BibTex RIS Cite

The effect of triangular cavities on piezoelectric property of graphene

Year 2016, Volume: 17 Issue: 3, 585 - 593, 03.10.2016
https://doi.org/10.18038/btda.47955

Abstract

Piezoelectricity is a unique material property that converts mechanical energy to electrical one or vice versa. In order to call a matter as a piezoelectric, it should be in non-centrosymmetric structure and have sufficiently large band gap. Graphene has none of these properties in its natural composition. It is shown that, coaxing the graphene structure can give piezoelectric property to this non-piezoelectric material. In this study, the size effect of the triangular holes and their placements on the structure to the piezoelectricity investigated theoretically via density functional theory based calculations. According to the calculation results, while the size of the cavity effects the piezoelectricity, layout of the similar shaped triangular cavities do not change the piezoelectric coefficient. 

References

  • Curie J, Curie P. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées(Development, via compression, of electric polarization in hemihedral crystals with inclined faces). Bulletin de la Société minérologique de France 1880; 3: 90 – 93.
  • Song X, Hu J, Zeng H. Two-dimensional semiconductors: Recent progress and future perspectives. J Mater Chem C 2013; 1: 2952−2969.
  • Xu M, Liang T, Shi M, Chen H. Graphene-like two-dimensional materials. Chem Rev 2013; 113: −3798.
  • Lebègue S, Björkman T, Klintenberg M, Nieminen RM, Eriksson O. Two-dimensional materials from data filtering and ab initio calculations. Phys Rev X 2013; 3: 031002.
  • Aliofkhazraaei M, Ali N, Milne WI, Ozkan CS, Mitura S, Gervasoni JL. Graphene science handbook: Size-dependent properties. New York, NY: Taylor & Francis Group CRC Press, 2016.
  • Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong ZJ, Ye Z, Ye Y, Yin X, Zhang X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat Nanotechnol 2014; 10: 151−155.
  • Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol 2011; 6: 147−150.
  • Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S. Anomalous lattice vibrations of single- and few- layer MoS2. ACS Nano 2010; 4: 2695−2700.
  • Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science ; 331: 568−571. Jin C, Lin F, Suenaga K, Lijima S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett 2009; 102: 195505.
  • Chandratre S, Sharma P. Coaxing graphene to be piezoelectric. Appl Phys Lett 2012; 100:023114.
  • Ong MT, Reed EJ. Engineered piezoelectricity in graphene. ACS Nano 2012; 6: 1387-1394.
  • Duerloo KAN, Ong MT, Reed EJ. Intrinsic piezoelectricity in two-dimensional materials. J Phys Chem Lett 2012; 3: 2871−2876.
  • Chang Z, Yan W, Shang J, Liu JZ. Piezoelectric properties of graphene oxide: A first-principles computational study. Appl Phys Lett 2014; 105: 023103.
  • Hangleiter A, Hitzel F, Lahmann S, Rossow U. Composition dependence of polarization fields in GaInN/GaN quantum wells. Appl Phys Lett 2003; 83: 1169.
  • Shimada K. First-principles determination of piezoelectric stress and strain constants of wurtzite III-V nitrides. Jpn J Appl Phys 2006; 45: L358-L360.
  • Wang X, Tian H, Xie W, Shu Y, Mi WT, Mohammad MA, Xie QY, Yang Y, Xu JB, Ren TL. Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene. NPG Asia Materials 2015; 7: e154.
  • Rodrigues DC, Zelenovskiy P, Romanyuk K, Luchkin S, Kopelevich Y, Kholkin A. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat Comms 2015; 6:
  • Morten B, Deccico G, Prudenziati M. Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films. Sens Actuator A-Phys. 1992; 31: 153–158.
  • Jaffe H, Berlincourt DA. Piezoelectric transducer materials. Proc IEEE 1965; 53:1372–1386.
  • Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science ; 312: 242–245. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993; 47: 558–561.
  • Wu X, Vanderbilt D, Hamann DR. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys Rev B 2005; 72: 035105–035117.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996; 77: 3865–3868.
  • Heyd J, Scuseria G, Ernzerhof M. Hybrid functionals based on a screened coulomb potential. J Chem Phys 2003; 118: 8207−8215.
  • Fuchs F, Furthmueller J, Bechstedt F, Shishkin M, Kresse G. Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys Rev B: Condens Matter Mater Phys 2007; 76: 115109.
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976; 13: 5188–
  • Vanderbilt D. Berry-phase theory of proper piezoelectric response. J Phys Chem Solids 2000; 61: –151.
  • Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 2001; 73:515–562.
  • Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol 2011; 6: 147−150.
  • Elias AL, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R, Feng S, Long AD, Takuya H, Kim YA, Endo M, et al. Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 2013; 7: 5235−5242.
  • Gutierrez HR, Perea-Lopez N, Elias AL, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi VH, Terrones H, Terrones M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 2013; 13: 3447−3454.
  • Huang JK, Pu J, Hsu CL, Chiu MH, Juang ZY, Chang YH, Chang WH, Iwasa Y, Takenobu T, Li LJ. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano ; 8: 923−930. Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett 2013; 13: 1983−1990.
  • Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett 2010; 105: 136805.
  • Xiang HJ, Yang J, Hou JG, Zhu Q. Piezoelectricity in ZnO nanowires: A first-principles study. Appl Phys Lett 2006; 89: 223111−223114.

THE EFFECT OF TRIANGULAR CAVITIES ON PIEZOELECTRIC PROPERTY OF GRAPHENE

Year 2016, Volume: 17 Issue: 3, 585 - 593, 03.10.2016
https://doi.org/10.18038/btda.47955

Abstract

References

  • Curie J, Curie P. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées(Development, via compression, of electric polarization in hemihedral crystals with inclined faces). Bulletin de la Société minérologique de France 1880; 3: 90 – 93.
  • Song X, Hu J, Zeng H. Two-dimensional semiconductors: Recent progress and future perspectives. J Mater Chem C 2013; 1: 2952−2969.
  • Xu M, Liang T, Shi M, Chen H. Graphene-like two-dimensional materials. Chem Rev 2013; 113: −3798.
  • Lebègue S, Björkman T, Klintenberg M, Nieminen RM, Eriksson O. Two-dimensional materials from data filtering and ab initio calculations. Phys Rev X 2013; 3: 031002.
  • Aliofkhazraaei M, Ali N, Milne WI, Ozkan CS, Mitura S, Gervasoni JL. Graphene science handbook: Size-dependent properties. New York, NY: Taylor & Francis Group CRC Press, 2016.
  • Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong ZJ, Ye Z, Ye Y, Yin X, Zhang X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat Nanotechnol 2014; 10: 151−155.
  • Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol 2011; 6: 147−150.
  • Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S. Anomalous lattice vibrations of single- and few- layer MoS2. ACS Nano 2010; 4: 2695−2700.
  • Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science ; 331: 568−571. Jin C, Lin F, Suenaga K, Lijima S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett 2009; 102: 195505.
  • Chandratre S, Sharma P. Coaxing graphene to be piezoelectric. Appl Phys Lett 2012; 100:023114.
  • Ong MT, Reed EJ. Engineered piezoelectricity in graphene. ACS Nano 2012; 6: 1387-1394.
  • Duerloo KAN, Ong MT, Reed EJ. Intrinsic piezoelectricity in two-dimensional materials. J Phys Chem Lett 2012; 3: 2871−2876.
  • Chang Z, Yan W, Shang J, Liu JZ. Piezoelectric properties of graphene oxide: A first-principles computational study. Appl Phys Lett 2014; 105: 023103.
  • Hangleiter A, Hitzel F, Lahmann S, Rossow U. Composition dependence of polarization fields in GaInN/GaN quantum wells. Appl Phys Lett 2003; 83: 1169.
  • Shimada K. First-principles determination of piezoelectric stress and strain constants of wurtzite III-V nitrides. Jpn J Appl Phys 2006; 45: L358-L360.
  • Wang X, Tian H, Xie W, Shu Y, Mi WT, Mohammad MA, Xie QY, Yang Y, Xu JB, Ren TL. Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene. NPG Asia Materials 2015; 7: e154.
  • Rodrigues DC, Zelenovskiy P, Romanyuk K, Luchkin S, Kopelevich Y, Kholkin A. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat Comms 2015; 6:
  • Morten B, Deccico G, Prudenziati M. Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films. Sens Actuator A-Phys. 1992; 31: 153–158.
  • Jaffe H, Berlincourt DA. Piezoelectric transducer materials. Proc IEEE 1965; 53:1372–1386.
  • Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science ; 312: 242–245. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993; 47: 558–561.
  • Wu X, Vanderbilt D, Hamann DR. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys Rev B 2005; 72: 035105–035117.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996; 77: 3865–3868.
  • Heyd J, Scuseria G, Ernzerhof M. Hybrid functionals based on a screened coulomb potential. J Chem Phys 2003; 118: 8207−8215.
  • Fuchs F, Furthmueller J, Bechstedt F, Shishkin M, Kresse G. Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys Rev B: Condens Matter Mater Phys 2007; 76: 115109.
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976; 13: 5188–
  • Vanderbilt D. Berry-phase theory of proper piezoelectric response. J Phys Chem Solids 2000; 61: –151.
  • Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 2001; 73:515–562.
  • Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol 2011; 6: 147−150.
  • Elias AL, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R, Feng S, Long AD, Takuya H, Kim YA, Endo M, et al. Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 2013; 7: 5235−5242.
  • Gutierrez HR, Perea-Lopez N, Elias AL, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi VH, Terrones H, Terrones M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 2013; 13: 3447−3454.
  • Huang JK, Pu J, Hsu CL, Chiu MH, Juang ZY, Chang YH, Chang WH, Iwasa Y, Takenobu T, Li LJ. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano ; 8: 923−930. Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett 2013; 13: 1983−1990.
  • Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett 2010; 105: 136805.
  • Xiang HJ, Yang J, Hou JG, Zhu Q. Piezoelectricity in ZnO nanowires: A first-principles study. Appl Phys Lett 2006; 89: 223111−223114.
There are 33 citations in total.

Details

Journal Section Articles
Authors

Mustafa Menderes Alyörük This is me

Publication Date October 3, 2016
Published in Issue Year 2016 Volume: 17 Issue: 3

Cite

APA Alyörük, M. M. (2016). The effect of triangular cavities on piezoelectric property of graphene. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(3), 585-593. https://doi.org/10.18038/btda.47955
AMA Alyörük MM. The effect of triangular cavities on piezoelectric property of graphene. AUJST-A. October 2016;17(3):585-593. doi:10.18038/btda.47955
Chicago Alyörük, Mustafa Menderes. “The Effect of Triangular Cavities on Piezoelectric Property of Graphene”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17, no. 3 (October 2016): 585-93. https://doi.org/10.18038/btda.47955.
EndNote Alyörük MM (October 1, 2016) The effect of triangular cavities on piezoelectric property of graphene. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17 3 585–593.
IEEE M. M. Alyörük, “The effect of triangular cavities on piezoelectric property of graphene”, AUJST-A, vol. 17, no. 3, pp. 585–593, 2016, doi: 10.18038/btda.47955.
ISNAD Alyörük, Mustafa Menderes. “The Effect of Triangular Cavities on Piezoelectric Property of Graphene”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17/3 (October 2016), 585-593. https://doi.org/10.18038/btda.47955.
JAMA Alyörük MM. The effect of triangular cavities on piezoelectric property of graphene. AUJST-A. 2016;17:585–593.
MLA Alyörük, Mustafa Menderes. “The Effect of Triangular Cavities on Piezoelectric Property of Graphene”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 17, no. 3, 2016, pp. 585-93, doi:10.18038/btda.47955.
Vancouver Alyörük MM. The effect of triangular cavities on piezoelectric property of graphene. AUJST-A. 2016;17(3):585-93.