BibTex RIS Kaynak Göster

SHALLOW SHELL RESIN VERSUS TRADITIONAL RESIN: A CASE STUDY FOR Cu(II) REMOVAL

Yıl 2016, Cilt: 17 Sayı: 3, 530 - 542, 03.10.2016
https://doi.org/10.18038/btda.05967

Öz

Kaynakça

  • Alexandratos SD. Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind. Eng. Chem. Res., 2008; 48(1):388-98.
  • Szlag DC, Wolf NJ. Recent advances in ion exchange materials and processes for pollution prevention. Clean Products Process, 1999; 1(2):117-31.
  • Zagorodni AA. Ion exchange materials: properties and applications: 1th ed.. Elsevier, Amsterdam, London, 2007.
  • Van Deventer J. Selected ion exchange applications in the hydrometallurgical industry. Solvent Extr. Ion Exc., 2011; 29(5-6):695-718.
  • Sabzali J, Michaud CF A shortcut to higher regeneration efficiency with shallow shell resins. Ion Exchange at the Millennium (IEX 2000), Cambridge, UK, 269-278, 2000. http://purolite.com/Customized/CustomizedControls/PuroliteProductsManagement/Resources/rid_3 pdf [accessed 17.03.2016]
  • Fries E. Shell-core ion exchange resin developments. Ion Exchange Conference (IEX 2012)
  • Cambridge, UK , 2012, September.
  • Helfferich FG. Ion exchange, 1th ed. New York, McGraw-Hill, 1962.
  • Aladağlı V, Temel F, Tabakcı, M. Removal of p-Nitrophenol from Aqueous Solutions Using Aminopropyl Silica Gel-Immobilized Calix [4] Arene Polymer (C [4] Aps). Anadolu University Journal of Science and Technology–A Applied Sciences and Engineering, 2015; 16(2), 155-166.
  • Alyüz B, Veli S, Kinetics and Equilibrium Studies for the Removal of Nickel and Zinc from Aqueous Solutions by Ion Exchange Resins, J. Hazard. Mater. 2009; 167(1–3): 482-488.
  • Ozacar M, Şengül IA, Two-stage Batch Sorber Design Using Second-Order Kinetic Model for the Sorption of Metal Complex Dyes onto Pine Sawdust, Biochem. Eng. J., 2004; 21:39-45.
  • Ozkutuk EB. Selective Removal of Cd (II) Using Double Imprinted Polymer From Synthetic Water. Anadolu University Journal of Science and Technology–A Applied Sciences and Engineering, 2015; (1):15-22.
  • Liu X, Zhang L. Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies. Powder Technol., 2015; 277:112-119.
  • Hubicki Z, Kolodynska D. Selective removal of heavy metal ions from waters and waste waters using ion exchange methods In: Kilislioğlu A, Editor, Ion Exchange Technologies Rijeka (Croatia), INTECH Open Access Publisher. pp. 193–240, 2012.
  • Fil BA, Boncukcuoğlu R, Yilmaz AE and Bayar S. Adsorption of Ni (II) on ion exchange resin: Kinetics, equilibrium and thermodynamic studies. Korean J. Chem. Eng., 2012; 29(9): 1232-1238.
  • Ho YS, Review of second-order models for adsorption systems. J. Hazard. Mater., 2006; (3):681-689.
  • Ho YS, McKay, G. Pseudo-second order model for sorption processes. Process Biochem., 1999; (5): 451-465.
  • Ho YS, McKay G, Sorption of dye from aqueous solution by peat. Chem. Eng. J., 1998; 70(2): 115
  • Aşçı Y. and Kaya Ş., Removal of cobalt ions from water by ion-exchange method. Desalin. Water Treat, 2014; 52(1-3): 267-273.
  • Nollet H., Roels M., Lutgen P., Van der Meeren, P. and Verstraete, W., Removal of PCBs from wastewater using fly ash. Chemosphere, 2003; 53(6): 655-665.
  • McMurry JE, Fay, RC, Chemistry, 4th ed. Pearson Education, New Jersey, 2004 http://www.purolite.com/customized/uploads/pdfs/SST60.pdf [accessed 17.03.2016]

Shallow Shell resin versus traditional resin: A case study for Cu(II) removal

Yıl 2016, Cilt: 17 Sayı: 3, 530 - 542, 03.10.2016
https://doi.org/10.18038/btda.05967

Öz

A comparative study on Cu2+ removal by shallow shell resin (Purolite SST 60) and traditional strongly acidic cation exchange resin (Purolite PFC 100) was performed. Batch experiments were carried out as a function of  resin  dosage and  solution pH and contact time. Ion exchange reaction showed a pH depended feature.  Maximum removal of Cu2+ achieved  pH  from 2 to 5. Sorption isothermal data is well interpreted by the Langmuir equation. Additionally, kinetic experiments showed that the pseudo first-order model was suitable for such resins. The regeneration performance of shallow shell technology (SST) resin is better than PFC 100.  A solution of 2M H2SO4 performed well in regenerationof SST 60 resin. On the other han maximum regeneration reached 80% for PFC 100 resin.

Özet:

Bu çalışmada, klasik iyon değiştirici reçine (Purolite PFC 100) ve  sığ kabuk  reçine (Purolite SST 60)  ile Cu2+ giderilmesi incelenmiştir. Yapılan kesikli çalışmalarla Cu2+ giderilmesine, reçine miktarı, çözelti pH`ı ve temas süresinin etkisi incelenmiştir. Çözelti pH`ının 2 ile 5 arasında olduğu durumda Cu2+ iyonları tamamen giderilmiştir. Denge çalışmalarında elde edilen sonuçlar Langmuir izoterm modeline daha uygun olmuştur. Kinetik çalışmalarda elde edilen sonuçlar yalancı birinci mertebe kinetik modeline uygunluk göstermişir. SST 60 reçinesinin rejenerasyon verimi PFC 100 reçinesinden daha yüksektir. 2M H2SO4 ile SST 60 reçinesi tamamen rejenere edilmiştir.

Kaynakça

  • Alexandratos SD. Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind. Eng. Chem. Res., 2008; 48(1):388-98.
  • Szlag DC, Wolf NJ. Recent advances in ion exchange materials and processes for pollution prevention. Clean Products Process, 1999; 1(2):117-31.
  • Zagorodni AA. Ion exchange materials: properties and applications: 1th ed.. Elsevier, Amsterdam, London, 2007.
  • Van Deventer J. Selected ion exchange applications in the hydrometallurgical industry. Solvent Extr. Ion Exc., 2011; 29(5-6):695-718.
  • Sabzali J, Michaud CF A shortcut to higher regeneration efficiency with shallow shell resins. Ion Exchange at the Millennium (IEX 2000), Cambridge, UK, 269-278, 2000. http://purolite.com/Customized/CustomizedControls/PuroliteProductsManagement/Resources/rid_3 pdf [accessed 17.03.2016]
  • Fries E. Shell-core ion exchange resin developments. Ion Exchange Conference (IEX 2012)
  • Cambridge, UK , 2012, September.
  • Helfferich FG. Ion exchange, 1th ed. New York, McGraw-Hill, 1962.
  • Aladağlı V, Temel F, Tabakcı, M. Removal of p-Nitrophenol from Aqueous Solutions Using Aminopropyl Silica Gel-Immobilized Calix [4] Arene Polymer (C [4] Aps). Anadolu University Journal of Science and Technology–A Applied Sciences and Engineering, 2015; 16(2), 155-166.
  • Alyüz B, Veli S, Kinetics and Equilibrium Studies for the Removal of Nickel and Zinc from Aqueous Solutions by Ion Exchange Resins, J. Hazard. Mater. 2009; 167(1–3): 482-488.
  • Ozacar M, Şengül IA, Two-stage Batch Sorber Design Using Second-Order Kinetic Model for the Sorption of Metal Complex Dyes onto Pine Sawdust, Biochem. Eng. J., 2004; 21:39-45.
  • Ozkutuk EB. Selective Removal of Cd (II) Using Double Imprinted Polymer From Synthetic Water. Anadolu University Journal of Science and Technology–A Applied Sciences and Engineering, 2015; (1):15-22.
  • Liu X, Zhang L. Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies. Powder Technol., 2015; 277:112-119.
  • Hubicki Z, Kolodynska D. Selective removal of heavy metal ions from waters and waste waters using ion exchange methods In: Kilislioğlu A, Editor, Ion Exchange Technologies Rijeka (Croatia), INTECH Open Access Publisher. pp. 193–240, 2012.
  • Fil BA, Boncukcuoğlu R, Yilmaz AE and Bayar S. Adsorption of Ni (II) on ion exchange resin: Kinetics, equilibrium and thermodynamic studies. Korean J. Chem. Eng., 2012; 29(9): 1232-1238.
  • Ho YS, Review of second-order models for adsorption systems. J. Hazard. Mater., 2006; (3):681-689.
  • Ho YS, McKay, G. Pseudo-second order model for sorption processes. Process Biochem., 1999; (5): 451-465.
  • Ho YS, McKay G, Sorption of dye from aqueous solution by peat. Chem. Eng. J., 1998; 70(2): 115
  • Aşçı Y. and Kaya Ş., Removal of cobalt ions from water by ion-exchange method. Desalin. Water Treat, 2014; 52(1-3): 267-273.
  • Nollet H., Roels M., Lutgen P., Van der Meeren, P. and Verstraete, W., Removal of PCBs from wastewater using fly ash. Chemosphere, 2003; 53(6): 655-665.
  • McMurry JE, Fay, RC, Chemistry, 4th ed. Pearson Education, New Jersey, 2004 http://www.purolite.com/customized/uploads/pdfs/SST60.pdf [accessed 17.03.2016]
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makalesi
Yazarlar

Özgür Arar

Yayımlanma Tarihi 3 Ekim 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 17 Sayı: 3

Kaynak Göster

APA Arar, Ö. (2016). Shallow Shell resin versus traditional resin: A case study for Cu(II) removal. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(3), 530-542. https://doi.org/10.18038/btda.05967
AMA Arar Ö. Shallow Shell resin versus traditional resin: A case study for Cu(II) removal. AUBTD-A. Ekim 2016;17(3):530-542. doi:10.18038/btda.05967
Chicago Arar, Özgür. “Shallow Shell Resin Versus Traditional Resin: A Case Study for Cu(II) Removal”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17, sy. 3 (Ekim 2016): 530-42. https://doi.org/10.18038/btda.05967.
EndNote Arar Ö (01 Ekim 2016) Shallow Shell resin versus traditional resin: A case study for Cu(II) removal. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17 3 530–542.
IEEE Ö. Arar, “Shallow Shell resin versus traditional resin: A case study for Cu(II) removal”, AUBTD-A, c. 17, sy. 3, ss. 530–542, 2016, doi: 10.18038/btda.05967.
ISNAD Arar, Özgür. “Shallow Shell Resin Versus Traditional Resin: A Case Study for Cu(II) Removal”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17/3 (Ekim 2016), 530-542. https://doi.org/10.18038/btda.05967.
JAMA Arar Ö. Shallow Shell resin versus traditional resin: A case study for Cu(II) removal. AUBTD-A. 2016;17:530–542.
MLA Arar, Özgür. “Shallow Shell Resin Versus Traditional Resin: A Case Study for Cu(II) Removal”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, c. 17, sy. 3, 2016, ss. 530-42, doi:10.18038/btda.05967.
Vancouver Arar Ö. Shallow Shell resin versus traditional resin: A case study for Cu(II) removal. AUBTD-A. 2016;17(3):530-42.