Araştırma Makalesi
BibTex RIS Kaynak Göster

Akuaponik Yetiştiricilik Sisteminde Farklı Bitkilerin Besin Dinamiği

Yıl 2018, Cilt: 33 Sayı: 3, 77 - 83, 28.06.2018

Öz

DOI: 10.26650/ASE201813


Bu çalışmada modern ve sürdürülebilir
üretim metotlarından olan akuaponik sisteminde farklı dönemlerde yetiştirilen
bitkilerin su kalitesindeki performansı değerlendirilmiştir. Kurulan akuaponik
üretim sisteminde koi, Cyprinus carpio var. Koi, balıklarının ve farklı
bitkilerin (yapraklı bitki olarak; marul, Lactuca sativa var. Crispa, ve
meyveli bitki olarak; çilek, Fragaria sp.,) büyüme performansı, makro
besinlerin döngüsü ve bitkilerin su kalitesi parametrelerine etkileri
izlenmiştir. Balık ve bitki üretim üniteleri ve filtreleme ünitelerinden oluşan
akuaponik üretim sistemde yapılan denemelerde makro besinlerin sistemden
giderilme oranları marul uygulamasında fosfat için %42,95 ve nitrat için %55,45
ve çilek uygulamasında da fosfat için %35,49 ve nitrat için %46,36 olarak
bulunmuştur. Çalışma sonucundan bulgulara göre marul ile yapılan denemede,
genel olarak makro besinlerin ortamdan giderilmesi çilek ile yapılan denemelere
göre daha yüksek olduğu görülmüştür. Bu çalışmada elde edilen makro besinlerin
giderilme oranları, yetiştiricilikte artan çözünmüş besinlerin etkili bir
şekilde azaldığını göstermiş bu üretim sisteminin çevre-dostu ve sürdürülebilir
bir metot olduğunu doğrulamıştır. 

Kaynakça

  • Adler, P.R., Harper J. K., Wade E.M., Takeda F., Summerfelt, S.T. (2000). Economic analysis of an aquaponic system for the integrated production of rainbow trout and plants. International Journal of Recirculating Aquaculture, 1, 15-34.
  • Chopin, T., Cooper J.A., Reid G., Cross S., Moore, C. (2012). Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4, 209-220.
  • Clarkson, R., Lane S.D. (1991). Use of small-scale nutrient film hydroponic technique to reduce mineral accumulation in aquarium water. Aquaculture and Fisheries Management, 22, 37-45.
  • COST. European Cooperation In Science and Tecnology. 2013. The EU Aquaponics Hub: Realising Sustainable Integrated Fish And Vegetable Production For The EU. COST Action FA1305. Retrieved from https://e-services.cost.eu/files/domain_files/FA/Action_FA1305/mou/FA1305-e.pdf (accessed 01.10.17)
  • Diver, S. (2006). Aquaponics – integration of hydroponics with aquaculture, Publication No: IP163, ATTRA, National Sustainable Agriculture Information Service, USA.
  • Ebeling, J.M., Losordo T.M., DeLong D.P. (1993). Engineering design and performance of a model aquaculture recirculating system (MARS) for secondary school aquaculture education programs. In: Techniques for Modern Aquaculture: Proceedings of an Aquacultural Engineering Conference, 21-23 June 1993, Spokane, Washington, USA.
  • Falls, B., Hudson L. (1999). Micro-Gravity Aquaculture and John Gleen. Aquaculture Magazine, Volume 25 (2).
  • Faucette, R.F. (1997). Evaluation of a Recirculating Aquaculture-Hydroponics System. Ph.D. Thesis. Oklahoma State University, Oklahoma, USA.
  • Hussain, T., Verma, A.K., Tiwari, V.K., Prakash, C., Rathore, G., Shete, A.P., Nuwansi, K.K.T. (2014). Optimizing koi carp, Cyprinus carpio var. Koi (Linnaeus, 1758), stocking density and nutrient recycling with spinach in an aquaponic system. Journal of the World Aquaculture Society, 45(6), 652-661.
  • Imanpoor, M.R., Ahmadi, A.R., Kordjazi, M. (2009). Effects of stocking density on survival and growth indices of common carp (Cyprinus carpio). Iranian Scientific Fisheries Journal, 18(3), 1-10.
  • Lennard, W.A., Leonard B.V. (2006). A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquaculture International, 14, 539–550.
  • Licamele, J. (2009). Biomass production and nutrient dynamics in an aquaponics system. The University of Arizona.
  • Losordo, T.M., Masser M.P., Rakocy J. (1992). Recirculating Aquaculture Tank Production Systems; An Overview of Critical Conservations. Southern Regional Aquaculture Center Publication No. 451. Stoneville, Mississippi, USA.
  • Mathieu, J.J., Wang J.K. (1995). “The effect of water velocity and nutrient concentration on plant nutrient uptake”, Aquacultural Engineering and Waste Management, Proceedings from Aquaculture Expo VIII and Aquaculture in the Mid-Atlantic Conference, June 24-29, 1995, Washington, D. C., USA.
  • MedCalc Statistical Software version 15.8 (2015) MedCalc Software bvba, Ostend, Belçika; Available from: https://www.medcalc.org. Nijhof, M., Bovendeur, J. (1990). Fixed film nitrification characteristics in sea-water recirculation fish culture systems. Aquaculture, 87(2), 133-143.
  • Quillere, I., Marie D., Roux F., Gosse F., Morot-Gaudry J.F. (1993). An artificial productive ecosystem based on fish/bacteria/plant association; I. Design and management. Agriculture, Ecosystems and Environment, 47, 13-30.
  • Petrea, Ş. M., Cristea, V., Dediu, L., Contoman, M., Lupoae, P., Mocanu, M. (2013). Vegetable Production in an Integrated Aquaponic System with Rainbow Trout and Spinach. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Animal Science & Biotechnologies, 70(1), 45-54.
  • Rakocy, J.E., Nair, A. (1987). “Integrating fish culture and vegetable hydroponics: problems and prospects”, Virgin Islands Perspectives, Agriculture Research Notes, 2, 19–23.
  • Rakocy, J.E. (1989). Vegetable hydroponics and fish culture: a productive interface. Journal of World Aquaculture Society, 20(3), 42-47. Rakocy, J.E., Masser, M.P., Losordo, T.M. (1992). Recirculating aquaculture tank production systems: Aquaponics-Integrating Fish and Plant Culture. SRAC Publication, No. 454. Southern Region Aquaculture Center, Mississippi State University, Stoneville, Mississippi, USA.
  • Rakocy, J.E., Hargreaves J.A. (1993). Integration of vegetable hydroponics with fish culture: A review. In: Techniques for Modern Aquaculture. Editör: Wang, J., St. Joseph, Michigan, USA. p.112-136.
  • Rakocy, J.E. (1997). Integrating tilapia culture with vegetable hydroponics in recirculating systems. In: Tilapia Aquaculture in the Americas, Editörler: B. A. Costa-Pierce, B. A., Rakocy J. E., Vol. 1. World Aquaculture Society, Louisiana, USA. p. 163-184.
  • Rakocy, J.E. (2007). An Integrated Fish and Field Crop System for Arid Areas, In: Ecological Aquaculture: The Evolution of the Blue Revolution. Editör: Costa-Pierce, B. A. Blackwell Science Ltd, Oxford, UK. p.263-285.
  • Seawright, D.E., Stickney R.R., Walker R.B. (1998). Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture, 160, 215-237.
  • Shelton, W.L., Smitherman, R.O., Jensen, G.L. (1981). Density related growth of grass carp, Ctenopharyngodon idella (Val.) in managed small impoundments in Alabama. Journal of Fish Biology, 18(1), 45-51.
  • Sun, W., Zhao, H., Wang, F., Liu, Y., Yang, J., Ji, M. (2017). Effect of salinity on nitrogen and phosphorus removal pathways in a hydroponic micro-ecosystem planted with Lythrum salicaria L. Ecological Engineering, 105, 205-210.
  • Summerfelt, S.T. (1998). An integrated approach to aquaculture waste management ın flowing water systems. Proceedings of the Second International Conference on Recirculating Aquaculture, 16-19 July, 1998, Virginia Polytechnic Institute and State University, Virginia, USA.
  • van Rijn, J., Rivera, G. (1990). Aerobic and anaerobic biofiltration in an aquaculture unit—nitrite accumulation as a result of nitrification and denitrification. Aquacultural Engineering, 9(4), 217-234.
  • Vijayan, M.M., Leatherland, J.F. (1988). Effect of stocking density on the growth and stress-response in brook charr, Salvelinus fontinalis. Aquaculture, 75(1-2), 159-170.
  • Williams E.M., Eddy, F.B. (1986). Chloride uptake in fresh water teleosts and its relationship to nitrite uptake and toxicity. Journal of Comparative Physiology B,156, 867–872.

Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System

Yıl 2018, Cilt: 33 Sayı: 3, 77 - 83, 28.06.2018

Öz

DOI:
10.26650/ASE201813


This study evaluates the performance of
plants grown at different times in the aquaponics system-a modern and
sustainable production method—on water quality. In the established aquaponics
system, this study monitored the growth performance of koi fish, Cyprinus
carpio var. koi, and different plants (lettuce, Lactuca sativa, var. Crispa as
a leafy plant and strawberry, Fragaria sp. as a fruit plant), pertaining to
macro nutrient cycling and effects of plants on water quality parameters.
Experiments in an aquaponics system comprising a biological filter and plant
unit found that the removal rates of macro nutrients from the system were as
follows: 1) 4295% for phosphate and 55.45% for nitrate in lettuce and 2) 35.49%
for phosphate and 46.36% for nitrate in strawberries. It was observed that, in
general, the rate of removing macro nutrients was higher in the lettuce
experiment than in the strawberries one. The elimination rates of macro
nutrients in this study show that increasing dissolved nutrients in an aquarium
is effectively reduced, which confirms that this production system is an
environmentally-friendly and sustainable method.

Kaynakça

  • Adler, P.R., Harper J. K., Wade E.M., Takeda F., Summerfelt, S.T. (2000). Economic analysis of an aquaponic system for the integrated production of rainbow trout and plants. International Journal of Recirculating Aquaculture, 1, 15-34.
  • Chopin, T., Cooper J.A., Reid G., Cross S., Moore, C. (2012). Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4, 209-220.
  • Clarkson, R., Lane S.D. (1991). Use of small-scale nutrient film hydroponic technique to reduce mineral accumulation in aquarium water. Aquaculture and Fisheries Management, 22, 37-45.
  • COST. European Cooperation In Science and Tecnology. 2013. The EU Aquaponics Hub: Realising Sustainable Integrated Fish And Vegetable Production For The EU. COST Action FA1305. Retrieved from https://e-services.cost.eu/files/domain_files/FA/Action_FA1305/mou/FA1305-e.pdf (accessed 01.10.17)
  • Diver, S. (2006). Aquaponics – integration of hydroponics with aquaculture, Publication No: IP163, ATTRA, National Sustainable Agriculture Information Service, USA.
  • Ebeling, J.M., Losordo T.M., DeLong D.P. (1993). Engineering design and performance of a model aquaculture recirculating system (MARS) for secondary school aquaculture education programs. In: Techniques for Modern Aquaculture: Proceedings of an Aquacultural Engineering Conference, 21-23 June 1993, Spokane, Washington, USA.
  • Falls, B., Hudson L. (1999). Micro-Gravity Aquaculture and John Gleen. Aquaculture Magazine, Volume 25 (2).
  • Faucette, R.F. (1997). Evaluation of a Recirculating Aquaculture-Hydroponics System. Ph.D. Thesis. Oklahoma State University, Oklahoma, USA.
  • Hussain, T., Verma, A.K., Tiwari, V.K., Prakash, C., Rathore, G., Shete, A.P., Nuwansi, K.K.T. (2014). Optimizing koi carp, Cyprinus carpio var. Koi (Linnaeus, 1758), stocking density and nutrient recycling with spinach in an aquaponic system. Journal of the World Aquaculture Society, 45(6), 652-661.
  • Imanpoor, M.R., Ahmadi, A.R., Kordjazi, M. (2009). Effects of stocking density on survival and growth indices of common carp (Cyprinus carpio). Iranian Scientific Fisheries Journal, 18(3), 1-10.
  • Lennard, W.A., Leonard B.V. (2006). A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquaculture International, 14, 539–550.
  • Licamele, J. (2009). Biomass production and nutrient dynamics in an aquaponics system. The University of Arizona.
  • Losordo, T.M., Masser M.P., Rakocy J. (1992). Recirculating Aquaculture Tank Production Systems; An Overview of Critical Conservations. Southern Regional Aquaculture Center Publication No. 451. Stoneville, Mississippi, USA.
  • Mathieu, J.J., Wang J.K. (1995). “The effect of water velocity and nutrient concentration on plant nutrient uptake”, Aquacultural Engineering and Waste Management, Proceedings from Aquaculture Expo VIII and Aquaculture in the Mid-Atlantic Conference, June 24-29, 1995, Washington, D. C., USA.
  • MedCalc Statistical Software version 15.8 (2015) MedCalc Software bvba, Ostend, Belçika; Available from: https://www.medcalc.org. Nijhof, M., Bovendeur, J. (1990). Fixed film nitrification characteristics in sea-water recirculation fish culture systems. Aquaculture, 87(2), 133-143.
  • Quillere, I., Marie D., Roux F., Gosse F., Morot-Gaudry J.F. (1993). An artificial productive ecosystem based on fish/bacteria/plant association; I. Design and management. Agriculture, Ecosystems and Environment, 47, 13-30.
  • Petrea, Ş. M., Cristea, V., Dediu, L., Contoman, M., Lupoae, P., Mocanu, M. (2013). Vegetable Production in an Integrated Aquaponic System with Rainbow Trout and Spinach. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Animal Science & Biotechnologies, 70(1), 45-54.
  • Rakocy, J.E., Nair, A. (1987). “Integrating fish culture and vegetable hydroponics: problems and prospects”, Virgin Islands Perspectives, Agriculture Research Notes, 2, 19–23.
  • Rakocy, J.E. (1989). Vegetable hydroponics and fish culture: a productive interface. Journal of World Aquaculture Society, 20(3), 42-47. Rakocy, J.E., Masser, M.P., Losordo, T.M. (1992). Recirculating aquaculture tank production systems: Aquaponics-Integrating Fish and Plant Culture. SRAC Publication, No. 454. Southern Region Aquaculture Center, Mississippi State University, Stoneville, Mississippi, USA.
  • Rakocy, J.E., Hargreaves J.A. (1993). Integration of vegetable hydroponics with fish culture: A review. In: Techniques for Modern Aquaculture. Editör: Wang, J., St. Joseph, Michigan, USA. p.112-136.
  • Rakocy, J.E. (1997). Integrating tilapia culture with vegetable hydroponics in recirculating systems. In: Tilapia Aquaculture in the Americas, Editörler: B. A. Costa-Pierce, B. A., Rakocy J. E., Vol. 1. World Aquaculture Society, Louisiana, USA. p. 163-184.
  • Rakocy, J.E. (2007). An Integrated Fish and Field Crop System for Arid Areas, In: Ecological Aquaculture: The Evolution of the Blue Revolution. Editör: Costa-Pierce, B. A. Blackwell Science Ltd, Oxford, UK. p.263-285.
  • Seawright, D.E., Stickney R.R., Walker R.B. (1998). Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture, 160, 215-237.
  • Shelton, W.L., Smitherman, R.O., Jensen, G.L. (1981). Density related growth of grass carp, Ctenopharyngodon idella (Val.) in managed small impoundments in Alabama. Journal of Fish Biology, 18(1), 45-51.
  • Sun, W., Zhao, H., Wang, F., Liu, Y., Yang, J., Ji, M. (2017). Effect of salinity on nitrogen and phosphorus removal pathways in a hydroponic micro-ecosystem planted with Lythrum salicaria L. Ecological Engineering, 105, 205-210.
  • Summerfelt, S.T. (1998). An integrated approach to aquaculture waste management ın flowing water systems. Proceedings of the Second International Conference on Recirculating Aquaculture, 16-19 July, 1998, Virginia Polytechnic Institute and State University, Virginia, USA.
  • van Rijn, J., Rivera, G. (1990). Aerobic and anaerobic biofiltration in an aquaculture unit—nitrite accumulation as a result of nitrification and denitrification. Aquacultural Engineering, 9(4), 217-234.
  • Vijayan, M.M., Leatherland, J.F. (1988). Effect of stocking density on the growth and stress-response in brook charr, Salvelinus fontinalis. Aquaculture, 75(1-2), 159-170.
  • Williams E.M., Eddy, F.B. (1986). Chloride uptake in fresh water teleosts and its relationship to nitrite uptake and toxicity. Journal of Comparative Physiology B,156, 867–872.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Hakan Türker 0000-0001-5162-1606

Yayımlanma Tarihi 28 Haziran 2018
Gönderilme Tarihi 22 Kasım 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 33 Sayı: 3

Kaynak Göster

APA Türker, H. (2018). Akuaponik Yetiştiricilik Sisteminde Farklı Bitkilerin Besin Dinamiği. Aquatic Sciences and Engineering, 33(3), 77-83.
AMA Türker H. Akuaponik Yetiştiricilik Sisteminde Farklı Bitkilerin Besin Dinamiği. Aqua Sci Eng. Temmuz 2018;33(3):77-83.
Chicago Türker, Hakan. “Akuaponik Yetiştiricilik Sisteminde Farklı Bitkilerin Besin Dinamiği”. Aquatic Sciences and Engineering 33, sy. 3 (Temmuz 2018): 77-83.
EndNote Türker H (01 Temmuz 2018) Akuaponik Yetiştiricilik Sisteminde Farklı Bitkilerin Besin Dinamiği. Aquatic Sciences and Engineering 33 3 77–83.
IEEE H. Türker, “Akuaponik Yetiştiricilik Sisteminde Farklı Bitkilerin Besin Dinamiği”, Aqua Sci Eng, c. 33, sy. 3, ss. 77–83, 2018.
ISNAD Türker, Hakan. “Akuaponik Yetiştiricilik Sisteminde Farklı Bitkilerin Besin Dinamiği”. Aquatic Sciences and Engineering 33/3 (Temmuz 2018), 77-83.
JAMA Türker H. Akuaponik Yetiştiricilik Sisteminde Farklı Bitkilerin Besin Dinamiği. Aqua Sci Eng. 2018;33:77–83.
MLA Türker, Hakan. “Akuaponik Yetiştiricilik Sisteminde Farklı Bitkilerin Besin Dinamiği”. Aquatic Sciences and Engineering, c. 33, sy. 3, 2018, ss. 77-83.
Vancouver Türker H. Akuaponik Yetiştiricilik Sisteminde Farklı Bitkilerin Besin Dinamiği. Aqua Sci Eng. 2018;33(3):77-83.

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.