BibTex RIS Kaynak Göster

-

Yıl 2015, Cilt: 16 Sayı: 2, 135 - 144, 11.11.2015
https://doi.org/10.18038/btd-a.36674

Öz

In the present study, an electrospinning procedure was carried out in order to develop a simple and effective tool for fabricating gelatin/bioactive glass (Gt/BG) nanofibers with a controllable and predictable fiber diameter. For this purpose, a quadratic model was obtained within the context of response surface methodology based on a three-level, three-variable Box–Behnken design technique to describe the relationship between the fiber diameter and the electrospinning parameters, namely BG content, tip-to-collector distance, and flow rate. Meanwhile, the quality of fit of the model was evaluated by the coefficients of determination (R-square) and the analysis of variances. Moreover, the adequacy of the model was examined by conducting additional experiments that were not employed in the model generation

Kaynakça

  • Aliabadi, M. Irani, M., Ismaeili, J. and Najafzadeh, S. (2014). Design and Evaluation of Chitosan/Hydroxyapatite Composite Nanofiber Membrane for the Removal of Heavy Metal Ions from Aqueous Solution. Journal of the Taiwan Institute of Chemical Engineers 45(2), 518–526.
  • Allo, B.A., Rizkalla, A.S. and Mequanint, K. (2010). Synthesis and Electrospinning of ε- Polycaprolactone-Bioactive Glass Hybrid Biomaterials Via a Sol-Gel Process. Langmuir 26(23), 18340–18348.
  • Andric, T., Sampson, A.C. and Freeman, J.W. (2011). Fabrication and Characterization of Electrospun Osteon Mimicking Scaffolds for Bone Tissue Engineering. Materials Science and Engineering C 31(1), 2–8.
  • Asran, A.S., Henning, S. and Michler, G.H. (2010). Polyvinyl Alcohol–Collagen–Hydroxyapatite Biocomposite Nanofibrous Scaffold: Mimicking the Key Features of Natural Bone at the Nanoscale Level. Polymer 51(4), 868–876.
  • Brun, P., Ghezzo, F., Roso, M., Danesin, R., Palù, G., Bagno, A., Modesti, M., Castagliuolo, I. and Dettin, M. (2011). Electrospun Scaffolds of Self-Assembling Peptides with Poly(ethylene oxide) for Bone Tissue Engineering. Acta Biomaterialia 7(6), 2526–2532.
  • Chang, W., Mu, X., Zhu, X., Ma, G., Li, C., Xu, F. and Nie, J. (2013). Biomimetic Composite Scaffolds Based Mineralization of Hydroxyapatite on Electrospun Calcium-Containing Poly(vinyl alcohol) Nanofibers. Materials Science and Engineering C 33(7), 4369–4376.
  • Chen, J.P. and Chang, Y.S. (2011). Preparation and Characterization of Composite Nanofibers of Polycaprolactone and Nanohydroxyapatite for Osteogenic Differentiation of Mesenchymal Stem Cells. Colloids and Surfaces B: Biointerfaces 86(1), 169–175.
  • Chong, E.J., Phan, T.T., Lim, I.J., Zhang, Y.Z., Bay, B.H., Ramakrishna, S. and Lim, C.T. (2007). Evaluation of Electrospun PCL/Gelatin Nanofibrous Scaffold for Wound Healing and Layered Dermal Reconstitution. Acta Biomaterialia 3(3), 321-330.
  • Doustgani, A., Vasheghani-Farahani, E., Soleimani, M. and Hashemi-Najafabadi, S. (2012). Optimizing the Mechanical Properties of Electrospun Polycaprolactone and Nanohydroxyapatite Composite Nanofibers. Composites Part B: Engineering 43(4), 1830–1836.
  • Frohbergh, M.E., Katsman, A., Botta, G.P., Lazarovici, P., Schauer, C.L., Wegst, U.G.K. and Lelkes, P.I. (2012). Electrospun Hydroxyapatite-Containing Chitosan Nanofibers Crosslinked with Genipin for Bone Tissue Engineering. Biomaterials 33(36), 9167–9178.
  • Gao, C., Gao, Q., Li, Y., Rahaman, M.N., Teramoto, A., Abe, K. (2013). In Vitro Evaluation of Electrospun Gelatin-Bioactive Glass Hybrid Scaffolds for Bone Regeneration. Journal of Applied Polymer Science 127(4), 2588-2599.
  • Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A.P., Rofail, F., Smith, H., Wu, B.M., Shemin, R., Beygui, R.E. and MacLellan, W.R. (2008). Three-Dimensional Electrospun ECM- Based Hybrid Scaffolds for Cardiovascular Tissue Engineering. Biomaterials 29(19), 2907–2914.
  • Jaiswal, A.K., Chhabra, H., Kadam, S.S., Londhe, K., Soni, V.P. and Bellare, J.R. (2013). Hardystonite Improves Biocompatibility and Strength of Electrospun Polycaprolactone Nanofibers Over Hydroxyapatite: A Comparative Study. Materials Science and Engineering C 33(5), 2926–2936.
  • Jose, M.V., Thomas, V., Johnson, K.T., Dean, D.R. and Nyairo, E. (2009). Aligned PLGA/HA Nanofibrous Nanocomposite Scaffolds for Bone Tissue Engineering. Acta Biomaterialia 5(1), 305–315.
  • Kharaziha, M., Fathi, M.H. and Edris, H. (2013). Effects of Surface Modification on the Mechanical and Structural Properties of Nanofibrous Poly(ε-caprolactone)/Forsterite Scaffold for Tissue Engineering Applications. Materials Science and Engineering C 33(8), 4512–4519.
  • Nadeem, D., Mostafa Kiamehr, M., Yang, X. and Su, B. (2013). Fabrication and in Vitro Evaluation of a Sponge-Like Bioactive-Glass/Gelatin Composite Scaffold for Bone Tissue Engineering. Materials Science and Engineering C 33(5), 2669–2678.
  • Padmanabhan, T., Kamaraj, V., Magwood Jr., L. and Starly, B. (2011). Experimental Investigation on the Operating Variables of a Near-Field Electrospinning Process Via Response Surface Methodology. Journal of Manufacturing Processes 13(2), 104–112.
  • Paşcu, E.I., Stokes, J. and McGuinness, G.B. (2013). Electrospun Composites of PHBV, Silk Fibroin and Nano-Hydroxyapatite for Bone Tissue Engineering. Materials Science and Engineering C 33(8), 4905–4916.
  • Ray, S. and Lalman, J.A. (2011). Using the Box–Benkhen Design (BBD) to Minimize the Diameter of Electrospun Titanium Dioxide Nanofibers. Chemical Engineering Journal 169(1–3), 116–125.
  • Ren, L., Wang, J., Yang, F.Y., Wang, L., Wang, D., Wang, T.X. and Tian, M.M. (2010). Fabrication of Gelatin–Siloxane Fibrous Mats Via Sol–gel and Electrospinning Procedure and its Application for Bone Tissue Engineering. Materials Science and Engineering C 30(3), 437–444.
  • Rim, N.G., Kim, S.J., Shin, Y.M., Jun, I., Lim, D.W., Park, J.H. and Shin, H. (2012). Mussel-Inspired Surface Modification of poly(L-lactide) Electrospun Fibers for Modulation of Osteogenic Differentiation of Human Mesenchymal Stem Cells. Colloids and Surfaces B: Biointerfaces 91, 189–197.
  • Roso, M., Lorenzetti, A., Besco, S., Monti, M., Berti, G. and Modesti, M. (2011). Application of Empirical Modelling in Multi-Layers Membrane Manufacturing. Computers & Chemical Engineering 35(11), 2248–2256.
  • Sarlak, N., Nejad, M.A.F., Shakhesi, S. and Shabani, K. (2012). Effects of Electrospinning Parameters on Titanium Dioxide Nanofibers Diameter and Morphology: An Investigation by Box–Wilson Central Composite Design (CCD). Chemical Engineering Journal 210, 410–416.
  • Shao, S., Zhou, S., Li, L., Li, J., Luo, C., Wang, J., Li, X. and Weng, J. (2011). Osteoblast Function on Electrically Conductive Electrospun PLA/MWCNTs Nanofibers. Biomaterials 32(11), 2821– 2833.
  • Toskas, G., Cherif, C., Hund, R.D., Laourine, E., Mahltig, B., Fahmi, A., Heinemann, C. and Hanked, T. (2013). Chitosan (PEO)/Silica Hybrid Nanofibers as a Potential Biomaterial for Bone Regeneration. Carbohydrate Polymers 94(2), 713–722.
  • Xie, J., Zhong, S., Ma, B., Shuler, F.D. and Lim, C.T. (2013). Controlled Biomineralization of Electrospun poly(ε-caprolactone) Fibers to Enhance Their Mechanical Properties. Acta Biomaterialia 9(3), 5698–5707.
  • Yang, F., Wolke, J.G.C. and Jansen, J.A. (2008). Biomimetic Calcium Phosphate Coating on Electrospun poly(ε-caprolactone) Scaffolds for Bone Tissue Engineering. Chemical Engineering Journal 137 (1), 154–161.

ELEKTROSPİNNİNG PARAMETRELERİNİN JELATİN/BİYOAKTİF CAM NANOLİF YAPISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ

Yıl 2015, Cilt: 16 Sayı: 2, 135 - 144, 11.11.2015
https://doi.org/10.18038/btd-a.36674

Öz

Bu çalışmada, malzeme ve proses değişkenlerinin jelatin/biyoaktif cam (Gt/BG) nanokompozit liflerinin çapı üzerindeki etkilerinin incelenmesi hedeflenmiştir. Bu amaçla; farklı oranlarda biyoaktif cam tozu içeren jelatin çözeltilerine elektrospinning işlemi uygulanarak nanokompozit malzemeler üretilmiştir. Biyoaktif cam içeriğinin, uç ile toplayıcı arasındaki açıklığın ve çözelti akış hızının ortalama lif çapı üzerindeki etkileri yanıt yüzey yöntemi kullanılarak incelenmiştir. Sonuç olarak; üç değişkenli ve üç seviyeli Box–Benkhen tasarım yöntemi kullanılarak ikinci dereceden bir model oluşturulmuş ve geliştirilen bu model aracılığı ile değişkenlerin etkinlikleri değerlendirilerek, hedeflenen lif çapının sağlanması için gerekli proses koşullarının tahmin edilebileceği basit ve etkin bir yöntem geliştirilmiştir.

Kaynakça

  • Aliabadi, M. Irani, M., Ismaeili, J. and Najafzadeh, S. (2014). Design and Evaluation of Chitosan/Hydroxyapatite Composite Nanofiber Membrane for the Removal of Heavy Metal Ions from Aqueous Solution. Journal of the Taiwan Institute of Chemical Engineers 45(2), 518–526.
  • Allo, B.A., Rizkalla, A.S. and Mequanint, K. (2010). Synthesis and Electrospinning of ε- Polycaprolactone-Bioactive Glass Hybrid Biomaterials Via a Sol-Gel Process. Langmuir 26(23), 18340–18348.
  • Andric, T., Sampson, A.C. and Freeman, J.W. (2011). Fabrication and Characterization of Electrospun Osteon Mimicking Scaffolds for Bone Tissue Engineering. Materials Science and Engineering C 31(1), 2–8.
  • Asran, A.S., Henning, S. and Michler, G.H. (2010). Polyvinyl Alcohol–Collagen–Hydroxyapatite Biocomposite Nanofibrous Scaffold: Mimicking the Key Features of Natural Bone at the Nanoscale Level. Polymer 51(4), 868–876.
  • Brun, P., Ghezzo, F., Roso, M., Danesin, R., Palù, G., Bagno, A., Modesti, M., Castagliuolo, I. and Dettin, M. (2011). Electrospun Scaffolds of Self-Assembling Peptides with Poly(ethylene oxide) for Bone Tissue Engineering. Acta Biomaterialia 7(6), 2526–2532.
  • Chang, W., Mu, X., Zhu, X., Ma, G., Li, C., Xu, F. and Nie, J. (2013). Biomimetic Composite Scaffolds Based Mineralization of Hydroxyapatite on Electrospun Calcium-Containing Poly(vinyl alcohol) Nanofibers. Materials Science and Engineering C 33(7), 4369–4376.
  • Chen, J.P. and Chang, Y.S. (2011). Preparation and Characterization of Composite Nanofibers of Polycaprolactone and Nanohydroxyapatite for Osteogenic Differentiation of Mesenchymal Stem Cells. Colloids and Surfaces B: Biointerfaces 86(1), 169–175.
  • Chong, E.J., Phan, T.T., Lim, I.J., Zhang, Y.Z., Bay, B.H., Ramakrishna, S. and Lim, C.T. (2007). Evaluation of Electrospun PCL/Gelatin Nanofibrous Scaffold for Wound Healing and Layered Dermal Reconstitution. Acta Biomaterialia 3(3), 321-330.
  • Doustgani, A., Vasheghani-Farahani, E., Soleimani, M. and Hashemi-Najafabadi, S. (2012). Optimizing the Mechanical Properties of Electrospun Polycaprolactone and Nanohydroxyapatite Composite Nanofibers. Composites Part B: Engineering 43(4), 1830–1836.
  • Frohbergh, M.E., Katsman, A., Botta, G.P., Lazarovici, P., Schauer, C.L., Wegst, U.G.K. and Lelkes, P.I. (2012). Electrospun Hydroxyapatite-Containing Chitosan Nanofibers Crosslinked with Genipin for Bone Tissue Engineering. Biomaterials 33(36), 9167–9178.
  • Gao, C., Gao, Q., Li, Y., Rahaman, M.N., Teramoto, A., Abe, K. (2013). In Vitro Evaluation of Electrospun Gelatin-Bioactive Glass Hybrid Scaffolds for Bone Regeneration. Journal of Applied Polymer Science 127(4), 2588-2599.
  • Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A.P., Rofail, F., Smith, H., Wu, B.M., Shemin, R., Beygui, R.E. and MacLellan, W.R. (2008). Three-Dimensional Electrospun ECM- Based Hybrid Scaffolds for Cardiovascular Tissue Engineering. Biomaterials 29(19), 2907–2914.
  • Jaiswal, A.K., Chhabra, H., Kadam, S.S., Londhe, K., Soni, V.P. and Bellare, J.R. (2013). Hardystonite Improves Biocompatibility and Strength of Electrospun Polycaprolactone Nanofibers Over Hydroxyapatite: A Comparative Study. Materials Science and Engineering C 33(5), 2926–2936.
  • Jose, M.V., Thomas, V., Johnson, K.T., Dean, D.R. and Nyairo, E. (2009). Aligned PLGA/HA Nanofibrous Nanocomposite Scaffolds for Bone Tissue Engineering. Acta Biomaterialia 5(1), 305–315.
  • Kharaziha, M., Fathi, M.H. and Edris, H. (2013). Effects of Surface Modification on the Mechanical and Structural Properties of Nanofibrous Poly(ε-caprolactone)/Forsterite Scaffold for Tissue Engineering Applications. Materials Science and Engineering C 33(8), 4512–4519.
  • Nadeem, D., Mostafa Kiamehr, M., Yang, X. and Su, B. (2013). Fabrication and in Vitro Evaluation of a Sponge-Like Bioactive-Glass/Gelatin Composite Scaffold for Bone Tissue Engineering. Materials Science and Engineering C 33(5), 2669–2678.
  • Padmanabhan, T., Kamaraj, V., Magwood Jr., L. and Starly, B. (2011). Experimental Investigation on the Operating Variables of a Near-Field Electrospinning Process Via Response Surface Methodology. Journal of Manufacturing Processes 13(2), 104–112.
  • Paşcu, E.I., Stokes, J. and McGuinness, G.B. (2013). Electrospun Composites of PHBV, Silk Fibroin and Nano-Hydroxyapatite for Bone Tissue Engineering. Materials Science and Engineering C 33(8), 4905–4916.
  • Ray, S. and Lalman, J.A. (2011). Using the Box–Benkhen Design (BBD) to Minimize the Diameter of Electrospun Titanium Dioxide Nanofibers. Chemical Engineering Journal 169(1–3), 116–125.
  • Ren, L., Wang, J., Yang, F.Y., Wang, L., Wang, D., Wang, T.X. and Tian, M.M. (2010). Fabrication of Gelatin–Siloxane Fibrous Mats Via Sol–gel and Electrospinning Procedure and its Application for Bone Tissue Engineering. Materials Science and Engineering C 30(3), 437–444.
  • Rim, N.G., Kim, S.J., Shin, Y.M., Jun, I., Lim, D.W., Park, J.H. and Shin, H. (2012). Mussel-Inspired Surface Modification of poly(L-lactide) Electrospun Fibers for Modulation of Osteogenic Differentiation of Human Mesenchymal Stem Cells. Colloids and Surfaces B: Biointerfaces 91, 189–197.
  • Roso, M., Lorenzetti, A., Besco, S., Monti, M., Berti, G. and Modesti, M. (2011). Application of Empirical Modelling in Multi-Layers Membrane Manufacturing. Computers & Chemical Engineering 35(11), 2248–2256.
  • Sarlak, N., Nejad, M.A.F., Shakhesi, S. and Shabani, K. (2012). Effects of Electrospinning Parameters on Titanium Dioxide Nanofibers Diameter and Morphology: An Investigation by Box–Wilson Central Composite Design (CCD). Chemical Engineering Journal 210, 410–416.
  • Shao, S., Zhou, S., Li, L., Li, J., Luo, C., Wang, J., Li, X. and Weng, J. (2011). Osteoblast Function on Electrically Conductive Electrospun PLA/MWCNTs Nanofibers. Biomaterials 32(11), 2821– 2833.
  • Toskas, G., Cherif, C., Hund, R.D., Laourine, E., Mahltig, B., Fahmi, A., Heinemann, C. and Hanked, T. (2013). Chitosan (PEO)/Silica Hybrid Nanofibers as a Potential Biomaterial for Bone Regeneration. Carbohydrate Polymers 94(2), 713–722.
  • Xie, J., Zhong, S., Ma, B., Shuler, F.D. and Lim, C.T. (2013). Controlled Biomineralization of Electrospun poly(ε-caprolactone) Fibers to Enhance Their Mechanical Properties. Acta Biomaterialia 9(3), 5698–5707.
  • Yang, F., Wolke, J.G.C. and Jansen, J.A. (2008). Biomimetic Calcium Phosphate Coating on Electrospun poly(ε-caprolactone) Scaffolds for Bone Tissue Engineering. Chemical Engineering Journal 137 (1), 154–161.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Seza Gönen

Bade Ertürk Bu kişi benim

Ece Tüccar Bu kişi benim

Melek Erol Taygun Bu kişi benim

Sadriye Küçükbayrak

Yayımlanma Tarihi 11 Kasım 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 16 Sayı: 2

Kaynak Göster

APA Gönen, S., Ertürk, B., Tüccar, E., Erol Taygun, M., vd. (2015). ELEKTROSPİNNİNG PARAMETRELERİNİN JELATİN/BİYOAKTİF CAM NANOLİF YAPISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 16(2), 135-144. https://doi.org/10.18038/btd-a.36674
AMA Gönen S, Ertürk B, Tüccar E, Erol Taygun M, Küçükbayrak S. ELEKTROSPİNNİNG PARAMETRELERİNİN JELATİN/BİYOAKTİF CAM NANOLİF YAPISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ. AUBTD-A. Kasım 2015;16(2):135-144. doi:10.18038/btd-a.36674
Chicago Gönen, Seza, Bade Ertürk, Ece Tüccar, Melek Erol Taygun, ve Sadriye Küçükbayrak. “ELEKTROSPİNNİNG PARAMETRELERİNİN JELATİN/BİYOAKTİF CAM NANOLİF YAPISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 16, sy. 2 (Kasım 2015): 135-44. https://doi.org/10.18038/btd-a.36674.
EndNote Gönen S, Ertürk B, Tüccar E, Erol Taygun M, Küçükbayrak S (01 Kasım 2015) ELEKTROSPİNNİNG PARAMETRELERİNİN JELATİN/BİYOAKTİF CAM NANOLİF YAPISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 16 2 135–144.
IEEE S. Gönen, B. Ertürk, E. Tüccar, M. Erol Taygun, ve S. Küçükbayrak, “ELEKTROSPİNNİNG PARAMETRELERİNİN JELATİN/BİYOAKTİF CAM NANOLİF YAPISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ”, AUBTD-A, c. 16, sy. 2, ss. 135–144, 2015, doi: 10.18038/btd-a.36674.
ISNAD Gönen, Seza vd. “ELEKTROSPİNNİNG PARAMETRELERİNİN JELATİN/BİYOAKTİF CAM NANOLİF YAPISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 16/2 (Kasım 2015), 135-144. https://doi.org/10.18038/btd-a.36674.
JAMA Gönen S, Ertürk B, Tüccar E, Erol Taygun M, Küçükbayrak S. ELEKTROSPİNNİNG PARAMETRELERİNİN JELATİN/BİYOAKTİF CAM NANOLİF YAPISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ. AUBTD-A. 2015;16:135–144.
MLA Gönen, Seza vd. “ELEKTROSPİNNİNG PARAMETRELERİNİN JELATİN/BİYOAKTİF CAM NANOLİF YAPISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, c. 16, sy. 2, 2015, ss. 135-44, doi:10.18038/btd-a.36674.
Vancouver Gönen S, Ertürk B, Tüccar E, Erol Taygun M, Küçükbayrak S. ELEKTROSPİNNİNG PARAMETRELERİNİN JELATİN/BİYOAKTİF CAM NANOLİF YAPISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ. AUBTD-A. 2015;16(2):135-44.

Cited By