BibTex RIS Cite

-

Year 2015, Volume: 16 Issue: 2, 317 - 326, 12.11.2015
https://doi.org/10.18038/btd-a.23773

Abstract

In this study, microelectrolysis (ME) method was used for the treatment of the Reactive Black 5, which is a type of azo dye from the model wastewater. ME reactor was filled by iron chip-granular activated carbon (Fe/C) or carbon steel-granular activated carbon (CS/C) mixtures. In microelectrolysis experiments the effects of operational parameters such as initial RB5 concentration (50-150 mg/L), the pumping speed of the solution (30-60 rpm), initial pH value of the solution , solution conductivity (3-9 mS/cm) and temperature (25-45 oC) were examined. Under the conditions of an initial pH of 3, RB5 concentration of 50 mg/L, pumping speed of 30 rpm, and conductivity of 3 mS/cm, the dye removal efficiencies of 97.5% for Fe/C filling and 96.6% for CS/C filling were achieved

References

  • Chen Z., Sun X. , Liu Z., Huang X. and Jia R. (2013). A Novel Application of Micro Electrolysis-Fenton Process on High-strength Acidic Dye Wastewater, Nature Environment and Pollution Technology 12( 2) 255-260.
  • Cheng, H., Xu, W., Liu, J., Wang, H., He, Y. and Chen, G. (2007). Pretreatment of Wastewater from Triazine Manufacturing by Coagulation, Electrolysis, and Internal Microelectrolysis, Journal Hazardous Materials 146, 385–392.
  • Cheng, L., Bi X. and Liu, C. (2010). Pretreatment of Straw Pulp and Papermaking Middle Stage Wastewater by Iron-carbon Microelectrolysis, IEEE.
  • Fan, L., Ni, J., Wu, Y. and Zhang,Y., (2009). Treatment of Bromoamine Acid Wastewater using Combined Process of Micro-Electrolysis and Biological Aerobic Filter, Journal Hazardous Materials, 162, 1204-1210.
  • Guo, X., Cai, Y. Wei, Z. H.,Hou Yang, X. and Wang, Z. (2013). Treatment of Di Azo Dye C.I. Reactive Black 5 in Aqueous Solution by Combined Process of Interior Micro Electrolysis and Ozonation, Water Science & Technology, 67 1880-1885.
  • http1://www.sigmaaldrich.com/catalog/product/sial/306452?lang=en&region=TR
  • Huang, D., Yue, Q., Fu, K., Zhang, B., Gao, B., Li, Q. and Wang, Y. (2014). Application for Acrylonitrile Wastewater Treatment by New Micro-electrolysis Ceramic Fillers, Desalination and Water Treatment, 1-9.
  • Kuşvuran E., Irmak S., Yavuz H.I., Samil A. and Erbatur O. (2005). Comparison of the Treatment Methods Efficiency for Decolorization and Mineralization of Reactive Black 5 azo dye, J. Hazard. Mater., 119, 109–116.
  • Lai, B., Zhou, Y., Yang, P., Yang, J. and Wang, J. (2013). Degradation of 3,3-iminobis-Propanenitrile in Aqueous Solution by Fe0 /GAC Micro-electrolysis System, Chemosphere, 90 1470-1477.
  • Lan, S.,Ju, F. and Wu, X. (2012). Treatment of Wastewater Containing EDTA-Cu(II) using the Combined Process of Interior Microelectrolysis and Fenton Oxidation–coagulation, Separation and Purification Technology, 89, 117–124.
  • Li, M., Zou, D., Zou, H. and Fan D. (2011) Degradation of Nitrobenzene in Simulated Wastewater by Iron-Carbon Micro-electrolysis Packing, Environmental Technology, 33 (15-16) 1761-6.
  • Pazos, M., Sanroman, A.M. and Rivera M. (2011). Development of an Electrochemical Cell for the Removal of Reactive Black 5, Desalination, 274, 39-43.
  • Qin, G. and Gong, D. (2014). Pretreatment of Petroleum Refinery Wastewater by Microwave-Enhanced Fe0/GAC Micro-electrolysis, Desalination and Water Treatment, 52, 2512–2518.
  • Qin, L., Zhang, G., Meng, Q., Xu, L. and Lv, B. (2012). Enhanced MBR by Internal Micro-electrolysis for Degradation of Anthraquinone Dye Wastewater, Chemical Engineering Journal, 210, 575– 584.
  • Ren, Y., Wu, Z., Ondruschka, B., Braeutigam, P., Franke, M., Nehring, H. and Hampel, U. (2011) Oxidation of Phenol by Microbubble-Assisted Microelectrolysis, Chemical Engineering Technology, 34, 5, 699–706.
  • Şengil A. and Özacar M. (2009). The Decolorization of C.I. Reactive Black 5 in Aqueous Solution by Electrocoagulation using Sacrificial Iron Electrodes, Journal of Hazardous Materials, 161, 1369– 1376.
  • Tsang, D. C. W., Hu, J., Liu, M. Y., Zhang, W., Lai, K. C. K. and Lo, I. M. C. (2007) Activated Carbon Produced from Waste Wood Pallets: Adsorption of Three Classes of Dyes, Water, Air, and Soil Pollution, 184 (1-4) 141-155.
  • Wen-wu, L.,Xue-yan, T., Xiu-ping, W., Feng-qun, W. and Wen, L. (2012), Pretreatment of Coking Wastewater by Acid Out, Micro-electrolysis Process with in Situ Electrochemical Peroxidation Reaction, Chemical Engineering Journal, 200, 720–728.
  • Wu, Q., Hua, T. and Zhou, Q. (2011). Treatment and Remediation of a Wastewater Lagoon using Microelectrolysis and Modified DAT/IAT Methods, Journal of Environmental Sciences, 23(3) 388–395.
  • Yang, H., Xue, J.-jun , Wang, L., Wang, Z.-wei, Ling, S.-sheng, Kong, L.-guo and Chen, Y.-lan. (2012). Research on the Treatment of Phosphoric Wastewater by Ultrasound-assisted Microelectrolysis Method, Environmental Technology, 33 (2) 221–227.
  • Yang, X. (2009), Interior Micro Electrolysis Oxidation of Polyester Wastewater and its Treatment Technology, Journal of Hazardous Materials, 169, 480–485.
  • Yang, X., Xue, Y. and Wang, W. (2009) Mechanism, Kinetics and Application Studies on Enhanced Activated sludge by Interior Microelectrolysis, Bioresource Technology, 100, 649–653.
  • Yavuz Y. and Shahbazi R. (2012) Anodic Oxidation of Reactive Black 5 Dye using Boron Doped Diamond Anodes in a Bipolar Trickle Tower Reactor, Separation and Purification Technology 85 130–136.
  • Ying, D., Peng J., Xu X., Li K., Wang Y. and Ji, J. (2012). Treatment of Mature Landfill Leachate by Internal Micro-electrolysis Integrated with Coagulation: A Comparative Study on a Novel Sequencing Batch Reactor Based on Zero Valent Iron, Journal Hazardous Materials 229, 426- 433.
  • Zhou, J., Gao, J., Liu, Y., Xiao, S., Zhang, R. and Zhang, Z. (2013). Contaminant Removal Performances on Domestic Sewage using Modified Anoxic/Anaerobic/Oxic Process and Micro-electrolysis, Environmental Technology, 34 (19) 2773–2779.
  • Zhou, Z., Qiao, W., Lin, Y., Shen, X., Hu, D., Zhang, J., Jiang, L.M. and Wang, L. (2014). Phosphonate Removal from Discharged Circulating Cooling Water using Iron-Carbon Micro-Electrolysis, Water Science Technology 70(3), 524-532.

MİKROELEKTROLİZ YÖNTEMİ İLE MODEL ÇÖZELTİDEN REAKTİF BLACK 5 GİDERİMİ

Year 2015, Volume: 16 Issue: 2, 317 - 326, 12.11.2015
https://doi.org/10.18038/btd-a.23773

Abstract

Bu çalışmada bir azo boya olan Reaktif Black 5 (RB5) içeren model atık suyun arıtımı için mikroelektroliz (ME) yöntemi kullanıldı. Demir talaşı-granül aktif karbon (Fe/C) ve karbon çeliği-granül aktif karbon (KÇ/C) karışımları ME reaktörü dolgusu olarak kullanıldı. Mikroelektroliz deneylerinde boya derişiminin (50-150 mg/L), çözelti pompalama hızının (30-60 rpm), çözelti pH değerinin (2-4), çözelti iletkenliğinin (3-9 mS/cm) ve sıcaklığın (25-45 0C) boya giderim yüzdesine olan etkileri incelendi.  Her iki dolgu için de çalışılan parametrelerin en uygun değerleri pH=3, 50 mg/L boya derişimi, 30 dev/dk pompalama hızı ve 3 mS/cm iletkenlik olarak belirlendi. Bu koşullarda (Fe/C) dolgu ile %97,5; (KÇ/C) dolgu ile %96,6’ lık RB% giderimine ulaşıldı. 

References

  • Chen Z., Sun X. , Liu Z., Huang X. and Jia R. (2013). A Novel Application of Micro Electrolysis-Fenton Process on High-strength Acidic Dye Wastewater, Nature Environment and Pollution Technology 12( 2) 255-260.
  • Cheng, H., Xu, W., Liu, J., Wang, H., He, Y. and Chen, G. (2007). Pretreatment of Wastewater from Triazine Manufacturing by Coagulation, Electrolysis, and Internal Microelectrolysis, Journal Hazardous Materials 146, 385–392.
  • Cheng, L., Bi X. and Liu, C. (2010). Pretreatment of Straw Pulp and Papermaking Middle Stage Wastewater by Iron-carbon Microelectrolysis, IEEE.
  • Fan, L., Ni, J., Wu, Y. and Zhang,Y., (2009). Treatment of Bromoamine Acid Wastewater using Combined Process of Micro-Electrolysis and Biological Aerobic Filter, Journal Hazardous Materials, 162, 1204-1210.
  • Guo, X., Cai, Y. Wei, Z. H.,Hou Yang, X. and Wang, Z. (2013). Treatment of Di Azo Dye C.I. Reactive Black 5 in Aqueous Solution by Combined Process of Interior Micro Electrolysis and Ozonation, Water Science & Technology, 67 1880-1885.
  • http1://www.sigmaaldrich.com/catalog/product/sial/306452?lang=en&region=TR
  • Huang, D., Yue, Q., Fu, K., Zhang, B., Gao, B., Li, Q. and Wang, Y. (2014). Application for Acrylonitrile Wastewater Treatment by New Micro-electrolysis Ceramic Fillers, Desalination and Water Treatment, 1-9.
  • Kuşvuran E., Irmak S., Yavuz H.I., Samil A. and Erbatur O. (2005). Comparison of the Treatment Methods Efficiency for Decolorization and Mineralization of Reactive Black 5 azo dye, J. Hazard. Mater., 119, 109–116.
  • Lai, B., Zhou, Y., Yang, P., Yang, J. and Wang, J. (2013). Degradation of 3,3-iminobis-Propanenitrile in Aqueous Solution by Fe0 /GAC Micro-electrolysis System, Chemosphere, 90 1470-1477.
  • Lan, S.,Ju, F. and Wu, X. (2012). Treatment of Wastewater Containing EDTA-Cu(II) using the Combined Process of Interior Microelectrolysis and Fenton Oxidation–coagulation, Separation and Purification Technology, 89, 117–124.
  • Li, M., Zou, D., Zou, H. and Fan D. (2011) Degradation of Nitrobenzene in Simulated Wastewater by Iron-Carbon Micro-electrolysis Packing, Environmental Technology, 33 (15-16) 1761-6.
  • Pazos, M., Sanroman, A.M. and Rivera M. (2011). Development of an Electrochemical Cell for the Removal of Reactive Black 5, Desalination, 274, 39-43.
  • Qin, G. and Gong, D. (2014). Pretreatment of Petroleum Refinery Wastewater by Microwave-Enhanced Fe0/GAC Micro-electrolysis, Desalination and Water Treatment, 52, 2512–2518.
  • Qin, L., Zhang, G., Meng, Q., Xu, L. and Lv, B. (2012). Enhanced MBR by Internal Micro-electrolysis for Degradation of Anthraquinone Dye Wastewater, Chemical Engineering Journal, 210, 575– 584.
  • Ren, Y., Wu, Z., Ondruschka, B., Braeutigam, P., Franke, M., Nehring, H. and Hampel, U. (2011) Oxidation of Phenol by Microbubble-Assisted Microelectrolysis, Chemical Engineering Technology, 34, 5, 699–706.
  • Şengil A. and Özacar M. (2009). The Decolorization of C.I. Reactive Black 5 in Aqueous Solution by Electrocoagulation using Sacrificial Iron Electrodes, Journal of Hazardous Materials, 161, 1369– 1376.
  • Tsang, D. C. W., Hu, J., Liu, M. Y., Zhang, W., Lai, K. C. K. and Lo, I. M. C. (2007) Activated Carbon Produced from Waste Wood Pallets: Adsorption of Three Classes of Dyes, Water, Air, and Soil Pollution, 184 (1-4) 141-155.
  • Wen-wu, L.,Xue-yan, T., Xiu-ping, W., Feng-qun, W. and Wen, L. (2012), Pretreatment of Coking Wastewater by Acid Out, Micro-electrolysis Process with in Situ Electrochemical Peroxidation Reaction, Chemical Engineering Journal, 200, 720–728.
  • Wu, Q., Hua, T. and Zhou, Q. (2011). Treatment and Remediation of a Wastewater Lagoon using Microelectrolysis and Modified DAT/IAT Methods, Journal of Environmental Sciences, 23(3) 388–395.
  • Yang, H., Xue, J.-jun , Wang, L., Wang, Z.-wei, Ling, S.-sheng, Kong, L.-guo and Chen, Y.-lan. (2012). Research on the Treatment of Phosphoric Wastewater by Ultrasound-assisted Microelectrolysis Method, Environmental Technology, 33 (2) 221–227.
  • Yang, X. (2009), Interior Micro Electrolysis Oxidation of Polyester Wastewater and its Treatment Technology, Journal of Hazardous Materials, 169, 480–485.
  • Yang, X., Xue, Y. and Wang, W. (2009) Mechanism, Kinetics and Application Studies on Enhanced Activated sludge by Interior Microelectrolysis, Bioresource Technology, 100, 649–653.
  • Yavuz Y. and Shahbazi R. (2012) Anodic Oxidation of Reactive Black 5 Dye using Boron Doped Diamond Anodes in a Bipolar Trickle Tower Reactor, Separation and Purification Technology 85 130–136.
  • Ying, D., Peng J., Xu X., Li K., Wang Y. and Ji, J. (2012). Treatment of Mature Landfill Leachate by Internal Micro-electrolysis Integrated with Coagulation: A Comparative Study on a Novel Sequencing Batch Reactor Based on Zero Valent Iron, Journal Hazardous Materials 229, 426- 433.
  • Zhou, J., Gao, J., Liu, Y., Xiao, S., Zhang, R. and Zhang, Z. (2013). Contaminant Removal Performances on Domestic Sewage using Modified Anoxic/Anaerobic/Oxic Process and Micro-electrolysis, Environmental Technology, 34 (19) 2773–2779.
  • Zhou, Z., Qiao, W., Lin, Y., Shen, X., Hu, D., Zhang, J., Jiang, L.M. and Wang, L. (2014). Phosphonate Removal from Discharged Circulating Cooling Water using Iron-Carbon Micro-Electrolysis, Water Science Technology 70(3), 524-532.
There are 26 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Belgin Karabacakoğlu

İbrahim Zurnacı This is me

Fatma Memiş This is me

Kıvanç Kaya This is me

Yeşim Öztaylan This is me

Publication Date November 12, 2015
Published in Issue Year 2015 Volume: 16 Issue: 2

Cite

APA Karabacakoğlu, B., Zurnacı, İ., Memiş, F., Kaya, K., et al. (2015). MİKROELEKTROLİZ YÖNTEMİ İLE MODEL ÇÖZELTİDEN REAKTİF BLACK 5 GİDERİMİ. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 16(2), 317-326. https://doi.org/10.18038/btd-a.23773
AMA Karabacakoğlu B, Zurnacı İ, Memiş F, Kaya K, Öztaylan Y. MİKROELEKTROLİZ YÖNTEMİ İLE MODEL ÇÖZELTİDEN REAKTİF BLACK 5 GİDERİMİ. AUJST-A. November 2015;16(2):317-326. doi:10.18038/btd-a.23773
Chicago Karabacakoğlu, Belgin, İbrahim Zurnacı, Fatma Memiş, Kıvanç Kaya, and Yeşim Öztaylan. “MİKROELEKTROLİZ YÖNTEMİ İLE MODEL ÇÖZELTİDEN REAKTİF BLACK 5 GİDERİMİ”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 16, no. 2 (November 2015): 317-26. https://doi.org/10.18038/btd-a.23773.
EndNote Karabacakoğlu B, Zurnacı İ, Memiş F, Kaya K, Öztaylan Y (November 1, 2015) MİKROELEKTROLİZ YÖNTEMİ İLE MODEL ÇÖZELTİDEN REAKTİF BLACK 5 GİDERİMİ. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 16 2 317–326.
IEEE B. Karabacakoğlu, İ. Zurnacı, F. Memiş, K. Kaya, and Y. Öztaylan, “MİKROELEKTROLİZ YÖNTEMİ İLE MODEL ÇÖZELTİDEN REAKTİF BLACK 5 GİDERİMİ”, AUJST-A, vol. 16, no. 2, pp. 317–326, 2015, doi: 10.18038/btd-a.23773.
ISNAD Karabacakoğlu, Belgin et al. “MİKROELEKTROLİZ YÖNTEMİ İLE MODEL ÇÖZELTİDEN REAKTİF BLACK 5 GİDERİMİ”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 16/2 (November 2015), 317-326. https://doi.org/10.18038/btd-a.23773.
JAMA Karabacakoğlu B, Zurnacı İ, Memiş F, Kaya K, Öztaylan Y. MİKROELEKTROLİZ YÖNTEMİ İLE MODEL ÇÖZELTİDEN REAKTİF BLACK 5 GİDERİMİ. AUJST-A. 2015;16:317–326.
MLA Karabacakoğlu, Belgin et al. “MİKROELEKTROLİZ YÖNTEMİ İLE MODEL ÇÖZELTİDEN REAKTİF BLACK 5 GİDERİMİ”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 16, no. 2, 2015, pp. 317-26, doi:10.18038/btd-a.23773.
Vancouver Karabacakoğlu B, Zurnacı İ, Memiş F, Kaya K, Öztaylan Y. MİKROELEKTROLİZ YÖNTEMİ İLE MODEL ÇÖZELTİDEN REAKTİF BLACK 5 GİDERİMİ. AUJST-A. 2015;16(2):317-26.