BibTex RIS Cite
Year 2016, Volume: 17 Issue: 1, 159 - 166, 14.03.2016
https://doi.org/10.18038/btda.59175

Abstract

References

  • Entezari-Maleki R, Rezai A, Minaei-Bidgoli B. Comparison of classification methods based on the type of attributes and sample size. Journal of Convergence Information Technology 2009; 4.3: 94-102. [2] Han J, Kamber M. Data mining: Consepts and Techniques. The Morgan Kaufmann Series in Data Management Systems, San Francisco, CA, USA: Elseiver, 2006.
  • Kantardzic M. Data mining: concepts, models, methods, and algorithms University of California, California, CA, USA: Wiley-Interscience 2003.
  • Yang Y, Liu X. A re-examination of text categorization methods. In: ACM conference on Research and Development in Information Retrieval; 1999; Berkeley, CA, USA, pp. 42-49.
  • Komorowski J, Pawlak Z, Polkowski L, Skowron A. Rough fuzzy hybridization: a new trend in decision-making. Rough sets: a tutorial 1999; Singapore, Springer-Verlag.
  • Yao Y. Probabilistic rough set approximations. International Journal of Approximate Reasoning 2008; 49:2, 255-271.
  • Çekik R, Telçeken S, EKG Sinyallerinin Kaba Kümeler Teorisi Kullanılarak Sınıflandırılması. Anadolu University Journal of Science and Technology A-Applied Science and Engineering 2014;, 15.2: 125-135. [8] Ziarko W. Probabilistic approach to rough sets. International Journal of Approximate Reasoning 2008; 48:2, 272-284.
  • Yao Y. Three-way decisions with probabilistic rough sets. Information Science 2010; 180:3, 341-353.
  • Pawlak Z. Rough Sets. International Journal of Computer and Information Sciences 1982; 11: 341-356. [11] Pawlak Z. Rough sets: Theoretical aspects of reasoning about data. Vol. 9. Springer Science & Business Media, 2012.
  • Walczak B. Massart DL. Rough Sets theory. Chemenometrics and Intelligent Laboratory Systems 1999; 47: 1-16. [13] Deng XF, Yao YY. A multifaceted analysis of probabilistic three-way decisions. Fundamenta Informaticae 2014; 132.3: 291-313.
  • Hernandez-del-Olmo F, Gaudiso E. Evaluation of recommender system: a new approach. Expert Systems with Applications 2008; 35:3, 790-804.
  • Herlocker JL, Konstan J.A, Terveen LG, Riedl JT. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 2004; 22:1, 5-53.
  • Mark H, Eibe F, Geoffrey H, Bernhard P, Peter R, Ian HW (2009); The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1.

OLASILIKSAL KABA KÜMELER TEORİSİ YAKLAŞIMI İLE EKG VERİLERİNİN SINIFLANDIRILMASI

Year 2016, Volume: 17 Issue: 1, 159 - 166, 14.03.2016
https://doi.org/10.18038/btda.59175

Abstract

Sınıflandırma, bilgisayar mühendisliğinde bir veri kümesinin, uzmanlar yerine bilgisayarlar tarafından, özellikleri aracılığı ile gruplanması işlemidir. Kaba kümeler teorisi son yıllarda sınıflandırma problemlerinde gerekli karar kurallarının belirlenmesinde etkili bir araç olarak kullanılmaktadır. Bu çalışmada Eskişehir Osmangazi Üniversitesi Tıp Fakültesi’ndeki kalp hastalarının EKG verileri Kaba Kümeler Teorisi (KKT) ve Olasılıksal Kaba Kümeler Teorisi (OKKT) yaklaşımı ile sınıflandırılmıştır. Sınıflandırmada elde edilen sonuçlar değerlendirilirken, doğruluk ve genellik kriterlerinden yararlanılmıştır. OKKT’de bu kriterler, bir nesnenin karar kümesi içerisinde olup olmadığının koşullu olasılığını temsil eden (α, β)  eşik değerleriyle yakından ilişkili olduğu görülmüş ve ortalamaya bağlı OKKT’nin genellik değerinde %49 oranında iyileşme elde edilmiştir.

References

  • Entezari-Maleki R, Rezai A, Minaei-Bidgoli B. Comparison of classification methods based on the type of attributes and sample size. Journal of Convergence Information Technology 2009; 4.3: 94-102. [2] Han J, Kamber M. Data mining: Consepts and Techniques. The Morgan Kaufmann Series in Data Management Systems, San Francisco, CA, USA: Elseiver, 2006.
  • Kantardzic M. Data mining: concepts, models, methods, and algorithms University of California, California, CA, USA: Wiley-Interscience 2003.
  • Yang Y, Liu X. A re-examination of text categorization methods. In: ACM conference on Research and Development in Information Retrieval; 1999; Berkeley, CA, USA, pp. 42-49.
  • Komorowski J, Pawlak Z, Polkowski L, Skowron A. Rough fuzzy hybridization: a new trend in decision-making. Rough sets: a tutorial 1999; Singapore, Springer-Verlag.
  • Yao Y. Probabilistic rough set approximations. International Journal of Approximate Reasoning 2008; 49:2, 255-271.
  • Çekik R, Telçeken S, EKG Sinyallerinin Kaba Kümeler Teorisi Kullanılarak Sınıflandırılması. Anadolu University Journal of Science and Technology A-Applied Science and Engineering 2014;, 15.2: 125-135. [8] Ziarko W. Probabilistic approach to rough sets. International Journal of Approximate Reasoning 2008; 48:2, 272-284.
  • Yao Y. Three-way decisions with probabilistic rough sets. Information Science 2010; 180:3, 341-353.
  • Pawlak Z. Rough Sets. International Journal of Computer and Information Sciences 1982; 11: 341-356. [11] Pawlak Z. Rough sets: Theoretical aspects of reasoning about data. Vol. 9. Springer Science & Business Media, 2012.
  • Walczak B. Massart DL. Rough Sets theory. Chemenometrics and Intelligent Laboratory Systems 1999; 47: 1-16. [13] Deng XF, Yao YY. A multifaceted analysis of probabilistic three-way decisions. Fundamenta Informaticae 2014; 132.3: 291-313.
  • Hernandez-del-Olmo F, Gaudiso E. Evaluation of recommender system: a new approach. Expert Systems with Applications 2008; 35:3, 790-804.
  • Herlocker JL, Konstan J.A, Terveen LG, Riedl JT. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 2004; 22:1, 5-53.
  • Mark H, Eibe F, Geoffrey H, Bernhard P, Peter R, Ian HW (2009); The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1.
There are 12 citations in total.

Details

Journal Section Articles
Authors

Burak Mağden This is me

Sedat Telçeken

Publication Date March 14, 2016
Published in Issue Year 2016 Volume: 17 Issue: 1

Cite

APA Mağden, B., & Telçeken, S. (2016). OLASILIKSAL KABA KÜMELER TEORİSİ YAKLAŞIMI İLE EKG VERİLERİNİN SINIFLANDIRILMASI. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(1), 159-166. https://doi.org/10.18038/btda.59175
AMA Mağden B, Telçeken S. OLASILIKSAL KABA KÜMELER TEORİSİ YAKLAŞIMI İLE EKG VERİLERİNİN SINIFLANDIRILMASI. AUJST-A. June 2016;17(1):159-166. doi:10.18038/btda.59175
Chicago Mağden, Burak, and Sedat Telçeken. “OLASILIKSAL KABA KÜMELER TEORİSİ YAKLAŞIMI İLE EKG VERİLERİNİN SINIFLANDIRILMASI”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17, no. 1 (June 2016): 159-66. https://doi.org/10.18038/btda.59175.
EndNote Mağden B, Telçeken S (June 1, 2016) OLASILIKSAL KABA KÜMELER TEORİSİ YAKLAŞIMI İLE EKG VERİLERİNİN SINIFLANDIRILMASI. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17 1 159–166.
IEEE B. Mağden and S. Telçeken, “OLASILIKSAL KABA KÜMELER TEORİSİ YAKLAŞIMI İLE EKG VERİLERİNİN SINIFLANDIRILMASI”, AUJST-A, vol. 17, no. 1, pp. 159–166, 2016, doi: 10.18038/btda.59175.
ISNAD Mağden, Burak - Telçeken, Sedat. “OLASILIKSAL KABA KÜMELER TEORİSİ YAKLAŞIMI İLE EKG VERİLERİNİN SINIFLANDIRILMASI”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 17/1 (June 2016), 159-166. https://doi.org/10.18038/btda.59175.
JAMA Mağden B, Telçeken S. OLASILIKSAL KABA KÜMELER TEORİSİ YAKLAŞIMI İLE EKG VERİLERİNİN SINIFLANDIRILMASI. AUJST-A. 2016;17:159–166.
MLA Mağden, Burak and Sedat Telçeken. “OLASILIKSAL KABA KÜMELER TEORİSİ YAKLAŞIMI İLE EKG VERİLERİNİN SINIFLANDIRILMASI”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 17, no. 1, 2016, pp. 159-66, doi:10.18038/btda.59175.
Vancouver Mağden B, Telçeken S. OLASILIKSAL KABA KÜMELER TEORİSİ YAKLAŞIMI İLE EKG VERİLERİNİN SINIFLANDIRILMASI. AUJST-A. 2016;17(1):159-66.