeminlerde kayma dalgası hızı ile penetrasyon deney sonuçları arasındaki bağıntılar, Technical Journal, 7, 32.
  • Kabak, S., 2021. Kütahya İl Merkezinde Belirli Bir Bölge Zemininin Sıvılaşma Potansiyelinin Belirlenmesi(Master Thesis), Afyon Kocatepe University Institute of Science and Technology, Afyonkarahisar, 120.
  • Liao, S.S., and Whitman, R.V., 1986. Overburden Correction Factors for SPT In Sand, Journal Of Geotechnical Engineering, ASCE, 112, 373-377.
  • Matasovic, N., Vucetic, M., 1995. Generalized Cyclic Degradation-Pore Pressure Generation Model for Clays, ASCE Journal of Geotechnical and Geoenvironmental Engineering, 121, 33-42.
  • Matasovic, N., Vucetic, M., Cyclic Characterization of Liquefiable Sands, 1993. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 119, 1805-1822.
  • Okay, A. İ., Kaslılar-Ozcan, A., İmren, C., Boztepe-Guney, A., Demirbağ, E., ve Kuscu, İ. 2000. Active Faults And Evolving Strike-Slip Basin In The Marmara Sea, Northwest Turkey: A Multichannel Seismic Reflection Study, Tectonophysics, 321, 189-218.
  • Sezer, L. İ., 2010. Kütahya Yöresinin Depremselliği, Ege Journal of Geography, 19, 35-52.
  • Terzaghi, K., Peck, R. B., Mesri, G., 1996. Soil Mechanics In Engineering Practice. John Wiley-Sons.
  • Turkish Building Earthquake Code (TBDY), Disaster and Emergency Management Presidency, Official Newspaper, Date: 18 March 2018, 30364.
  • Internet References https://parselsorgu.tkgm.gov.tr/ , Date of access: January 3, 2021.
  • https://deprem.afad.gov.tr/depremkatalogu# , Date of access: January 2, 2021.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Makaleler
Yazarlar

İsmail Zorluer 0000-0001-5017-084X

Sinan Kabak 0000-0001-6007-4069

Süleyman Gücek 0000-0002-4839-1851

Yayımlanma Tarihi 31 Ağustos 2022
Gönderilme Tarihi 20 Şubat 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Zorluer, İ., Kabak, S., & Gücek, S. (2022). Liquefaction Risk Maps Determined By Nonlinear Analysis Method Using Geographical Information Systems: Kütahya Case. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(4), 858-872. https://doi.org/10.35414/akufemubid.1076436
AMA Zorluer İ, Kabak S, Gücek S. Liquefaction Risk Maps Determined By Nonlinear Analysis Method Using Geographical Information Systems: Kütahya Case. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2022;22(4):858-872. doi:10.35414/akufemubid.1076436
Chicago Zorluer, İsmail, Sinan Kabak, ve Süleyman Gücek. “Liquefaction Risk Maps Determined By Nonlinear Analysis Method Using Geographical Information Systems: Kütahya Case”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 4 (Ağustos 2022): 858-72. https://doi.org/10.35414/akufemubid.1076436.
EndNote Zorluer İ, Kabak S, Gücek S (01 Ağustos 2022) Liquefaction Risk Maps Determined By Nonlinear Analysis Method Using Geographical Information Systems: Kütahya Case. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 4 858–872.
IEEE İ. Zorluer, S. Kabak, ve S. Gücek, “Liquefaction Risk Maps Determined By Nonlinear Analysis Method Using Geographical Information Systems: Kütahya Case”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 4, ss. 858–872, 2022, doi: 10.35414/akufemubid.1076436.
ISNAD Zorluer, İsmail vd. “Liquefaction Risk Maps Determined By Nonlinear Analysis Method Using Geographical Information Systems: Kütahya Case”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/4 (Ağustos 2022), 858-872. https://doi.org/10.35414/akufemubid.1076436.
JAMA Zorluer İ, Kabak S, Gücek S. Liquefaction Risk Maps Determined By Nonlinear Analysis Method Using Geographical Information Systems: Kütahya Case. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:858–872.
MLA Zorluer, İsmail vd. “Liquefaction Risk Maps Determined By Nonlinear Analysis Method Using Geographical Information Systems: Kütahya Case”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 4, 2022, ss. 858-72, doi:10.35414/akufemubid.1076436.
Vancouver Zorluer İ, Kabak S, Gücek S. Liquefaction Risk Maps Determined By Nonlinear Analysis Method Using Geographical Information Systems: Kütahya Case. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(4):858-72.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.