Research Article
BibTex RIS Cite
Year 2017, Volume: 11 Issue: 2, 87 - 92, 20.08.2017

Abstract

References

  • 1. Chaichankul CA, Tanavalee M, Itiravivong P. Anthropometric measurements of knee joints in Thai population: correlation to the sizing of current knee prostheses. Knee 2011;18:5–10.
  • 2. Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G. Differences of knee anthropometry between Chinese and white men and women. J Arthroplasty 2011;26:124–30.
  • 3. Vaidya SV, Ranawat CS, Aroojis MA, Laud NS. Anthropometric measurements to design total knee prostheses for the Indian population. J Arthroplasty 2000;15:79–85.
  • 4. Dienst M, Schneider G, Altmeyer K, Voelkering K, Georg T, Kramann B, Kohn D. Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg 2007;127:253–60.
  • 5. Ireland ML, Ballantyne BT, LittlE K, MCClay IS. A radiographic analysis of the relationship between the size and shape of the intercondylar notch and anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 2001;9:200–5.
  • 6. Singh JA, Inacio MC, Namba RS, Paxton EW. Rheumatoid arthritis is associated with higher ninety-day hospital readmission rates compared to osteoarthritis after hip or knee arthroplasty: a cohort study. Arthritis Care Res 2015;67:718–24.
  • 7. Uehara K, Kadoya Y, Kabayashi A, Ohashi H, Yamano Y. Anthropometry of the proximal tibia to design a total knee prosthesis for the Japanese population. J Arthroplasty 2002;17:1028– 32.
  • 8. Kwak DS, Surendran S, Pengatteeri YH, Park SE, Choi KN, Gopinattan P, Han SH, Han CW. Morphometry of the proximal tibia to design the tibial component of total knee arthroplasty for the Korean population. Knee 2007;14:295–300.
  • 9. Kwak DS, Han S, Han CW, Han SH. Resected femoral anthropometry for design of the femoral component of the total knee prosthesis in a Korean population. Anat Cell Biol 2010;43:252–9.
  • 10. Rashidvash V. Anthropological and genetic characteristics of Atropatene population. Int J Humanit Soc Sci 2012;2:139–47.
  • 11. Moghtadaei M, Moghimi J, Shahhoseini G. Distal femur morphology of iranian population and correlation with current prostheses. Iran Red Crescent Med J 2016;18(2):e21818.
  • 12. Khodair SA, Ghieda UE, Elsayed AS. Relationship of distal femoral morphometrics with anterior cruciate ligament injury using MRI. Tanta Medical Journal 2014;42:64–68.
  • 13. Reinhard KJ, Welner M, Okoye MI, Marotta M, Plank G, Anderson B, Mastellon T. Applying forensic anthropological data in homicide investigation to the depravity standard. J Forensic Leg Med 2013;20: 27–39.
  • 14. Scott JB, Gill GW, Kieffer DA. Race and sex determination from the intercodular notch of the distal femur. In: Gill GW, Rhine S, editors. Skeletal attribution of race. Albuquerque (NM): Maxwell Museum of Anthropology, University of New Mexico; 1990. pp. 83–90.
  • 15. Johnston TB, Whillis J. Gray's anatomy. Descriptive and applied. 31st ed. London: Longmans Green and Co; 1954.
  • 16. Al-Saeed O, Brown M, Athyal R, Sheikh M. Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 2013;21:678–82.
  • 17. Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 1993;21:535–9.
  • 18. Domzalski M, Grzelak P, Gabos P. Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop 2010;34:703–7.
  • 19. Poilvache PL, Insall JN, Scuderi GR, Font-Rodriguez DE. Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop Relat Res 1996;(331):35–46.
  • 20. Cheng FB, Ji XF, Lai Y, Feng JC, Zheng WX, Sun YF, Fu YW, Li YQ. Three dimensional morphometry of the knee to design the total knee arthroplasty for Chinese population. Knee 2009;16:341– 7.
  • 21. Dargel J, Micheal JW, Feiser J, Ivo R, Koebke J. Human knee joint anatomy revisited: morphometry in the light of sex-specific total knee arthroplasty. J Arthroplasty 2011;26:346–53.
  • 22. Ameet KJ, Murlimanju BV. A morphometric analysis of intercondylar notch of femur with emphasis on its clinical implications. Medicine and Health 2014;9:103–8.
  • 23. Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G. Gender differences in the knees of Chinese population. Knee Surg Sports Traumatol Arthrosc 2011;19:80–8.
  • 24. Tillman MD, Smith KR, Bauer JA, Cauraugh JH, Falsettl AB, Pattishall JL. Differences in three intercondylar notch geometry indices between males and females: a cadaver study. Knee 2002;9:41–6.
  • 25. Anderson AF, Anderson CN, Gorman TM, Cross MB, Spindler KP. Radiographic measurements of the intercondylar notch: are they accurate? Arthroscopy 2007;23:261–8.
  • 26. Chandrashekar N, Slauterbeck J, Hashemi J. Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry a cadaveric study. Am J Sports Med 2005;33:1492–8.

Correlation between the femoral trochlear line – epicondylar line angle and intercondylar notch width index in an Iranian population

Year 2017, Volume: 11 Issue: 2, 87 - 92, 20.08.2017

Abstract

Objectives: Distal femur anthropometric indices are the main parameters for the design of knee implants. However, there are several variations concerning the anatomy and congruence of the distal femur in different populations. The purpose of this study was to identify anthropometric data on the distal femur and investigate the correlation between the trochlear line – epicondylar line angle and intercondylar notch width index in an Iranian population.

Methods: Distal femur measurements were performed in 158 knees on bony specimens and 187 MRIs from an Iranian population. Intercondylar width, intercondylar notch width, and trochlear line – epicondylar line angle were measured and intercondylar notch width index was calculated.

Results: In bony specimens, the trochlear line – epicondylar line angle was measured as 7.38° and intercondylar notch width as 19.36 mm. In MRI images, the trochlear line – epicondylar line angle was measured as 6.07° and notch width index as 0.276 mm. Linear regression analysis showed a significant relationship between the trochlear line – epicondylar line angle and notch width index (p<0.05).

Conclusion: The results of this study provide fundamental data for the design of knee prostheses suitable for the Iranian population.

References

  • 1. Chaichankul CA, Tanavalee M, Itiravivong P. Anthropometric measurements of knee joints in Thai population: correlation to the sizing of current knee prostheses. Knee 2011;18:5–10.
  • 2. Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G. Differences of knee anthropometry between Chinese and white men and women. J Arthroplasty 2011;26:124–30.
  • 3. Vaidya SV, Ranawat CS, Aroojis MA, Laud NS. Anthropometric measurements to design total knee prostheses for the Indian population. J Arthroplasty 2000;15:79–85.
  • 4. Dienst M, Schneider G, Altmeyer K, Voelkering K, Georg T, Kramann B, Kohn D. Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg 2007;127:253–60.
  • 5. Ireland ML, Ballantyne BT, LittlE K, MCClay IS. A radiographic analysis of the relationship between the size and shape of the intercondylar notch and anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 2001;9:200–5.
  • 6. Singh JA, Inacio MC, Namba RS, Paxton EW. Rheumatoid arthritis is associated with higher ninety-day hospital readmission rates compared to osteoarthritis after hip or knee arthroplasty: a cohort study. Arthritis Care Res 2015;67:718–24.
  • 7. Uehara K, Kadoya Y, Kabayashi A, Ohashi H, Yamano Y. Anthropometry of the proximal tibia to design a total knee prosthesis for the Japanese population. J Arthroplasty 2002;17:1028– 32.
  • 8. Kwak DS, Surendran S, Pengatteeri YH, Park SE, Choi KN, Gopinattan P, Han SH, Han CW. Morphometry of the proximal tibia to design the tibial component of total knee arthroplasty for the Korean population. Knee 2007;14:295–300.
  • 9. Kwak DS, Han S, Han CW, Han SH. Resected femoral anthropometry for design of the femoral component of the total knee prosthesis in a Korean population. Anat Cell Biol 2010;43:252–9.
  • 10. Rashidvash V. Anthropological and genetic characteristics of Atropatene population. Int J Humanit Soc Sci 2012;2:139–47.
  • 11. Moghtadaei M, Moghimi J, Shahhoseini G. Distal femur morphology of iranian population and correlation with current prostheses. Iran Red Crescent Med J 2016;18(2):e21818.
  • 12. Khodair SA, Ghieda UE, Elsayed AS. Relationship of distal femoral morphometrics with anterior cruciate ligament injury using MRI. Tanta Medical Journal 2014;42:64–68.
  • 13. Reinhard KJ, Welner M, Okoye MI, Marotta M, Plank G, Anderson B, Mastellon T. Applying forensic anthropological data in homicide investigation to the depravity standard. J Forensic Leg Med 2013;20: 27–39.
  • 14. Scott JB, Gill GW, Kieffer DA. Race and sex determination from the intercodular notch of the distal femur. In: Gill GW, Rhine S, editors. Skeletal attribution of race. Albuquerque (NM): Maxwell Museum of Anthropology, University of New Mexico; 1990. pp. 83–90.
  • 15. Johnston TB, Whillis J. Gray's anatomy. Descriptive and applied. 31st ed. London: Longmans Green and Co; 1954.
  • 16. Al-Saeed O, Brown M, Athyal R, Sheikh M. Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 2013;21:678–82.
  • 17. Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 1993;21:535–9.
  • 18. Domzalski M, Grzelak P, Gabos P. Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop 2010;34:703–7.
  • 19. Poilvache PL, Insall JN, Scuderi GR, Font-Rodriguez DE. Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop Relat Res 1996;(331):35–46.
  • 20. Cheng FB, Ji XF, Lai Y, Feng JC, Zheng WX, Sun YF, Fu YW, Li YQ. Three dimensional morphometry of the knee to design the total knee arthroplasty for Chinese population. Knee 2009;16:341– 7.
  • 21. Dargel J, Micheal JW, Feiser J, Ivo R, Koebke J. Human knee joint anatomy revisited: morphometry in the light of sex-specific total knee arthroplasty. J Arthroplasty 2011;26:346–53.
  • 22. Ameet KJ, Murlimanju BV. A morphometric analysis of intercondylar notch of femur with emphasis on its clinical implications. Medicine and Health 2014;9:103–8.
  • 23. Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G. Gender differences in the knees of Chinese population. Knee Surg Sports Traumatol Arthrosc 2011;19:80–8.
  • 24. Tillman MD, Smith KR, Bauer JA, Cauraugh JH, Falsettl AB, Pattishall JL. Differences in three intercondylar notch geometry indices between males and females: a cadaver study. Knee 2002;9:41–6.
  • 25. Anderson AF, Anderson CN, Gorman TM, Cross MB, Spindler KP. Radiographic measurements of the intercondylar notch: are they accurate? Arthroscopy 2007;23:261–8.
  • 26. Chandrashekar N, Slauterbeck J, Hashemi J. Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry a cadaveric study. Am J Sports Med 2005;33:1492–8.
There are 26 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Articles
Authors

Sasan Shahsavaripour This is me

Mohammad Barbarestani This is me

Gholamreza Hassanzadeh This is me

Tayebeh Rastegar This is me

Publication Date August 20, 2017
Published in Issue Year 2017 Volume: 11 Issue: 2

Cite

APA Shahsavaripour, S., Barbarestani, M., Hassanzadeh, G., Rastegar, T. (2017). Correlation between the femoral trochlear line – epicondylar line angle and intercondylar notch width index in an Iranian population. Anatomy, 11(2), 87-92.
AMA Shahsavaripour S, Barbarestani M, Hassanzadeh G, Rastegar T. Correlation between the femoral trochlear line – epicondylar line angle and intercondylar notch width index in an Iranian population. Anatomy. August 2017;11(2):87-92.
Chicago Shahsavaripour, Sasan, Mohammad Barbarestani, Gholamreza Hassanzadeh, and Tayebeh Rastegar. “Correlation Between the Femoral Trochlear Line – Epicondylar Line Angle and Intercondylar Notch Width Index in an Iranian Population”. Anatomy 11, no. 2 (August 2017): 87-92.
EndNote Shahsavaripour S, Barbarestani M, Hassanzadeh G, Rastegar T (August 1, 2017) Correlation between the femoral trochlear line – epicondylar line angle and intercondylar notch width index in an Iranian population. Anatomy 11 2 87–92.
IEEE S. Shahsavaripour, M. Barbarestani, G. Hassanzadeh, and T. Rastegar, “Correlation between the femoral trochlear line – epicondylar line angle and intercondylar notch width index in an Iranian population”, Anatomy, vol. 11, no. 2, pp. 87–92, 2017.
ISNAD Shahsavaripour, Sasan et al. “Correlation Between the Femoral Trochlear Line – Epicondylar Line Angle and Intercondylar Notch Width Index in an Iranian Population”. Anatomy 11/2 (August 2017), 87-92.
JAMA Shahsavaripour S, Barbarestani M, Hassanzadeh G, Rastegar T. Correlation between the femoral trochlear line – epicondylar line angle and intercondylar notch width index in an Iranian population. Anatomy. 2017;11:87–92.
MLA Shahsavaripour, Sasan et al. “Correlation Between the Femoral Trochlear Line – Epicondylar Line Angle and Intercondylar Notch Width Index in an Iranian Population”. Anatomy, vol. 11, no. 2, 2017, pp. 87-92.
Vancouver Shahsavaripour S, Barbarestani M, Hassanzadeh G, Rastegar T. Correlation between the femoral trochlear line – epicondylar line angle and intercondylar notch width index in an Iranian population. Anatomy. 2017;11(2):87-92.

Anatomy is the official journal of Turkish Society of Anatomy and Clinical Anatomy (TSACA).