BibTex RIS Kaynak Göster

THE EFFECT OF ZrSiO4 ADDITION INTO MgO-SPINEL COMPOSITE REFRACTORIES ON CORROSION BEHAVIOUR

Yıl 2010, Cilt: 11 Sayı: 2, 103 - 114, 27.12.2010

Öz

Corrosion behaviour of composite refractories obtained from the addition of various amount of
ZrSiO4 into MgO-spinel was examined. Density and porosity values were measured. Corrosion tests of
refractories had been carried out statically under standard conditions using cylindrical and square
shaped samples in terms of determining the interaction with cement clinker. Corrosion resistance was
determined by measuring penetration and spreading areas of the corroded regions of refractories. The
influence of corrosion resistance based on the microstructural changes occurred as a result of
solubilities of constituents in the interface of clinker-refractory for various regions was examined using SEM and the results were evaluated using EDX analysis. The incorporation of ZrSiO4 into
MgO-spinel increased the density values significantly due to the decrease in porosity. On the basis of
microstructural characterisation carried out in the interface of clinker-refractory, the following
observations were determined: i) the formation of ZrO2 and Mg2SiO4 phases among the MgO grains
after sintering, ii) the formation of CaZrO3 phase during penetration, iii) prevention of penetration by
making a barrier effect against to clinker with the improvement in densification, and iv) the decrease
in the amount of CaO and the increase in the quantity of MgO based on the EDX analysis made from
clinker to refractory in a corroded region. As a result of those reasons indicated, the addition of ZrSiO4
reduced the values of penetration and spreading areas of the corroded regions of refractories and
improved the corrosion resistance. For example, The improvement has been achieved at the distance
of penetration and spreading area of a material having M-%30S-%30Zircon composition in
comparison with M-%30S by factors of 2.2 and 1.8, respectively. This is also associated with a long
service life of M-S-Zircon based refractories for industrial applications.

Kaynakça

  • Aksel, C. (2003). The Microstructural Features of Refractory Material Corroded by Molten Glass. Ceramics International 29(3), 305- 309.
  • Aksel, C. ve Riley, F.L. (2003). Effect of Particle Size Distribution of Spinel on the Mechanical Properties and Thermal Shock Performance of MgO-Spinel Composites. Journal of the European Ceramic Society 23(16), 3079-3087.
  • Aksel, C., Dexet, M., Logen, N., Porte, F., Riley, F.L. ve Konieczny, F. (2003). The Influence of Zircon in a Model Aluminosilicate Glass Tank Forehearth Refractory. Journal of the European Ceramic Society 23(12), 2083-2088.
  • Aksel, C., Riley, F.L. ve Konieczny, F. (2004). The Corrosion Resistance of Alumina- Mullite-Zircon Refractories in Molten Glass. Euro Ceramics VIII - Key Engineering Materials Vols. 264-268, 1803-1806.
  • Aksel, C. ve Riley, F.L. (2006). Magnesia- Spinel (MgAl2O) Refractory Ceramic Composites. Ceramic Matrix Composites: Microstructure, Applications, Editör: I. M. Low, ss.359- 399, Woodhead Publishing Limited and CRC Press LLC, USA. and
  • Benbow, J. (1990). Cement kiln refractories- down to basics. Industrial Minerals 37- 45.
  • Ceylantekin, R. ve Aksel, C. (2006). Zirkon İla- vesiyle Model MgO-Spinel Kompozit Refrakterlerin Mekanik Özelliklerinin İyi- leştirilmesi Karakterizasyonu. VI. Uluslar Arası Katı- lımlı Seramik Kongresi Bildiriler Kitabı, No: 23, Sakarya, Türkiye, ss.199-204.
  • Ceylantekin, R. (2009). ZrSiO4 ve ZrO2 İlavele- rinin MgO-MgAlO4 Refrakterlerin Me- kanik, Isıl Şok ve Korozyon Davranışları- na Etkileri. Anadolu Üniversitesi, Fen Bi- limleri Enstitüsü, Seramik Mühendisliği Anabilim Dalı Doktora Tezi.
  • Chesters, J.H. (1973). Testing. Refractories: Production and Properties, ss.1-65, The Iron and Steel Institute, London.
  • Eusner, G.R. ve Hubble, D.H. (1960). Technology of spinel-bonded periclase brick. Journal of American Ceramic Society 35(2), 292-296.
  • Gabis, V. ve Graba, L. (1991). Microstructure of reaction-sintered refractories alumina-magnesia Ceramics 2593-2598.
  • spinel/corundum from prepared various Euro mixtures.
  • Harburg, H.K.F. (1993). Experience with magnesium-aluminium-spinel bricks in a 3000 t/d rotary kiln. Zement-Kalk-Gibs International 3/4, 446-454.
  • McCauley, R.A. (1995). Corrosion Test Procedures. Corrosion of Ceramics, ss.109-127, Marcel Dekker, Inc., New York, USA.
  • Moore, B., Frith, M. ve Evans, D. (1991). Developments in basic refractories for cement kilns. World Cement 5-12.
  • Shackelford, J.F., Alexander, W. ve Park, J.S. Eds. (1994). CRC Materials Science and Engineering Handbook, s.52, CRC Press, Boca Raton, Florida.
  • Tokunaga, K., Kozuka, H., Honda, T. ve Tanemura, improvement strength, coating adherence, and corrosion resistance of magnesia-spinel bricks for rotary cement kiln. UNITECR '91, Aachen, Almanya, ss.431-435. Further temperature
  • Uchikawa, H., Hagiwara, H., Shirasaka, M. ve Watanabe, T. (1984). Application of periclase-spinel bricks to cement rotary kiln in Japan. Interceram Special Issue 33, 386-406.

MgO-SPİNEL KOMPOZİT REFRAKTERLERE ZrSiO4 İLAVESİNİN KOROZYON DAVRANIŞINA ETKİSİ

Yıl 2010, Cilt: 11 Sayı: 2, 103 - 114, 27.12.2010

Öz

ZrSiO4’un farklı miktarlarda MgO-spinel’e ilavesiyle elde edilen kompozit refrakterlerin korozyon davranışı incelenmiştir. Yoğunluk ve gözenek değerleri ölçülmüştür. Refrakterlerin çimento klinkeri ile etkileşimini belirlemek açısından yapılan korozyon testleri statik olarak standartlara uygun şartlarda silindir ve kare şeklindeki numunelere uygulanmıştır. Refrakterlerde korozyona uğrayan bölgelerin penetrasyon ve yayılma alanları ölçülerek korozyon dirençleri belirlenmiştir. Klinker-refrakter ara yüzeyindeki farklı bölgelerde; bileşenlerin çözünürlükleri ile oluşan mikroyapısal değişikliklerin korozyon direncine olan etkisi SEM ile incelenmiştir ve EDX analizi yapılarak sonuçlar değerlendirilmiştir. ZrSiO4’un MgO-spinel’e ilavesi gözenekliliği azaltarak yoğunluk değerlerini önemli derecede arttırmıştır. Klinker-refrakter ara yüzeyinde yapılan mikroyapısal karakterizasyon sonucunda yapılan gözlemlerde: i) sinterleşme sonrasında MgO taneleri arasında ZrO2 ve Mg2SiO4 fazlarının oluştuğu, ii) penetrasyon esnasında CaZrO3 fazının oluştuğu, iii) yoğunlaşmanın artmasıyla birlikte oluşan yeni fazların klinkere karşı bir bariyer görevi yaparak sızmayı engellediği, ve iv) korozyona uğrayan bölgede klinkerden refraktere doğru yapılan EDX analizlerine göre CaO miktarının azaldığı ve MgO miktarının ise arttığı tespit edilmiştir. Belirtilen bu nedenlerden dolayı; ZrSiO4 ilavesi refrakterlerin korozyona uğrayan bölgelerdeki penetrasyon ve yayılma alanı değerlerini azaltarak, korozyon direncinin artmasına yol açmıştır. Örneğin M-%30S-%30Zirkon kompozisyonundaki malzemenin penetrasyon mesafesinde ve yayılma alanında M-%30S’e göre sırasıyla 2.2 ve 1.8 kat oranlarında iyileşme sağlanmıştır. Bu da M-S-Zirkon içerikli refrakterlerin endüstriyel kullanımda daha uzun servis ömrüne sahip olmasıyla bütünleşmektedir.

Kaynakça

  • Aksel, C. (2003). The Microstructural Features of Refractory Material Corroded by Molten Glass. Ceramics International 29(3), 305- 309.
  • Aksel, C. ve Riley, F.L. (2003). Effect of Particle Size Distribution of Spinel on the Mechanical Properties and Thermal Shock Performance of MgO-Spinel Composites. Journal of the European Ceramic Society 23(16), 3079-3087.
  • Aksel, C., Dexet, M., Logen, N., Porte, F., Riley, F.L. ve Konieczny, F. (2003). The Influence of Zircon in a Model Aluminosilicate Glass Tank Forehearth Refractory. Journal of the European Ceramic Society 23(12), 2083-2088.
  • Aksel, C., Riley, F.L. ve Konieczny, F. (2004). The Corrosion Resistance of Alumina- Mullite-Zircon Refractories in Molten Glass. Euro Ceramics VIII - Key Engineering Materials Vols. 264-268, 1803-1806.
  • Aksel, C. ve Riley, F.L. (2006). Magnesia- Spinel (MgAl2O) Refractory Ceramic Composites. Ceramic Matrix Composites: Microstructure, Applications, Editör: I. M. Low, ss.359- 399, Woodhead Publishing Limited and CRC Press LLC, USA. and
  • Benbow, J. (1990). Cement kiln refractories- down to basics. Industrial Minerals 37- 45.
  • Ceylantekin, R. ve Aksel, C. (2006). Zirkon İla- vesiyle Model MgO-Spinel Kompozit Refrakterlerin Mekanik Özelliklerinin İyi- leştirilmesi Karakterizasyonu. VI. Uluslar Arası Katı- lımlı Seramik Kongresi Bildiriler Kitabı, No: 23, Sakarya, Türkiye, ss.199-204.
  • Ceylantekin, R. (2009). ZrSiO4 ve ZrO2 İlavele- rinin MgO-MgAlO4 Refrakterlerin Me- kanik, Isıl Şok ve Korozyon Davranışları- na Etkileri. Anadolu Üniversitesi, Fen Bi- limleri Enstitüsü, Seramik Mühendisliği Anabilim Dalı Doktora Tezi.
  • Chesters, J.H. (1973). Testing. Refractories: Production and Properties, ss.1-65, The Iron and Steel Institute, London.
  • Eusner, G.R. ve Hubble, D.H. (1960). Technology of spinel-bonded periclase brick. Journal of American Ceramic Society 35(2), 292-296.
  • Gabis, V. ve Graba, L. (1991). Microstructure of reaction-sintered refractories alumina-magnesia Ceramics 2593-2598.
  • spinel/corundum from prepared various Euro mixtures.
  • Harburg, H.K.F. (1993). Experience with magnesium-aluminium-spinel bricks in a 3000 t/d rotary kiln. Zement-Kalk-Gibs International 3/4, 446-454.
  • McCauley, R.A. (1995). Corrosion Test Procedures. Corrosion of Ceramics, ss.109-127, Marcel Dekker, Inc., New York, USA.
  • Moore, B., Frith, M. ve Evans, D. (1991). Developments in basic refractories for cement kilns. World Cement 5-12.
  • Shackelford, J.F., Alexander, W. ve Park, J.S. Eds. (1994). CRC Materials Science and Engineering Handbook, s.52, CRC Press, Boca Raton, Florida.
  • Tokunaga, K., Kozuka, H., Honda, T. ve Tanemura, improvement strength, coating adherence, and corrosion resistance of magnesia-spinel bricks for rotary cement kiln. UNITECR '91, Aachen, Almanya, ss.431-435. Further temperature
  • Uchikawa, H., Hagiwara, H., Shirasaka, M. ve Watanabe, T. (1984). Application of periclase-spinel bricks to cement rotary kiln in Japan. Interceram Special Issue 33, 386-406.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Rasim Ceylantekin

Cemail Aksel

Yayımlanma Tarihi 27 Aralık 2010
Yayımlandığı Sayı Yıl 2010 Cilt: 11 Sayı: 2

Kaynak Göster

APA Ceylantekin, R., & Aksel, C. (2010). THE EFFECT OF ZrSiO4 ADDITION INTO MgO-SPINEL COMPOSITE REFRACTORIES ON CORROSION BEHAVIOUR. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 11(2), 103-114.
AMA Ceylantekin R, Aksel C. THE EFFECT OF ZrSiO4 ADDITION INTO MgO-SPINEL COMPOSITE REFRACTORIES ON CORROSION BEHAVIOUR. AUBTD-A. Aralık 2010;11(2):103-114.
Chicago Ceylantekin, Rasim, ve Cemail Aksel. “THE EFFECT OF ZrSiO4 ADDITION INTO MgO-SPINEL COMPOSITE REFRACTORIES ON CORROSION BEHAVIOUR”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 11, sy. 2 (Aralık 2010): 103-14.
EndNote Ceylantekin R, Aksel C (01 Aralık 2010) THE EFFECT OF ZrSiO4 ADDITION INTO MgO-SPINEL COMPOSITE REFRACTORIES ON CORROSION BEHAVIOUR. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 11 2 103–114.
IEEE R. Ceylantekin ve C. Aksel, “THE EFFECT OF ZrSiO4 ADDITION INTO MgO-SPINEL COMPOSITE REFRACTORIES ON CORROSION BEHAVIOUR”, AUBTD-A, c. 11, sy. 2, ss. 103–114, 2010.
ISNAD Ceylantekin, Rasim - Aksel, Cemail. “THE EFFECT OF ZrSiO4 ADDITION INTO MgO-SPINEL COMPOSITE REFRACTORIES ON CORROSION BEHAVIOUR”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 11/2 (Aralık 2010), 103-114.
JAMA Ceylantekin R, Aksel C. THE EFFECT OF ZrSiO4 ADDITION INTO MgO-SPINEL COMPOSITE REFRACTORIES ON CORROSION BEHAVIOUR. AUBTD-A. 2010;11:103–114.
MLA Ceylantekin, Rasim ve Cemail Aksel. “THE EFFECT OF ZrSiO4 ADDITION INTO MgO-SPINEL COMPOSITE REFRACTORIES ON CORROSION BEHAVIOUR”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, c. 11, sy. 2, 2010, ss. 103-14.
Vancouver Ceylantekin R, Aksel C. THE EFFECT OF ZrSiO4 ADDITION INTO MgO-SPINEL COMPOSITE REFRACTORIES ON CORROSION BEHAVIOUR. AUBTD-A. 2010;11(2):103-14.