PID controllers are important control methods that are widely used in industrial processes. Proper tuning of PID gains is critical for achieving the state-of-the-art system performance. Therefore, optimizing PID gains is an important research topic in the field of control engineering. In this study, PID controller gains are automatically tuned using metaheuristic optimization methods. These methods use an iterative approach to calculate optimal values of PID controller gains based on different optimization techniques. The interaction between artificial intelligence and control systems requires a multidimensional approach across different disciplines. In the study, we perform Particle Swarm Optimization, Gray Wolf Optimization, Whale Optimization Algorithm, Firefly Algorithm, Harris Hawks Optimization, Artificial Hummingbird Algorithm and African Vulture Optimization Algorithm to determine PID gains. In the simulation, step input is applied to the dynamic equation of the unmanned free-swimming submersible vehicle. The fitness function is determined with respect to controller integral square error, settling time value, and maximum percent overshoot value. We also evaluate the optimization time of the selected algorithms based on the fitness function. Experimental results present that Artificial Hummingbird Algorithm, Gray Wolf Optimization and Particle Swarm Optimization achieve significant performance. This underlines that using metaheuristic methods in PID gain optimization increase overall system performance.
Primary Language | English |
---|---|
Subjects | Artificial Intelligence, Software Engineering (Other) |
Journal Section | Research Articles |
Authors | |
Early Pub Date | September 30, 2023 |
Publication Date | September 30, 2023 |
Submission Date | March 17, 2023 |
Published in Issue | Year 2023 |
Academic Platform Journal of Engineering and Smart Systems