Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Effects of Temperature, Dose, Size and Contact Time on Nickel and Cadmium Removal from Water with Bentonite

Yıl 2024, , 1198 - 1205, 01.10.2024
https://doi.org/10.35414/akufemubid.1448019

Öz

Heavy metals cause water quality deterioration and pollution due to their accumulation and difficulty removing them from aquatic environments. Nickel and cadmium are among these heavy metals. This study used bentonite from the Eskişehir region as adsorbent to remove nickel and cadmium from synthetically prepared water. To ensure maximum adsorption of nickel and cadmium on bentonite clay, parameters such as pH value, adsorbent dose, mixing time, speed, and metal ion concentration were investigated, analyzed, and optimized. The experimental data were fitted to Langmuir and Freundlich adsorption isotherm. For an initial concentration of 0.1 mg/L (100 ppb), the optimum adsorbent dose was determined as 1 g/25 mL for nickel and cadmium. During the experiments, the adsorption process reached equilibrium at 30 minutes and the maximum removal efficiency for both heavy metals was obtained at 40°C. In adsorbent size experiments, the highest efficiency was determined as 0.5 mm for nickel and >2 mm for cadmium. It is seen that the experimental data fit the Langmuir and Freundlich adsorption models. As a result of the study, it was revealed that bentonite clay obtained from the Eskişehir region can be used effectively for the removal of cadmium and nickel from aqueous solution.

Kaynakça

  • Acar B. Ç. ve Acar M. B., 2022. Kimyasal Yöntemlerle Atık Sulardan Ağır Metal Giderimi, Gazi Üniversitesi Fen Fakültesi Dergisi, 1:1-13. ISSN 2757-5543.
  • Alkan, M. and Doğan, M., 2001. Adsorption of Copper(II) onto Perlite. Journal of Colloid and Interface Science 243, 280-291. https://doi.org/10.1006/jcis.2001.7796.
  • Anna B, Kleopas M, Constantine S, Anestis F, Maria B (2015) Adsorption of Cd (II), Cu (II), Ni (II) and Pb(II) onto natural bentonite: study in mono-and multi-metal systems. Environ Earth Sci., 73:5435–5444
  • Benguella, B. and Benaissa, H., 2002. Cadmium Removal from Aqueous Solutions by Chitin: Kinetic and Equilibrium Studies. Water Res., 36, 2463-2474. https://doi.org/10.1016/S0043-1354(01)00459-6.
  • Charerntanyarak, L., 1999. Heavy Metals Removal by Chemical Coagulation and Precipitation. Water Science and Technology, 39 (10-11):135-138. https://doi.org/10.1016/S0273-1223(99)00304-2.
  • Chen, Y. G., Ye, W. M., Yang, X. M., 2011. Effect of contact time, pH, and ionic strength on Cd(II) adsorption from aqueous solution onto bentonite from Gaomiaozi, China. Environ Earth Sci., 64, 329–336. https://doi.org/10.1007/s12665-010-0850-6.
  • Do, D. D., 1998. Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London.
  • Donat, R., Akdogan, A., Erdem, E., and Cetisli H., 2005. Thermodynamics of Pb2+ and Ni2+ Adsorption onto Natural Bentonite from Aqueous Solutions. Journal of Colloid and Interface Science, 286, 43-52. https://doi.org/10.1016/j.jcis.2005.01.045.
  • Draoui, K., Denoyel, R., Chgoura, M. and Rouquerol, J., 1999. Adsorption of paraquat on minerals. A thermodynamic study. J. Therm. Anal. Catal., 58, 597-606. https://doi.org/10.1023/A:1010152411288.
  • Galindo, L., S., G., Florêncio de Almeida Neto, A., Carlos da Silva, M., G., and Vieira M., G., A., 2013. Removal of Cadmium(II) and Lead(II) Ions from Aqueous Phase on Sodic Bentonite, Materials Research., 16(2): 515-527. https://doi.org/10.1590/S1516-14392013005000007.
  • Genç, H., Tjell, J. C., McConchie, D. and Schuiling, O.,2003. Adsorption of arsenic from water using natural red mud. J. Colloid Interf. Sci., 264, 327-334. https://doi.org/10.1016/S0021-9797(03)00447-8.
  • Gomez-Salazar, S., Lee, J. S., Heywieller, J. C. and Tavlarides, L. L., 2003. Analysis of Cadmium Adsorption on Novel Organo-Ceramic Adsorbents with a Thiol Functionality. Ind. Eng. Chem. Res., 42, 3403-3412. https://doi.org/10.1021/ie020840h.
  • Gonz`alez-Pradas, E., Villafranca-S`anchez, M., Valverde-Garc`ıa, A. and Socias-Viciana, M., 1988. Removal of Tetramethyl Thiuram Disulphide from Aqueous Solution by Chemically Modified Bentonite, J. Chem. Tech. Biotechnol, 42, 105-112. https://doi.org/10.1002/jctb.280420204.
  • Gupta S. S. and Bhattacharyya K. G., 2006. Removal of Cd(II) from Aqueous Solution by Kaolinite, Montmorillonite and their Poly (Oxo Zirconium) and Tetrabutylammonium Derivatives. Journal of Hazardous Materials, 128 (2-3):247-257. https://doi.org/10.1016/j.jhazmat.2005.08.008.
  • Gupta, V. K., Jain, C. K., Ali, I., Shamra, M. and Saini, V. K., 2003. Removal of Cadmium and Nickel from Wastewater Using Bagasse Fly Ash-A Sugar Industry Waste. Water Resour, 37, 4038-4044. https://doi.org/10.1016/S0043-1354(03)00292-6.
  • Jiang M. Q., Jin X. Y., Lu X. and Chen Z. L., 2010. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto Natural Kaolinite Clay. Desalination, 252 (1-3):33-39. https://doi.org/10.1016/j.desal.2009.11.005.
  • Jusoh, A., Shiung, L. S., Ali, N. and Noor M. J. M. M., 2007. A Simulation Study of the Removal Efficiency of Granular Activated Carbon on Cadmium and Lead. Desalination, 206 (1-3):9-16. https://doi.org/10.1016/j.desal.2006.04.048.
  • Kalpaklı, Y., 2018. İşlem Görmemiş Ca-Bentonit Üzerine Çinko Adsorpsiyonunun Reaksiyon Koşullarının Belirlenmesi, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7, 2, 1005-1006. https://doi.org/10.28948/ngumuh.445491.
  • Kayranli B., Gok, O., Yilmaz, T., Gok, G., Celebi, H., Seckin, I. Y. and Mesutoglu, O. C., 2022. Low‑cost organic adsorbent usage for removing Ni2+ and Pb2+ from aqueous solution and adsorption mechanisms. International Journal of Environmental Science and Technology, 19,3547-3564. https://doi.org/10.1007/s13762-021-03653-z.
  • Khan, M. R., Hegde R. A. and Venkatachalam, G., 2018. Removal of Cadmium from Aqueous Solution using Bentonite Clay. International Journal of Applied Environmental Sciences, ISSN 0973-6077 13, 4, 353-364.
  • Kurniawan, T. A., Chan, G., Y., S., Lo, W. and Babel S., 2006. Comparisons of Low-Cost Adsorbents for Treating Waste Waters Laden with Heavy Metals-Review. Science of the Total Environment, 366, 409-426. https://doi.org/10.1016/j.scitotenv.2005.10.001.
  • Kushwaha A, Rani R, Patra JK, 2020. Adsorption kinetics and molecular interactions of lead [Pb(II)] with natural clay and humic acid. Int J Environ Sci Technol, 17,1325-1336. https://doi.org/10.1007/s13762-019-02411-6.
  • Landáburu-Aguirre J., García V., Pongrácz E. and Keiski R. L., 2009. The Removal of Zinc From Synthetic Wastewaters by Micellar-Enhanced Ultrafiltration: Statistical Design of Experiments. Desalination, 240 (1-3):262-269. https://doi.org/10.1016/j.desal.2007.11.077.
  • Langmuir, I., 1918. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc., 40, 1361-1403. https://doi.org/10.1021/ja02242a004.
  • Nwabanne, J. T. and Ibbokwe, P. K., 2008. Kinetics and Equilibrium Modeling of Nickel Adsorption by Cassava Peel. J. Eng. Applied Sci., 3, 829-834.
  • Ouki SK and Kavannagh M., 1999. Treatment of Metals-Contaminated Wastewaters by Use of Natural Zeolites. Water Science and Technology. 39 (10-11):115-122. https://doi.org/10.1016/S0273-1223(99)00260-7.
  • Singh, K. K., Rastogi, R. and Hasan, S. H., 2005. Removal of Cadmium from Waste Water Using Agricultural Waste Rush Polish. J. Hazard. Mater., 121, 51-58. https://doi.org/10.1016/j.jhazmat.2004.11.002.
  • Tahir, S.S. and e Rauf, N., 2003. Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution, Journal of Chemical Thermodynamics, 35; 2003-2009. https://doi.org/10.1016/S0021-9614(03)00153-8.
  • Taşyürek, M., 2016 . Sıvı-Sıvı Ara yüzey Adsorbsiyonu ve Kompleks Oluşumunun Gerekliliği ve Yeterliliği Üzerine Tarama-İnceleme. Selçuk-Teknik Dergisi, 15(2), 96-112.
  • Temelli, T. Y., 2005. Bazı Doğal Kil Minerallerinin Aktivasyonunun Ağır Metal İyonu Tutma Kapasitesine Etkisi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 75 s.
  • Torab-Mostaedi M., Ghassabzadeh H., Ghannadi-Maragheh M., Ahmadi S. J. and Taheri H., 2010. Removal of Cadmium and Nickel from Aqueous Solution using Expanded Perlite, Brazilian Journal of Chemical Engineering, 27, 02, 299-308. https://doi.org/10.1590/S0104-66322010000200008.
  • Tsai, W.T., Lai, C.W.,. and Hsien K.J., 2003. Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution. Journal of Colloid and Interface Science, 263;1, 29-34. https://doi.org/10.1016/S0021-9797(03)00213-3.
  • Ünlü, N. and Ersoz, M., 2006. Adsorption Characteristics of Heavy Metal Ions onto Low Cost Biopolymericsorbent from Aqueous Solution. J. Hazard. Mater., 136, 2, 272-280. https://doi.org/10.1016/j.jhazmat.2005.12.013.
  • Vieira M. G. A., Almeida Neto A. F., Gimenes M. L. and Silva M. G. C., 2010. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. Journal of Hazardous Materials, 177 (1-3),362-371. https://doi.org/10.1016/j.jhazmat.2009.12.040.
  • Vieira M. G. A., Almeida Neto A. F., Silva M. G. C., Carneiro C. N. and Melo Filho A. A., 2012. Characterization and Use of in Natura and Calcined Rice Husks for Biosorption of Heavy Metals Ions from Aqueous Effluents. Brazilian Journal of Chemical Engineering, 29 (3), 619-633. https://doi.org/10.1590/S0104-66322012000300019.
  • Weber, T.W. and Chacravorti, R.K., 1974. Pore and Solid Diffusion Models for Fixed Bed Adsorbers, AIChE Journal, 20, 2, 228-238. https://doi.org/10.1002/aic.690200204.

Sulardan Bentonit ile Nikel ve Kadmiyum Gideriminde Sıcaklık, Doz, Boyut ve Temas Süresinin Etkilerinin İncelenmesi

Yıl 2024, , 1198 - 1205, 01.10.2024
https://doi.org/10.35414/akufemubid.1448019

Öz

Ağır metaller, birikim özelliği ve sucul ortamlardan uzaklaştırılmasındaki güçlük gibi nedenlerle suların kalitesinin bozulup kirlenmesine yol açmaktadır. Nikel ve kadmiyum da bu ağır metalar arasında yer almaktadır. Adsorban olarak Eskişehir bölgesinden temin edilen bentonitin kullanıldığı bu çalışmada sentetik olarak hazırlanan sudaki nikel ve kadmiyumun giderimi amaçlanmıştır. Bentonit kili üzerine nikel ve kadmiyumun maksimum adsorpsiyonunu sağlamak amacıyla pH değeri, adsorban dozu, karıştırma süresi, hız ve metal iyonu konsantrasyonu gibi parametreler incelenmiş, analiz edilmiş ve optimizasyonu sağlanmıştır. Deneysel veriler Langmuir ve Freundlich adsorpsiyon izotermine uyarlamıştır. 0.1 Adsorban boyutu deneylerinde ise en yüksek verim, Nikel için 0,5 mm olarak belirlenirken kadmiyum için ise >2 mm boyutta tespit edilmiştir. Deneysel verilerin Langmuir ve Freundlich adsorpsiyon modellerine uyduğu görülmektedir. Çalışma sonucunda, Eskişehir bölgesinden elde edilen bentonit kilinin sulu çözeltiden kadmiyumun ve nikelin uzaklaştırılması için etkili bir şekilde kullanılabileceği ortaya konmuştur.

Kaynakça

  • Acar B. Ç. ve Acar M. B., 2022. Kimyasal Yöntemlerle Atık Sulardan Ağır Metal Giderimi, Gazi Üniversitesi Fen Fakültesi Dergisi, 1:1-13. ISSN 2757-5543.
  • Alkan, M. and Doğan, M., 2001. Adsorption of Copper(II) onto Perlite. Journal of Colloid and Interface Science 243, 280-291. https://doi.org/10.1006/jcis.2001.7796.
  • Anna B, Kleopas M, Constantine S, Anestis F, Maria B (2015) Adsorption of Cd (II), Cu (II), Ni (II) and Pb(II) onto natural bentonite: study in mono-and multi-metal systems. Environ Earth Sci., 73:5435–5444
  • Benguella, B. and Benaissa, H., 2002. Cadmium Removal from Aqueous Solutions by Chitin: Kinetic and Equilibrium Studies. Water Res., 36, 2463-2474. https://doi.org/10.1016/S0043-1354(01)00459-6.
  • Charerntanyarak, L., 1999. Heavy Metals Removal by Chemical Coagulation and Precipitation. Water Science and Technology, 39 (10-11):135-138. https://doi.org/10.1016/S0273-1223(99)00304-2.
  • Chen, Y. G., Ye, W. M., Yang, X. M., 2011. Effect of contact time, pH, and ionic strength on Cd(II) adsorption from aqueous solution onto bentonite from Gaomiaozi, China. Environ Earth Sci., 64, 329–336. https://doi.org/10.1007/s12665-010-0850-6.
  • Do, D. D., 1998. Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London.
  • Donat, R., Akdogan, A., Erdem, E., and Cetisli H., 2005. Thermodynamics of Pb2+ and Ni2+ Adsorption onto Natural Bentonite from Aqueous Solutions. Journal of Colloid and Interface Science, 286, 43-52. https://doi.org/10.1016/j.jcis.2005.01.045.
  • Draoui, K., Denoyel, R., Chgoura, M. and Rouquerol, J., 1999. Adsorption of paraquat on minerals. A thermodynamic study. J. Therm. Anal. Catal., 58, 597-606. https://doi.org/10.1023/A:1010152411288.
  • Galindo, L., S., G., Florêncio de Almeida Neto, A., Carlos da Silva, M., G., and Vieira M., G., A., 2013. Removal of Cadmium(II) and Lead(II) Ions from Aqueous Phase on Sodic Bentonite, Materials Research., 16(2): 515-527. https://doi.org/10.1590/S1516-14392013005000007.
  • Genç, H., Tjell, J. C., McConchie, D. and Schuiling, O.,2003. Adsorption of arsenic from water using natural red mud. J. Colloid Interf. Sci., 264, 327-334. https://doi.org/10.1016/S0021-9797(03)00447-8.
  • Gomez-Salazar, S., Lee, J. S., Heywieller, J. C. and Tavlarides, L. L., 2003. Analysis of Cadmium Adsorption on Novel Organo-Ceramic Adsorbents with a Thiol Functionality. Ind. Eng. Chem. Res., 42, 3403-3412. https://doi.org/10.1021/ie020840h.
  • Gonz`alez-Pradas, E., Villafranca-S`anchez, M., Valverde-Garc`ıa, A. and Socias-Viciana, M., 1988. Removal of Tetramethyl Thiuram Disulphide from Aqueous Solution by Chemically Modified Bentonite, J. Chem. Tech. Biotechnol, 42, 105-112. https://doi.org/10.1002/jctb.280420204.
  • Gupta S. S. and Bhattacharyya K. G., 2006. Removal of Cd(II) from Aqueous Solution by Kaolinite, Montmorillonite and their Poly (Oxo Zirconium) and Tetrabutylammonium Derivatives. Journal of Hazardous Materials, 128 (2-3):247-257. https://doi.org/10.1016/j.jhazmat.2005.08.008.
  • Gupta, V. K., Jain, C. K., Ali, I., Shamra, M. and Saini, V. K., 2003. Removal of Cadmium and Nickel from Wastewater Using Bagasse Fly Ash-A Sugar Industry Waste. Water Resour, 37, 4038-4044. https://doi.org/10.1016/S0043-1354(03)00292-6.
  • Jiang M. Q., Jin X. Y., Lu X. and Chen Z. L., 2010. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto Natural Kaolinite Clay. Desalination, 252 (1-3):33-39. https://doi.org/10.1016/j.desal.2009.11.005.
  • Jusoh, A., Shiung, L. S., Ali, N. and Noor M. J. M. M., 2007. A Simulation Study of the Removal Efficiency of Granular Activated Carbon on Cadmium and Lead. Desalination, 206 (1-3):9-16. https://doi.org/10.1016/j.desal.2006.04.048.
  • Kalpaklı, Y., 2018. İşlem Görmemiş Ca-Bentonit Üzerine Çinko Adsorpsiyonunun Reaksiyon Koşullarının Belirlenmesi, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7, 2, 1005-1006. https://doi.org/10.28948/ngumuh.445491.
  • Kayranli B., Gok, O., Yilmaz, T., Gok, G., Celebi, H., Seckin, I. Y. and Mesutoglu, O. C., 2022. Low‑cost organic adsorbent usage for removing Ni2+ and Pb2+ from aqueous solution and adsorption mechanisms. International Journal of Environmental Science and Technology, 19,3547-3564. https://doi.org/10.1007/s13762-021-03653-z.
  • Khan, M. R., Hegde R. A. and Venkatachalam, G., 2018. Removal of Cadmium from Aqueous Solution using Bentonite Clay. International Journal of Applied Environmental Sciences, ISSN 0973-6077 13, 4, 353-364.
  • Kurniawan, T. A., Chan, G., Y., S., Lo, W. and Babel S., 2006. Comparisons of Low-Cost Adsorbents for Treating Waste Waters Laden with Heavy Metals-Review. Science of the Total Environment, 366, 409-426. https://doi.org/10.1016/j.scitotenv.2005.10.001.
  • Kushwaha A, Rani R, Patra JK, 2020. Adsorption kinetics and molecular interactions of lead [Pb(II)] with natural clay and humic acid. Int J Environ Sci Technol, 17,1325-1336. https://doi.org/10.1007/s13762-019-02411-6.
  • Landáburu-Aguirre J., García V., Pongrácz E. and Keiski R. L., 2009. The Removal of Zinc From Synthetic Wastewaters by Micellar-Enhanced Ultrafiltration: Statistical Design of Experiments. Desalination, 240 (1-3):262-269. https://doi.org/10.1016/j.desal.2007.11.077.
  • Langmuir, I., 1918. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc., 40, 1361-1403. https://doi.org/10.1021/ja02242a004.
  • Nwabanne, J. T. and Ibbokwe, P. K., 2008. Kinetics and Equilibrium Modeling of Nickel Adsorption by Cassava Peel. J. Eng. Applied Sci., 3, 829-834.
  • Ouki SK and Kavannagh M., 1999. Treatment of Metals-Contaminated Wastewaters by Use of Natural Zeolites. Water Science and Technology. 39 (10-11):115-122. https://doi.org/10.1016/S0273-1223(99)00260-7.
  • Singh, K. K., Rastogi, R. and Hasan, S. H., 2005. Removal of Cadmium from Waste Water Using Agricultural Waste Rush Polish. J. Hazard. Mater., 121, 51-58. https://doi.org/10.1016/j.jhazmat.2004.11.002.
  • Tahir, S.S. and e Rauf, N., 2003. Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution, Journal of Chemical Thermodynamics, 35; 2003-2009. https://doi.org/10.1016/S0021-9614(03)00153-8.
  • Taşyürek, M., 2016 . Sıvı-Sıvı Ara yüzey Adsorbsiyonu ve Kompleks Oluşumunun Gerekliliği ve Yeterliliği Üzerine Tarama-İnceleme. Selçuk-Teknik Dergisi, 15(2), 96-112.
  • Temelli, T. Y., 2005. Bazı Doğal Kil Minerallerinin Aktivasyonunun Ağır Metal İyonu Tutma Kapasitesine Etkisi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 75 s.
  • Torab-Mostaedi M., Ghassabzadeh H., Ghannadi-Maragheh M., Ahmadi S. J. and Taheri H., 2010. Removal of Cadmium and Nickel from Aqueous Solution using Expanded Perlite, Brazilian Journal of Chemical Engineering, 27, 02, 299-308. https://doi.org/10.1590/S0104-66322010000200008.
  • Tsai, W.T., Lai, C.W.,. and Hsien K.J., 2003. Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution. Journal of Colloid and Interface Science, 263;1, 29-34. https://doi.org/10.1016/S0021-9797(03)00213-3.
  • Ünlü, N. and Ersoz, M., 2006. Adsorption Characteristics of Heavy Metal Ions onto Low Cost Biopolymericsorbent from Aqueous Solution. J. Hazard. Mater., 136, 2, 272-280. https://doi.org/10.1016/j.jhazmat.2005.12.013.
  • Vieira M. G. A., Almeida Neto A. F., Gimenes M. L. and Silva M. G. C., 2010. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. Journal of Hazardous Materials, 177 (1-3),362-371. https://doi.org/10.1016/j.jhazmat.2009.12.040.
  • Vieira M. G. A., Almeida Neto A. F., Silva M. G. C., Carneiro C. N. and Melo Filho A. A., 2012. Characterization and Use of in Natura and Calcined Rice Husks for Biosorption of Heavy Metals Ions from Aqueous Effluents. Brazilian Journal of Chemical Engineering, 29 (3), 619-633. https://doi.org/10.1590/S0104-66322012000300019.
  • Weber, T.W. and Chacravorti, R.K., 1974. Pore and Solid Diffusion Models for Fixed Bed Adsorbers, AIChE Journal, 20, 2, 228-238. https://doi.org/10.1002/aic.690200204.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Yönetimi (Diğer)
Bölüm Makaleler
Yazarlar

Özlem Güllü 0000-0003-0924-8996

Nahide Feyza Çetin 0009-0002-4867-316X

Erken Görünüm Tarihi 10 Eylül 2024
Yayımlanma Tarihi 1 Ekim 2024
Gönderilme Tarihi 7 Mart 2024
Kabul Tarihi 3 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Güllü, Ö., & Çetin, N. F. (2024). Sulardan Bentonit ile Nikel ve Kadmiyum Gideriminde Sıcaklık, Doz, Boyut ve Temas Süresinin Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(5), 1198-1205. https://doi.org/10.35414/akufemubid.1448019
AMA Güllü Ö, Çetin NF. Sulardan Bentonit ile Nikel ve Kadmiyum Gideriminde Sıcaklık, Doz, Boyut ve Temas Süresinin Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2024;24(5):1198-1205. doi:10.35414/akufemubid.1448019
Chicago Güllü, Özlem, ve Nahide Feyza Çetin. “Sulardan Bentonit Ile Nikel Ve Kadmiyum Gideriminde Sıcaklık, Doz, Boyut Ve Temas Süresinin Etkilerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, sy. 5 (Ekim 2024): 1198-1205. https://doi.org/10.35414/akufemubid.1448019.
EndNote Güllü Ö, Çetin NF (01 Ekim 2024) Sulardan Bentonit ile Nikel ve Kadmiyum Gideriminde Sıcaklık, Doz, Boyut ve Temas Süresinin Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 5 1198–1205.
IEEE Ö. Güllü ve N. F. Çetin, “Sulardan Bentonit ile Nikel ve Kadmiyum Gideriminde Sıcaklık, Doz, Boyut ve Temas Süresinin Etkilerinin İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 5, ss. 1198–1205, 2024, doi: 10.35414/akufemubid.1448019.
ISNAD Güllü, Özlem - Çetin, Nahide Feyza. “Sulardan Bentonit Ile Nikel Ve Kadmiyum Gideriminde Sıcaklık, Doz, Boyut Ve Temas Süresinin Etkilerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/5 (Ekim 2024), 1198-1205. https://doi.org/10.35414/akufemubid.1448019.
JAMA Güllü Ö, Çetin NF. Sulardan Bentonit ile Nikel ve Kadmiyum Gideriminde Sıcaklık, Doz, Boyut ve Temas Süresinin Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1198–1205.
MLA Güllü, Özlem ve Nahide Feyza Çetin. “Sulardan Bentonit Ile Nikel Ve Kadmiyum Gideriminde Sıcaklık, Doz, Boyut Ve Temas Süresinin Etkilerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 5, 2024, ss. 1198-05, doi:10.35414/akufemubid.1448019.
Vancouver Güllü Ö, Çetin NF. Sulardan Bentonit ile Nikel ve Kadmiyum Gideriminde Sıcaklık, Doz, Boyut ve Temas Süresinin Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(5):1198-205.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.