Araştırma Makalesi
BibTex RIS Kaynak Göster

DESIGN, ANALYSIS AND EXPERIMENTAL VERIFICATION OF A NOVEL NONLINEAR PI CONTROLLER

Yıl 2017, Cilt: 18 Sayı: 4, 876 - 896, 31.10.2017
https://doi.org/10.18038/aubtda.340651

Öz



In this study, a novel variable gain PI controller
structure is introduced. The proposed controller structure consists of a
sector-bounded nonlinear function of the relative error value in cascade with a
linear fixed-gain PI controller. The stability analysis of the closed loop
system is examined through Popov stability criterion, Routh-Hurwitz stability
method and stability boundary locus method for both second-order and higher-order
systems. In addition, the performance of the controller against parameter
variations and disturbances is investigated through some simulations for second
order systems.  An experimental study, an
active suspension system, is conducted to examine the performance of the
controller for higher order systems. In the literature, there are
similar controllers, but the proposed one is superb in terms of effectiveness
and stability. The new controller prevents the saturation of the controller
signal. Simulation results and experimental studies reveal that proposed
controller structure is quite effective for both lower and higher order
systems.




Kaynakça

  • [1] Ang K, Chong G, Li Y. PID control system analysis, design, and technology, IEEE Trans. Control Syst. Technol., vol. 13, no. 4, pp. 559–576, Jul. 2005.
  • [2] Lau K, Middleton R. Switched integrator control schemes for integrating plants, in Proc. Eur. Control Conf., 2003.
  • [3] Hunnekens B G B, Heertjes M, van de Wouw N, Nijmeijer H. Performance optimization of piecewise affine variable-gain controllers for linear motion systems, Mechatronics, vol. 24, no. 6, pp. 648–660, Sep. 2014.
  • [4] Armstrong B, Neevel D, Kusik T. New results in NPID control: Tracking, integral control, friction compensation and experimental results, IEEE Trans. Contr. Syst. Technol., vol. 9, pp. 399–406, Mar. 2001.
  • [5] Hunnekens B G B, Heertjes M, van de Wouw N, Nijmeijer H. Synthesis of variable gain integral controllers for linear motion systems, IEEE Trans. on Contr. Syst. Technology, 23(1), pp. 139-149, 2015.
  • [6] Armstrong B., McPherson J., and Li Y. Stability of nonlinear PD control, Appl. Math. Comput. Sci., vol. 7, no. 2, pp. 101–120, 1997.
  • [7] Armstrong B., Neevel D., and Kusik T. New results in NPID control: Tracking, integral control, friction compensation and experimental results, in Proc. 1999 Int. Conf. Robot. Automat., 1999, pp. 837–842.
  • [8] Armstrong B. and Wade B. Nonlinear PID control with partial state knowledge: Damping without derivatives, Int. J. Robot. Res., vol. 18, no. 8, pp. 715–731, 2000.
  • [9] Armstrong B, Neevel D, Kusik T. New results in NPID control: Tracking, integral control, friction compensation and experimental results, IEEE Trans. Control Syst. Technol., vol. 9, no. 2, pp. 399–406, Mar. 2001.
  • [10] Heertjes M, Schuurbiers X, Nijmeijer H. Performance-improved design of N-PID controlled motion systems with application to wafer stages, IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1347–1355, May 2009.
  • [11] Wouw N, Pastink H, Heertjes M, Pavlov A, Nijmeijer H. Performance of convergence-based variable-gain control of optical storage drives, Automatica, vol. 44, no. 1, pp. 15–27, 2008.
  • [12] Sun D, Hu S, Shao X, Liu C. Global stability of a saturated nonlinear PID controller for robot manipulators, IEEE Trans. Ind. Electron., vol. 17, no. 4, pp. 892–899, Jul. 2009.
  • [13] Salim S N S, Rahmat M F, Faudzi A A, Athif M, Ismail Z H, Sunar N. Position Control of Pneumatic Actuator Using Self-Regulation Nonlinear PID, Mathematical Problems in Engineering, vol. 2014, p. 12, 2014
  • [14] Seraji H. A new class of nonlinear PID controllers with robotic applications, J. Robot. Syst., vol. 15, no. 3, pp. 161–173, 1998.
  • [15] Su Y X, Sun D, Duan B Y. Design of an enhanced nonlinear PID controller, Mechatronics, vol. 15, no. 8, pp. 1005–1024, Oct. 2005.
  • [16] Salim S N S, Rahmat M F, Faudzi A, Z. Ismail Z H, Sunar N. Robust Control Strategy for Pneumatic Drive System via Enhanced Nonlinear PID Controller, International Journal of Electrical and Computer Engineering (IJECE), vol. 4, pp. 658-667, 2014.
  • [17] Armstrong B, McPherson J, Li YG. A Lyapunov stability proof for nonlinear stiffness PD control, Proceedings of the IEEE international conference on robot. autom., Minneapolis, p. 945–50, 1996.
  • [18] Xu Y, Ma D, Hollerbach J. M. Nonlinear Proportional and Derivative Control for High Disturbance Rejection and High Gain Force Control, Proc. IEEE Intern. Conf. on Robotics and Automation, Vol. 1, pp. 752-759, Atlanta, 1993.
  • [19] Tan, N, Kaya, I, Yeroglu C, Atherton, D. P. Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Conversion and Management, 47(18), 3045-3058.
  • [20] Yeroglu C, Tan N. Design of robust PI controller for vehicle suspension system. Journal of Electrical Engineering and Technology, 3(1), 135-142.
  • [21] Khalil H K, Grizzle J. Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 2002.
  • [22] Active suspension system - Laboratory Guide, Active Suspension Experiment for Matlab/Simulink Users, 2013.
Yıl 2017, Cilt: 18 Sayı: 4, 876 - 896, 31.10.2017
https://doi.org/10.18038/aubtda.340651

Öz

Kaynakça

  • [1] Ang K, Chong G, Li Y. PID control system analysis, design, and technology, IEEE Trans. Control Syst. Technol., vol. 13, no. 4, pp. 559–576, Jul. 2005.
  • [2] Lau K, Middleton R. Switched integrator control schemes for integrating plants, in Proc. Eur. Control Conf., 2003.
  • [3] Hunnekens B G B, Heertjes M, van de Wouw N, Nijmeijer H. Performance optimization of piecewise affine variable-gain controllers for linear motion systems, Mechatronics, vol. 24, no. 6, pp. 648–660, Sep. 2014.
  • [4] Armstrong B, Neevel D, Kusik T. New results in NPID control: Tracking, integral control, friction compensation and experimental results, IEEE Trans. Contr. Syst. Technol., vol. 9, pp. 399–406, Mar. 2001.
  • [5] Hunnekens B G B, Heertjes M, van de Wouw N, Nijmeijer H. Synthesis of variable gain integral controllers for linear motion systems, IEEE Trans. on Contr. Syst. Technology, 23(1), pp. 139-149, 2015.
  • [6] Armstrong B., McPherson J., and Li Y. Stability of nonlinear PD control, Appl. Math. Comput. Sci., vol. 7, no. 2, pp. 101–120, 1997.
  • [7] Armstrong B., Neevel D., and Kusik T. New results in NPID control: Tracking, integral control, friction compensation and experimental results, in Proc. 1999 Int. Conf. Robot. Automat., 1999, pp. 837–842.
  • [8] Armstrong B. and Wade B. Nonlinear PID control with partial state knowledge: Damping without derivatives, Int. J. Robot. Res., vol. 18, no. 8, pp. 715–731, 2000.
  • [9] Armstrong B, Neevel D, Kusik T. New results in NPID control: Tracking, integral control, friction compensation and experimental results, IEEE Trans. Control Syst. Technol., vol. 9, no. 2, pp. 399–406, Mar. 2001.
  • [10] Heertjes M, Schuurbiers X, Nijmeijer H. Performance-improved design of N-PID controlled motion systems with application to wafer stages, IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1347–1355, May 2009.
  • [11] Wouw N, Pastink H, Heertjes M, Pavlov A, Nijmeijer H. Performance of convergence-based variable-gain control of optical storage drives, Automatica, vol. 44, no. 1, pp. 15–27, 2008.
  • [12] Sun D, Hu S, Shao X, Liu C. Global stability of a saturated nonlinear PID controller for robot manipulators, IEEE Trans. Ind. Electron., vol. 17, no. 4, pp. 892–899, Jul. 2009.
  • [13] Salim S N S, Rahmat M F, Faudzi A A, Athif M, Ismail Z H, Sunar N. Position Control of Pneumatic Actuator Using Self-Regulation Nonlinear PID, Mathematical Problems in Engineering, vol. 2014, p. 12, 2014
  • [14] Seraji H. A new class of nonlinear PID controllers with robotic applications, J. Robot. Syst., vol. 15, no. 3, pp. 161–173, 1998.
  • [15] Su Y X, Sun D, Duan B Y. Design of an enhanced nonlinear PID controller, Mechatronics, vol. 15, no. 8, pp. 1005–1024, Oct. 2005.
  • [16] Salim S N S, Rahmat M F, Faudzi A, Z. Ismail Z H, Sunar N. Robust Control Strategy for Pneumatic Drive System via Enhanced Nonlinear PID Controller, International Journal of Electrical and Computer Engineering (IJECE), vol. 4, pp. 658-667, 2014.
  • [17] Armstrong B, McPherson J, Li YG. A Lyapunov stability proof for nonlinear stiffness PD control, Proceedings of the IEEE international conference on robot. autom., Minneapolis, p. 945–50, 1996.
  • [18] Xu Y, Ma D, Hollerbach J. M. Nonlinear Proportional and Derivative Control for High Disturbance Rejection and High Gain Force Control, Proc. IEEE Intern. Conf. on Robotics and Automation, Vol. 1, pp. 752-759, Atlanta, 1993.
  • [19] Tan, N, Kaya, I, Yeroglu C, Atherton, D. P. Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Conversion and Management, 47(18), 3045-3058.
  • [20] Yeroglu C, Tan N. Design of robust PI controller for vehicle suspension system. Journal of Electrical Engineering and Technology, 3(1), 135-142.
  • [21] Khalil H K, Grizzle J. Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 2002.
  • [22] Active suspension system - Laboratory Guide, Active Suspension Experiment for Matlab/Simulink Users, 2013.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ali Fuat Ergenc 0000-0003-2782-5566

Handan Nak

Şirin Akkaya Bu kişi benim

Yayımlanma Tarihi 31 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 18 Sayı: 4

Kaynak Göster

APA Ergenc, A. F., Nak, H., & Akkaya, Ş. (2017). DESIGN, ANALYSIS AND EXPERIMENTAL VERIFICATION OF A NOVEL NONLINEAR PI CONTROLLER. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(4), 876-896. https://doi.org/10.18038/aubtda.340651
AMA Ergenc AF, Nak H, Akkaya Ş. DESIGN, ANALYSIS AND EXPERIMENTAL VERIFICATION OF A NOVEL NONLINEAR PI CONTROLLER. AUBTD-A. Ekim 2017;18(4):876-896. doi:10.18038/aubtda.340651
Chicago Ergenc, Ali Fuat, Handan Nak, ve Şirin Akkaya. “DESIGN, ANALYSIS AND EXPERIMENTAL VERIFICATION OF A NOVEL NONLINEAR PI CONTROLLER”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18, sy. 4 (Ekim 2017): 876-96. https://doi.org/10.18038/aubtda.340651.
EndNote Ergenc AF, Nak H, Akkaya Ş (01 Ekim 2017) DESIGN, ANALYSIS AND EXPERIMENTAL VERIFICATION OF A NOVEL NONLINEAR PI CONTROLLER. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18 4 876–896.
IEEE A. F. Ergenc, H. Nak, ve Ş. Akkaya, “DESIGN, ANALYSIS AND EXPERIMENTAL VERIFICATION OF A NOVEL NONLINEAR PI CONTROLLER”, AUBTD-A, c. 18, sy. 4, ss. 876–896, 2017, doi: 10.18038/aubtda.340651.
ISNAD Ergenc, Ali Fuat vd. “DESIGN, ANALYSIS AND EXPERIMENTAL VERIFICATION OF A NOVEL NONLINEAR PI CONTROLLER”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18/4 (Ekim 2017), 876-896. https://doi.org/10.18038/aubtda.340651.
JAMA Ergenc AF, Nak H, Akkaya Ş. DESIGN, ANALYSIS AND EXPERIMENTAL VERIFICATION OF A NOVEL NONLINEAR PI CONTROLLER. AUBTD-A. 2017;18:876–896.
MLA Ergenc, Ali Fuat vd. “DESIGN, ANALYSIS AND EXPERIMENTAL VERIFICATION OF A NOVEL NONLINEAR PI CONTROLLER”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, c. 18, sy. 4, 2017, ss. 876-9, doi:10.18038/aubtda.340651.
Vancouver Ergenc AF, Nak H, Akkaya Ş. DESIGN, ANALYSIS AND EXPERIMENTAL VERIFICATION OF A NOVEL NONLINEAR PI CONTROLLER. AUBTD-A. 2017;18(4):876-9.