Araştırma Makalesi
BibTex RIS Kaynak Göster

ELECTRO HYDRAULIC SUSPENSION SYSTEM DESIGN WITH OPTIMAL STATE DERIVATIVE FEEDBACK CONTROLLER

Yıl 2017, Cilt: 18 Sayı: 4, 777 - 787, 31.10.2017
https://doi.org/10.18038/aubtda.340798

Öz

This paper is concerned with a control
design of an electro-hydraulic suspension system. In some practical problems,
for instance in the active suspension design, the state derivative signals such
as acceleration and velocity are easier to obtain rather than the state
variables such as displacement and velocity, since the most commonly used
sensors are the accelerometers. Hence, design of an optimal state derivative
feedback controller is proposed by employing the linear matrix inequalities
framework. In order to demonstrate the effectiveness of the proposed
controller, a two-degree-of-freedom quarter vehicle suspension model equipped
with an electro hydraulic actuator is preferred. Throughout the numerical
simulation studies, bump type road irregularities at different vehicle forward
velocities are applied to evaluate the performances of the controller in terms
of ride comfort and safety.

Kaynakça

  • [1] Hedrick JK, Butsuen T. Invariant properties of automotive suspensions. P I Mech Eng D-J Aut 1990; 204: 21-27.
  • [2] Tamboli JA, Joshi SG. Optimum design of a passive suspension system of a vehicle subjected to actual random road excitations. J Sound Vib 1999; 219: 193-205.
  • [3] Gordon TJ, Sharp RS. On improving the performance of automotive semi-active suspension systems through road preview. J Sound Vib 1998; 217: 163-182.
  • [4] Kojima H, Nakano J, Nakayama H, Kawashima N, Fujimoto H. Development of new Toyota electronic modulated suspension-two concepts for semi-active suspension control. SAE Technical Paper 911900 1991.
  • [5] Chen H, Guo KH. Constrained H∞ control of active suspensions: an LMI approach. IEEE T Contr Syst T 2005; 13: 412-421.
  • [6] Akatsu Y, Fukushima N, Talcahashj K, Satch M, Kawaranki Y. An active suspension employing an electorhydraulic pressure control system. SAE Technical Paper 905123 1990.
  • [7] Merker T, Gaston G, Olaf T. Active body control (ABC) Daimler Chrysler active suspension and damping sysrem. SAE Technical Paper 2002-21-0054 2002.
  • [8] Hrovat D. Survey of advanced suspension developments and related optimal control applications. Automatica 1997; 33: 1781-1817.
  • [9] Ulsoy GA, Hrovat D, Tseng T. Stability robustness of LQ and LQG active suspensions. J Dyn Syst-T ASME 1994; 116: 123-131.
  • [10] Abdel-Hady MBA. Active suspension with preview control. Vehicle Syst Dyn 1994; 23: 1-13.
  • [11] Elmadany MM, Al-majed MI. Quadratic synthesis of active controls for a quarter-car model. J Vib Control 2001; 7: 1237-1252.
  • [12] Han SY, Tang GY, Chen YH, Yang XX, Yang X. Optimal vibration control for vehicle suspension discrete time systems with actuator time delay. Asian J Control 2013; 15: 1579-1588.
  • [13] Olalla C, Leyva R, El Aroudi A, Queinnec I. Robust LQR control for PWM converters: an LMI approach. IEEE T Ind Electron 2009; 56: 2548-2558.
  • [14] Elmi N, Ohadi A, Samadi B. Active front steering control of a sport utility vehicle using a robust linear quadratic regulator method, with emphasis on the roll dynamics. P I Mech Eng D-J Aut 2013; 227: 1636-1649.
  • [15] Sever M, Kaya EE, Arslan MS, Yazici H. Active trailer braking system design with linear matrix inequalities based multi-objective robust LQR controller for vehicle-trailer systems. In: IEEE 2016 Symposium on Intelligent Vehicles; 19–22 Jun 2016; Gothenburg, Sweden: IEEE. pp. 726-731.
  • [16] Aktas A, Sever M, Yazici H. Gain scheduling LQR control of linear parameter varying overhead crane. In: IEEE 2016 National Conference on Electrical, Electronics and Biomedical Engineering; 1–3 Dec 2016; Bursa, Turkey: IEEE. pp. 232-236.
  • [17] Yazici H, Sever M. Active control of a non-linear landing gear system having oleo pneumatic shock absorber using robust linear quadratic regulator approach. P I Mech Eng G-J Aer 2017; DOI: 10.1177/0954410017713773.
  • [18] Soliman HY, Bajabaa NS. Robust guaranteed cost control with regional pole placement of active suspensions. J Vib Control 2012; 19: 1170-1186.
  • [19] Soliman HY, Bajabaa NS. Saturated robust control with regional pole placement and application to car active suspensions. J Vib Control 2016; 22: 258-269.
  • [20] Kwak SK, Washington G, Yedavalli RK. Acceleration feedback based active and passive vibration control of landing gear components. J Aerospace Eng 2002; 45: 1-9.
  • [21] Abdelaziz THS, Valasek M. State derivative feedback by LQR for linear time invariant systems. IFAC Proceeding Volumes 2005; 38: 435-440.
  • [22] Abdelaziz THS, Valasek M. Pole placement for SISO linear systems by state derivative feedback. IEE P-Contr Theor Ap 2004; 151: 377-385.
  • [23] Assunçao E, Teixeira MCM, Faria FA, Da Silva NAP, Cardim R. Robust state-derivative feedback LMI based designs for multivariable linear systems. Int J Control 2007; 80: 1260-1270.
  • [24] Faria FA, Assunçao E, Teixeira MCM, Cardim R, Da Silva NAP. Robust state-derivative pole placement LMI based designs for linear systems. Int J Control 2009; 82: 1-12.
  • [25] Da Silva ERP, Assunçao E, Teixeira MCM, Faria F, Buzachero LFS. Parameter dependent Lyapunov functions for state derivative feedback control in polytopic linear systems. Int J Control 2011; 84: 1377-1386.
  • [26] Da Silva ERP, Assunçao E, Teixeira MCM, Faria F, Cardim R, Da Silva NAP. Robust controller implementation via state derivative feedback in an active suspension system subject to fault. In: IEEE 2013 Conference on Control and Fault Tolerant Systems; 9–11 Oct 2013; Nice, France: IEEE. pp. 762-767.
  • [27] Sever M, Yazici H. Active control of vehicle suspension system having driver model via L2 gain state derivative feedback controller. In: IEEE 2017 International Conference on Electrical and Electronics Engineering; 8–10 Apr 2017; Ankara, Turkey: IEEE. pp. 215-222.
  • [28] Yazici H, Sever M. L2 gain state derivative feedback control of uncertain vehicle suspension systems. J Vib Control 2017; DOI: 10.1177/1077546317711335.
  • [29] Alleyne A, Hedrick JK. Nonlinear adaptive control of active suspensions. IEEE T Contr Syst T 1995; 3: 94-101.
  • [30] Fialho I, Balas GJ. Road adaptive active suspension design using linear parameter varying gain scheduling. IEEE T Contr Syst T 2002; 10: 43-54.
  • [31] Boyd S, El Ghaoui L, Feron E, Balakrishan V. Linear matrix inequalities in system and control theory. 1st ed. Philadelphia, USA: Society of Industrial and Applied Mathematics, 1994.
  • [32] Lofberg J. YALMIP: A toolbox for modelling and optimization in MATLAB. In: IEEE 2004 International Symposium on Computer Aided Control System Design; 2–4 Sept 2004; Taipei, Taiwan: IEEE. pp. 284-289.
  • [33] Strum JF. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Method Softw 1999; 11: 625-653.
  • [34] Sever M, Yazici H. Disturbance observer based optimal controller design for active suspension systems. IFAC-Papers Online 2016; 49: 105-110.
  • [35] ISO2631-1: 1997. Mechanical vibrations and shock- Evaluation of human exposure to whole body vibration part 1: general requirements, International Standardization Organization.
Yıl 2017, Cilt: 18 Sayı: 4, 777 - 787, 31.10.2017
https://doi.org/10.18038/aubtda.340798

Öz

Kaynakça

  • [1] Hedrick JK, Butsuen T. Invariant properties of automotive suspensions. P I Mech Eng D-J Aut 1990; 204: 21-27.
  • [2] Tamboli JA, Joshi SG. Optimum design of a passive suspension system of a vehicle subjected to actual random road excitations. J Sound Vib 1999; 219: 193-205.
  • [3] Gordon TJ, Sharp RS. On improving the performance of automotive semi-active suspension systems through road preview. J Sound Vib 1998; 217: 163-182.
  • [4] Kojima H, Nakano J, Nakayama H, Kawashima N, Fujimoto H. Development of new Toyota electronic modulated suspension-two concepts for semi-active suspension control. SAE Technical Paper 911900 1991.
  • [5] Chen H, Guo KH. Constrained H∞ control of active suspensions: an LMI approach. IEEE T Contr Syst T 2005; 13: 412-421.
  • [6] Akatsu Y, Fukushima N, Talcahashj K, Satch M, Kawaranki Y. An active suspension employing an electorhydraulic pressure control system. SAE Technical Paper 905123 1990.
  • [7] Merker T, Gaston G, Olaf T. Active body control (ABC) Daimler Chrysler active suspension and damping sysrem. SAE Technical Paper 2002-21-0054 2002.
  • [8] Hrovat D. Survey of advanced suspension developments and related optimal control applications. Automatica 1997; 33: 1781-1817.
  • [9] Ulsoy GA, Hrovat D, Tseng T. Stability robustness of LQ and LQG active suspensions. J Dyn Syst-T ASME 1994; 116: 123-131.
  • [10] Abdel-Hady MBA. Active suspension with preview control. Vehicle Syst Dyn 1994; 23: 1-13.
  • [11] Elmadany MM, Al-majed MI. Quadratic synthesis of active controls for a quarter-car model. J Vib Control 2001; 7: 1237-1252.
  • [12] Han SY, Tang GY, Chen YH, Yang XX, Yang X. Optimal vibration control for vehicle suspension discrete time systems with actuator time delay. Asian J Control 2013; 15: 1579-1588.
  • [13] Olalla C, Leyva R, El Aroudi A, Queinnec I. Robust LQR control for PWM converters: an LMI approach. IEEE T Ind Electron 2009; 56: 2548-2558.
  • [14] Elmi N, Ohadi A, Samadi B. Active front steering control of a sport utility vehicle using a robust linear quadratic regulator method, with emphasis on the roll dynamics. P I Mech Eng D-J Aut 2013; 227: 1636-1649.
  • [15] Sever M, Kaya EE, Arslan MS, Yazici H. Active trailer braking system design with linear matrix inequalities based multi-objective robust LQR controller for vehicle-trailer systems. In: IEEE 2016 Symposium on Intelligent Vehicles; 19–22 Jun 2016; Gothenburg, Sweden: IEEE. pp. 726-731.
  • [16] Aktas A, Sever M, Yazici H. Gain scheduling LQR control of linear parameter varying overhead crane. In: IEEE 2016 National Conference on Electrical, Electronics and Biomedical Engineering; 1–3 Dec 2016; Bursa, Turkey: IEEE. pp. 232-236.
  • [17] Yazici H, Sever M. Active control of a non-linear landing gear system having oleo pneumatic shock absorber using robust linear quadratic regulator approach. P I Mech Eng G-J Aer 2017; DOI: 10.1177/0954410017713773.
  • [18] Soliman HY, Bajabaa NS. Robust guaranteed cost control with regional pole placement of active suspensions. J Vib Control 2012; 19: 1170-1186.
  • [19] Soliman HY, Bajabaa NS. Saturated robust control with regional pole placement and application to car active suspensions. J Vib Control 2016; 22: 258-269.
  • [20] Kwak SK, Washington G, Yedavalli RK. Acceleration feedback based active and passive vibration control of landing gear components. J Aerospace Eng 2002; 45: 1-9.
  • [21] Abdelaziz THS, Valasek M. State derivative feedback by LQR for linear time invariant systems. IFAC Proceeding Volumes 2005; 38: 435-440.
  • [22] Abdelaziz THS, Valasek M. Pole placement for SISO linear systems by state derivative feedback. IEE P-Contr Theor Ap 2004; 151: 377-385.
  • [23] Assunçao E, Teixeira MCM, Faria FA, Da Silva NAP, Cardim R. Robust state-derivative feedback LMI based designs for multivariable linear systems. Int J Control 2007; 80: 1260-1270.
  • [24] Faria FA, Assunçao E, Teixeira MCM, Cardim R, Da Silva NAP. Robust state-derivative pole placement LMI based designs for linear systems. Int J Control 2009; 82: 1-12.
  • [25] Da Silva ERP, Assunçao E, Teixeira MCM, Faria F, Buzachero LFS. Parameter dependent Lyapunov functions for state derivative feedback control in polytopic linear systems. Int J Control 2011; 84: 1377-1386.
  • [26] Da Silva ERP, Assunçao E, Teixeira MCM, Faria F, Cardim R, Da Silva NAP. Robust controller implementation via state derivative feedback in an active suspension system subject to fault. In: IEEE 2013 Conference on Control and Fault Tolerant Systems; 9–11 Oct 2013; Nice, France: IEEE. pp. 762-767.
  • [27] Sever M, Yazici H. Active control of vehicle suspension system having driver model via L2 gain state derivative feedback controller. In: IEEE 2017 International Conference on Electrical and Electronics Engineering; 8–10 Apr 2017; Ankara, Turkey: IEEE. pp. 215-222.
  • [28] Yazici H, Sever M. L2 gain state derivative feedback control of uncertain vehicle suspension systems. J Vib Control 2017; DOI: 10.1177/1077546317711335.
  • [29] Alleyne A, Hedrick JK. Nonlinear adaptive control of active suspensions. IEEE T Contr Syst T 1995; 3: 94-101.
  • [30] Fialho I, Balas GJ. Road adaptive active suspension design using linear parameter varying gain scheduling. IEEE T Contr Syst T 2002; 10: 43-54.
  • [31] Boyd S, El Ghaoui L, Feron E, Balakrishan V. Linear matrix inequalities in system and control theory. 1st ed. Philadelphia, USA: Society of Industrial and Applied Mathematics, 1994.
  • [32] Lofberg J. YALMIP: A toolbox for modelling and optimization in MATLAB. In: IEEE 2004 International Symposium on Computer Aided Control System Design; 2–4 Sept 2004; Taipei, Taiwan: IEEE. pp. 284-289.
  • [33] Strum JF. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Method Softw 1999; 11: 625-653.
  • [34] Sever M, Yazici H. Disturbance observer based optimal controller design for active suspension systems. IFAC-Papers Online 2016; 49: 105-110.
  • [35] ISO2631-1: 1997. Mechanical vibrations and shock- Evaluation of human exposure to whole body vibration part 1: general requirements, International Standardization Organization.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Mert Sever 0000-0002-8372-0593

Hasan Sefa Sendur Bu kişi benim

Hakan Yazici 0000-0001-6859-9548

M. Selcuk Arslan 0000-0002-6853-4522

Yayımlanma Tarihi 31 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 18 Sayı: 4

Kaynak Göster

APA Sever, M., Sendur, H. S., Yazici, H., Arslan, M. S. (2017). ELECTRO HYDRAULIC SUSPENSION SYSTEM DESIGN WITH OPTIMAL STATE DERIVATIVE FEEDBACK CONTROLLER. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(4), 777-787. https://doi.org/10.18038/aubtda.340798
AMA Sever M, Sendur HS, Yazici H, Arslan MS. ELECTRO HYDRAULIC SUSPENSION SYSTEM DESIGN WITH OPTIMAL STATE DERIVATIVE FEEDBACK CONTROLLER. AUJST-A. Ekim 2017;18(4):777-787. doi:10.18038/aubtda.340798
Chicago Sever, Mert, Hasan Sefa Sendur, Hakan Yazici, ve M. Selcuk Arslan. “ELECTRO HYDRAULIC SUSPENSION SYSTEM DESIGN WITH OPTIMAL STATE DERIVATIVE FEEDBACK CONTROLLER”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18, sy. 4 (Ekim 2017): 777-87. https://doi.org/10.18038/aubtda.340798.
EndNote Sever M, Sendur HS, Yazici H, Arslan MS (01 Ekim 2017) ELECTRO HYDRAULIC SUSPENSION SYSTEM DESIGN WITH OPTIMAL STATE DERIVATIVE FEEDBACK CONTROLLER. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18 4 777–787.
IEEE M. Sever, H. S. Sendur, H. Yazici, ve M. S. Arslan, “ELECTRO HYDRAULIC SUSPENSION SYSTEM DESIGN WITH OPTIMAL STATE DERIVATIVE FEEDBACK CONTROLLER”, AUJST-A, c. 18, sy. 4, ss. 777–787, 2017, doi: 10.18038/aubtda.340798.
ISNAD Sever, Mert vd. “ELECTRO HYDRAULIC SUSPENSION SYSTEM DESIGN WITH OPTIMAL STATE DERIVATIVE FEEDBACK CONTROLLER”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18/4 (Ekim 2017), 777-787. https://doi.org/10.18038/aubtda.340798.
JAMA Sever M, Sendur HS, Yazici H, Arslan MS. ELECTRO HYDRAULIC SUSPENSION SYSTEM DESIGN WITH OPTIMAL STATE DERIVATIVE FEEDBACK CONTROLLER. AUJST-A. 2017;18:777–787.
MLA Sever, Mert vd. “ELECTRO HYDRAULIC SUSPENSION SYSTEM DESIGN WITH OPTIMAL STATE DERIVATIVE FEEDBACK CONTROLLER”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, c. 18, sy. 4, 2017, ss. 777-8, doi:10.18038/aubtda.340798.
Vancouver Sever M, Sendur HS, Yazici H, Arslan MS. ELECTRO HYDRAULIC SUSPENSION SYSTEM DESIGN WITH OPTIMAL STATE DERIVATIVE FEEDBACK CONTROLLER. AUJST-A. 2017;18(4):777-8.