Research Article
BibTex RIS Cite

Effect of Phosmet Toxicity on Some Physiological Traits in Duckweed (Lemna gibba L.)

Year 2025, Volume: 40 Issue: 1, 18 - 21, 18.02.2025
https://doi.org/10.26650/ASE20241457999

Abstract

Pesticides, one of the chemicals that adversely affect the environment and human health, can have effects on non-target organisms due to their chemical properties and wide range of use. Therefore, in this study, the toxic effects of phosmet insecticides on Lemna gibba, an aquatic macrophyte, were determined as a non-target organism. The study was carried out in a climate cabinet under controlled conditions. It was determined that the photosynthetic pigments and total carbohydrate content of the macrophyte decreased with increasing phosmet concentration. Similarly, decrease in total phenolic contents were found. A significant and positive correlation between non-protein sulfhydryl groups (NP-SH) and H2 O2 contents may indicate their role in antioxidant defense mechanism. Besides, increases in malondialdehyde (MDA) and H2 O2 contents showed that phosmet toxicity caused oxidative stress in L. gibba tissues.

References

  • Aarti, P. D., Tanaka, R., Tanaka, A. (2006). Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Physiologi'a Plantarum, 128, 186-197. google scholar
  • Barcelo, D., &, Hennion, M. C. (1997). Trace determination of pesticides and their degradation products in water. Techniques and Instrumentation in Analytical Chemistry, vol. 19. Elsevier, Amsterdam. google scholar
  • Cinar, G., & Dogan, M. (2020). Physiological response of Moringa oleifera exposed to bisphenol A. Botanica Serbica, 44(2), 183-189. google scholar
  • Dogan, M. & Gultekin. E. (2017). Effects of single and combined applications of chromium and clarithromycin on wheat seedlings. Fresenius Environmental Bulletin, 26, 1154-1162. google scholar
  • Dogan, M., Sahin Yigit, S., Cinar, G. (2021). Effects of lead accumulation on physiological parameters and nutritional elements in safflower (Carthamus tinctorius L.) seedlings. AgroLife Scientific Journal, 10(2), 56-62. google scholar
  • Drum, C. (1980). Soil chemistry of pesticides. PPG Industries. Inc. USA. google scholar
  • D’Souza, U. J. A. (2017). Pesticide toxicity and oxidative stress: a review. Borneo Journal of Medical Sciences, 11, 9-19. google scholar
  • Dubey, P., Mishra, A. K., Singh, A. K. (2015). Comparative analyses of genotoxicity, oxidative stress and antioxidative defence system under exposure of methyl parathion and hexaconazole in barley (Hordeum vulgare L.). Environmental Science and Pollution Research, 22(24), 19848-19859. google scholar
  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70-77. google scholar
  • FAO (2019). Specifications and Evaluations for Agricultural Pesticides, Phosmet. Note: Evaluation Report only, 2019. google scholar
  • Hassaan, M. A., & El Nemr, A. (2020). Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. The Egyptian Journal of Aquatic Research, 46(3), 207-220. google scholar
  • Iwaniuk, P., & Lozowicka, B. (2022). Biochemical compounds and stress markers in lettuce upon exposure to pathogenic Botrytis cinerea and fungicides inhibiting oxidative phosphorylation. Planta, 255, 1-14. google scholar
  • Kumar, S. (2012). Effect of herbicides on carbohydrate, protein and electrophoretic protein bands content in Triticum aestivum. International Journal of Food, Agriculture and Veterinary Sciences, 2(1), 13-25. google scholar
  • Lichtenthaler, H. K. & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591-592. google scholar
  • Lin, Y., Li, D., Zhou, C., Wu, Y., Miao, P., Dong, Q., Zhu, S., Pan, C. (2022). Application of insecticides on peppermint (Mentha x piperita L.) induces lignin accumulation in leaves by consuming phenolic acids and thus potentially deteriorates quality. Journal of Plant Physiology, 279, 153836. google scholar
  • Magne, C., Saladin, G., Clement, C. (2006). Transient effect of the herbicide flazasulfuron on carbohydrate physiology in Vitis vinifera L.. Chemosphere, 62(4), 650-657. google scholar
  • Mitton, F. M., Ferreira, J. L. R., Gonzalez, M., Miglioranza, K. S., Monserrat, J. M. (2016). Antioxidant responses in soybean and alfalfa plants grown in DDTs contaminated soils: Useful variables for selecting plants for soil phytoremediation?. Pesticide Biochemistry and Physiology, 130, 17-21. google scholar
  • Mostafa, F. I., & Helling, C. S. (2002). Impact of four pesticides on the growth and metabolic activities of two photosynthetic algae. Journal of Environmental Science and Health, Part B, 37(5), 417-444. google scholar
  • Nohatto, M. A., Agostinetto, D., Langaro, A. C., Oliveira, C. D., Ruchel, Q. (2016). Antioxidant activity of rice plants sprayed with herbicides. Pesquisa Agropecuaria Tropical, 46, 28-34. google scholar
  • Park, J., Yoo, E., Shin, K., Depuydt, S., Li, W., Appenroth, K. J., Lillicrap, A. D., Xie, L., Lee, H., Kim, G., De Saeger, J., Choi, S., Kim, G., Brown, M. T., Han, T. (2021). Interlaboratory validation of toxicity testing using the duckweed Lemna minor root-regrowth test. Biology, 11(1), 37. google scholar
  • Plummer, D. T. (1998). An introduction to Practical Biochemistry. Third edition. Tata McGraw-Hill Publishing Company Ltd., New Delhi. google scholar
  • Ratkevicius, N., Correa, J.A., Moenne, A. (2003). Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in northern Chile. Plant, Cell and Environment, 26, 1599-1608. google scholar
  • Salem, R. E. E. S. (2016). Side effects of certain pesticides on chlorophyll and carotenoids contents in leaves of maize and tomato plants. Middle East Journal, 5(4), 566. google scholar
  • Sergiev, L., Alexieva, E., Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and markers in plants. Comptes Rendus de l'Academie Bulgare Des Sciences, 51, 121-124. google scholar
  • Seth, P., Mahananda, M. R., Rani, A. (2014). Morphological and biochemical changes in mung plant (Vigna radiata (L.) Wilczek): Respond to synthetic pesticide & biopesticide. International Journal of Research in Agricultural Sciences, 1(6), 367-372. google scholar
  • Sharma, A., Kumar, V., Thukral, A. K., Bhardwaj, R. (2019). Responses of plants to pesticide toxicity: An overview. Planta Daninha, 37. google scholar
  • Sharples, C. R., Hull, M. R., Cobb, A. H. (1997). Growth and photosynthetic characteristics of two biotypes of the weed black-grass (Alopecurus myosuroides Huds.) resistant and susceptible to the herbicide chlorotoluron. Annals of Botany, 79(4), 455-461. google scholar
  • Taylor, M., Klaine, S., Carvalho, F. P., Barcelo, D., Everaarts, J. (2003). Pesticide Residues in Coastal Tropical Ecosystems. Distribution, Fate and Effects. Taylor and Francis, London. google scholar
  • Tomlin, C. D. S. (2004). Phosmet (732-11-6). In: The e-Pesticide Manual, 13th Edition Version 3.1. google scholar
  • United States Environmental Protection Agency (US EPA) (2010) United States Environmental Protection Agency (US EPA) Risks of phosmet use to the federally threatened and endangered California tiger salamander (Ambystoma californiense) 2010. https://www3.epa.gov/ pesticides/endanger/litstatus/effects/redleg-frog/2010/phosmet/ assessment.pdf google scholar
  • Yu, G., Chen, Q., Chen, F., Liu, H., Lin, J., Chen, R., Chunyuan Ren, C., Wei, J., Zhang, Y., Fengjun Yang, F., Sheng, Y. (2022). Glutathione promotes degradation and metabolism of residual fungicides by inducing UDP-glycosyltransferase genes in tomato. Frontiers in Plant Science, 1978. google scholar
  • Zhou, Q. (2001). The measurement of malondialdehyde in plants. In: Zhou Q. (Ed.): Methods in Plant Physiology. China Agricultural Press, Beijing: pp. 173-174. google scholar
Year 2025, Volume: 40 Issue: 1, 18 - 21, 18.02.2025
https://doi.org/10.26650/ASE20241457999

Abstract

References

  • Aarti, P. D., Tanaka, R., Tanaka, A. (2006). Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Physiologi'a Plantarum, 128, 186-197. google scholar
  • Barcelo, D., &, Hennion, M. C. (1997). Trace determination of pesticides and their degradation products in water. Techniques and Instrumentation in Analytical Chemistry, vol. 19. Elsevier, Amsterdam. google scholar
  • Cinar, G., & Dogan, M. (2020). Physiological response of Moringa oleifera exposed to bisphenol A. Botanica Serbica, 44(2), 183-189. google scholar
  • Dogan, M. & Gultekin. E. (2017). Effects of single and combined applications of chromium and clarithromycin on wheat seedlings. Fresenius Environmental Bulletin, 26, 1154-1162. google scholar
  • Dogan, M., Sahin Yigit, S., Cinar, G. (2021). Effects of lead accumulation on physiological parameters and nutritional elements in safflower (Carthamus tinctorius L.) seedlings. AgroLife Scientific Journal, 10(2), 56-62. google scholar
  • Drum, C. (1980). Soil chemistry of pesticides. PPG Industries. Inc. USA. google scholar
  • D’Souza, U. J. A. (2017). Pesticide toxicity and oxidative stress: a review. Borneo Journal of Medical Sciences, 11, 9-19. google scholar
  • Dubey, P., Mishra, A. K., Singh, A. K. (2015). Comparative analyses of genotoxicity, oxidative stress and antioxidative defence system under exposure of methyl parathion and hexaconazole in barley (Hordeum vulgare L.). Environmental Science and Pollution Research, 22(24), 19848-19859. google scholar
  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70-77. google scholar
  • FAO (2019). Specifications and Evaluations for Agricultural Pesticides, Phosmet. Note: Evaluation Report only, 2019. google scholar
  • Hassaan, M. A., & El Nemr, A. (2020). Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. The Egyptian Journal of Aquatic Research, 46(3), 207-220. google scholar
  • Iwaniuk, P., & Lozowicka, B. (2022). Biochemical compounds and stress markers in lettuce upon exposure to pathogenic Botrytis cinerea and fungicides inhibiting oxidative phosphorylation. Planta, 255, 1-14. google scholar
  • Kumar, S. (2012). Effect of herbicides on carbohydrate, protein and electrophoretic protein bands content in Triticum aestivum. International Journal of Food, Agriculture and Veterinary Sciences, 2(1), 13-25. google scholar
  • Lichtenthaler, H. K. & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591-592. google scholar
  • Lin, Y., Li, D., Zhou, C., Wu, Y., Miao, P., Dong, Q., Zhu, S., Pan, C. (2022). Application of insecticides on peppermint (Mentha x piperita L.) induces lignin accumulation in leaves by consuming phenolic acids and thus potentially deteriorates quality. Journal of Plant Physiology, 279, 153836. google scholar
  • Magne, C., Saladin, G., Clement, C. (2006). Transient effect of the herbicide flazasulfuron on carbohydrate physiology in Vitis vinifera L.. Chemosphere, 62(4), 650-657. google scholar
  • Mitton, F. M., Ferreira, J. L. R., Gonzalez, M., Miglioranza, K. S., Monserrat, J. M. (2016). Antioxidant responses in soybean and alfalfa plants grown in DDTs contaminated soils: Useful variables for selecting plants for soil phytoremediation?. Pesticide Biochemistry and Physiology, 130, 17-21. google scholar
  • Mostafa, F. I., & Helling, C. S. (2002). Impact of four pesticides on the growth and metabolic activities of two photosynthetic algae. Journal of Environmental Science and Health, Part B, 37(5), 417-444. google scholar
  • Nohatto, M. A., Agostinetto, D., Langaro, A. C., Oliveira, C. D., Ruchel, Q. (2016). Antioxidant activity of rice plants sprayed with herbicides. Pesquisa Agropecuaria Tropical, 46, 28-34. google scholar
  • Park, J., Yoo, E., Shin, K., Depuydt, S., Li, W., Appenroth, K. J., Lillicrap, A. D., Xie, L., Lee, H., Kim, G., De Saeger, J., Choi, S., Kim, G., Brown, M. T., Han, T. (2021). Interlaboratory validation of toxicity testing using the duckweed Lemna minor root-regrowth test. Biology, 11(1), 37. google scholar
  • Plummer, D. T. (1998). An introduction to Practical Biochemistry. Third edition. Tata McGraw-Hill Publishing Company Ltd., New Delhi. google scholar
  • Ratkevicius, N., Correa, J.A., Moenne, A. (2003). Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in northern Chile. Plant, Cell and Environment, 26, 1599-1608. google scholar
  • Salem, R. E. E. S. (2016). Side effects of certain pesticides on chlorophyll and carotenoids contents in leaves of maize and tomato plants. Middle East Journal, 5(4), 566. google scholar
  • Sergiev, L., Alexieva, E., Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and markers in plants. Comptes Rendus de l'Academie Bulgare Des Sciences, 51, 121-124. google scholar
  • Seth, P., Mahananda, M. R., Rani, A. (2014). Morphological and biochemical changes in mung plant (Vigna radiata (L.) Wilczek): Respond to synthetic pesticide & biopesticide. International Journal of Research in Agricultural Sciences, 1(6), 367-372. google scholar
  • Sharma, A., Kumar, V., Thukral, A. K., Bhardwaj, R. (2019). Responses of plants to pesticide toxicity: An overview. Planta Daninha, 37. google scholar
  • Sharples, C. R., Hull, M. R., Cobb, A. H. (1997). Growth and photosynthetic characteristics of two biotypes of the weed black-grass (Alopecurus myosuroides Huds.) resistant and susceptible to the herbicide chlorotoluron. Annals of Botany, 79(4), 455-461. google scholar
  • Taylor, M., Klaine, S., Carvalho, F. P., Barcelo, D., Everaarts, J. (2003). Pesticide Residues in Coastal Tropical Ecosystems. Distribution, Fate and Effects. Taylor and Francis, London. google scholar
  • Tomlin, C. D. S. (2004). Phosmet (732-11-6). In: The e-Pesticide Manual, 13th Edition Version 3.1. google scholar
  • United States Environmental Protection Agency (US EPA) (2010) United States Environmental Protection Agency (US EPA) Risks of phosmet use to the federally threatened and endangered California tiger salamander (Ambystoma californiense) 2010. https://www3.epa.gov/ pesticides/endanger/litstatus/effects/redleg-frog/2010/phosmet/ assessment.pdf google scholar
  • Yu, G., Chen, Q., Chen, F., Liu, H., Lin, J., Chen, R., Chunyuan Ren, C., Wei, J., Zhang, Y., Fengjun Yang, F., Sheng, Y. (2022). Glutathione promotes degradation and metabolism of residual fungicides by inducing UDP-glycosyltransferase genes in tomato. Frontiers in Plant Science, 1978. google scholar
  • Zhou, Q. (2001). The measurement of malondialdehyde in plants. In: Zhou Q. (Ed.): Methods in Plant Physiology. China Agricultural Press, Beijing: pp. 173-174. google scholar
There are 32 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Article
Authors

Şeyda Yılmaz 0000-0002-2262-432X

Ebru Bozlar 0000-0001-9414-2760

Muhittin Doğan 0000-0001-5400-8065

Publication Date February 18, 2025
Submission Date March 24, 2024
Acceptance Date October 23, 2024
Published in Issue Year 2025 Volume: 40 Issue: 1

Cite

APA Yılmaz, Ş., Bozlar, E., & Doğan, M. (2025). Effect of Phosmet Toxicity on Some Physiological Traits in Duckweed (Lemna gibba L.). Aquatic Sciences and Engineering, 40(1), 18-21. https://doi.org/10.26650/ASE20241457999
AMA Yılmaz Ş, Bozlar E, Doğan M. Effect of Phosmet Toxicity on Some Physiological Traits in Duckweed (Lemna gibba L.). Aqua Sci Eng. February 2025;40(1):18-21. doi:10.26650/ASE20241457999
Chicago Yılmaz, Şeyda, Ebru Bozlar, and Muhittin Doğan. “Effect of Phosmet Toxicity on Some Physiological Traits in Duckweed (Lemna Gibba L.)”. Aquatic Sciences and Engineering 40, no. 1 (February 2025): 18-21. https://doi.org/10.26650/ASE20241457999.
EndNote Yılmaz Ş, Bozlar E, Doğan M (February 1, 2025) Effect of Phosmet Toxicity on Some Physiological Traits in Duckweed (Lemna gibba L.). Aquatic Sciences and Engineering 40 1 18–21.
IEEE Ş. Yılmaz, E. Bozlar, and M. Doğan, “Effect of Phosmet Toxicity on Some Physiological Traits in Duckweed (Lemna gibba L.)”, Aqua Sci Eng, vol. 40, no. 1, pp. 18–21, 2025, doi: 10.26650/ASE20241457999.
ISNAD Yılmaz, Şeyda et al. “Effect of Phosmet Toxicity on Some Physiological Traits in Duckweed (Lemna Gibba L.)”. Aquatic Sciences and Engineering 40/1 (February 2025), 18-21. https://doi.org/10.26650/ASE20241457999.
JAMA Yılmaz Ş, Bozlar E, Doğan M. Effect of Phosmet Toxicity on Some Physiological Traits in Duckweed (Lemna gibba L.). Aqua Sci Eng. 2025;40:18–21.
MLA Yılmaz, Şeyda et al. “Effect of Phosmet Toxicity on Some Physiological Traits in Duckweed (Lemna Gibba L.)”. Aquatic Sciences and Engineering, vol. 40, no. 1, 2025, pp. 18-21, doi:10.26650/ASE20241457999.
Vancouver Yılmaz Ş, Bozlar E, Doğan M. Effect of Phosmet Toxicity on Some Physiological Traits in Duckweed (Lemna gibba L.). Aqua Sci Eng. 2025;40(1):18-21.

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.