Research Article
BibTex RIS Cite

DEPENDENCE OF SiAlON-TiN COMPOSITE PROPERTIES ON TiN REINFORCEMENT PARTICLE SIZES

Year 2018, Volume: 19 Issue: 2, 356 - 367, 30.06.2018
https://doi.org/10.18038/aubtda.381251

Abstract

TiN particle size is an effective parameter on
microstructure, mechanical and physical properties of SiAlON-TiN composites. In
this study, the effect of TiN particle size (nano and micron level) on
microstructural evolution, mechanical and physical properties were
investigated. The phase and microstructural evolution, SEM and the XRD
characterization methods were used to observe the effects of TiN particle size.
Indentation fracture toughness and Vickers hardness of the samples were
measured in order to evaluate the mechanical behavior. Archimedes principle was
used in order to determine bulk density and porosity. Correlation between TiN
particle size and hardness, fracture toughness, microstructure, phase evolution
was discussed. It was observed that decrease in particle size led to little improvement
in fracture toughness and hardness.

References

  • [1] Li W, Zhang B, Zhuang H, Li W. Effect of TiN on the corrosion behavior of Y-(α+β)-SiAlON/TiN materials in hot hydrochloric acidic solutions. Ceram Int 2005;31(2):277-280.
  • [2] Jiang T, Xue XX, Li Zf, Duan PN. High temperature oxidation behavior of electroconductive TiN/O′-SiAlON ceramics prepared from high titania slag-based mixture. T Nonferr Metal Soc 2011;21(12):2638-43.
  • [3] Acikbas NC, Tegmen S, Ozcan S, Acikbas G. Thermal shock behaviour of α: β-SiAlON–TiN composites. Ceram Int 2014;40(2):3611-8.
  • [4] Kumar A, Mallik AK, Acikbas NC, Yaygıngol M, Kara F, Mandal H, Basu D, Biswas K, Basu B. Cytocompatibility property evaluation of gas pressure sintered SiAlON–SiC composites with L929 fibroblast cells and Saos-2 osteoblast-like cells. Materials Science and Engineering: C. 2012;32(3):464-9.
  • [5] Kumar R, Acikbas NC, Kara F, Mandal H, Basu B. Microstructure–mechanical properties–wear resistance relationship of SiAlON ceramics. Metall Mater Trans A. 2009;40(10):2319-32.
  • [6] Riley F. Silicon nitride and related materials. J Am Ceram Soc 2000; 83: 245-265.
  • [7] Hong F, Lewis MH. Ceramic‐Matrix Composites Via in‐Situ Reaction Sintering. InProceedings of the 17th Annual Conference on Composites and Advanced Ceramic Materials, Part 2 of 2: Ceramic Engineering and Science Proceedings, Volume 14, Issue 9/10 2009 Sep 28 (pp. 699-706). John Wiley & Sons, Inc.
  • [8] Akin SR, Turan S, Gencoglu P, Mandal H. Effect of SiC addition on the thermal diffusivity of SiAlON ceramics. Ceram Int 2017;43(16):13469-74.
  • [9] Vleugels J, Jiang DT, Van der Biest O. Development and characterisation of SiAlON composites with TiB 2, TiN, TiC and TiCN. J Mater Sci 2004; 39(10):3375-81.
  • [10] Bitterlich B, Bitsch S, Friederich K. SiAlON based ceramic cutting tools. J Eur Ceram Soc 2008;28(5):989-94.
  • [11] Ayas E, Kara A, Kara F. α/β SiAlON based composites incorporated with MoSi2 for electrical applications. In: Singh D, Zhu D, Zhou Y, editors. Design, Development and Applications of Engineering Ceramics and Composites. USA: Ceramic Transactions, 2010. pp. 189-195. [12] Kumar Mallik A, Madhav Reddy K, Calis Acikbas N, Kara F, Mandal H, Basu D, Basu B. Influence of SiC addition on tribological properties of SiAlON. Ceram Int 2011; 37: 2495–2504.
  • [13] Ayas E, Kara A. Novel electrically conductive α/β SiAlON/TiCN composites. J Euro Ceram Soc 2011; 31: 903–911.
  • [14] Ayas E. Mechanical, electrical and thermal properties of α/β SiAlON-SiC composites fabricated by gas pressure sintering method. Anadolu University of Sciences & Technology-A: Applied Sciences & Engineering. 2016;17(5).
  • [15] Ayas E, Kara A, Mandal H, Turan S, Kara F. Production of alpha-beta SiAlON-TiN/TiCN composites by gas pressure sintering. Silic Ind 2004;69(7):287-92.
  • [16] Nordberg LO, Ekström T. Hot‐Pressed MoSi2‐Particulate‐Reinforced α‐SiAlON Composites. J Am Ceram Soc 1995;78(3):797-800.
  • [17] Mallik AK, Acikbas NC, Kara F, Mandal H, Basu D. A comparative study of SiAlON ceramics. Ceram Int. 2012;38(7):5757-67.
  • [18] Graziani TB, Bellosi AB. Densification and characteristics of TiN ceramics. J Mater Sci 1995;14(15):1078-81.
  • [19] Smirnov KL. β-SiAlON-TiN/TiB2. Int J Self-Propag High-Temp Synth 2016;25(2):80-5.
  • [20] Desmaison J, Desmaison M. Boride/nitride composites: synthesis and properties. In Materials Science of Carbides, Nitrides and Borides 1999 (pp. 267-284). Springer Netherlands.
  • [21] Blugan G, Hadad M, Janczak‐Rusch J, Kuebler J, Graule T. Fractography, mechanical properties, and microstructure of commercial silicon nitride–titanium nitride composites. J Am Ceram Soc 2005;88(4):926-33.
  • [22] Ayas E, Kara A, Kara F. A novel approach for preparing electrically conductive α/β SiAlON-TiN composites by spark plasma sintering. J Ceram Soc Jap 2008;116(1355):812-4.
  • [23] Duan RG, Roebben G, Vleugels J, Van der Biest O. Optimization of microstructure and properties of in situ formed β-O-SiAlON–TiN composite. Mater Sci Eng: A. 2006;427(1):195-202.
  • [24] Xu F, Wen S, Nordberg LO, Ekström T. TEM study of Y-doped α-SiAlON composite with 10 vol% TiN particulates. Mater Lett 1998;34(3):248-52.
  • [25] Ekström T, Olsson PO. ß-SiAlON ceramics with TiN particle inclusions. J Euro Ceram Soc 1994;13(6):551-9.
  • [26] Hong F, Lumby RJ, Lewis MH. TiN/SiAlON composites via in-situ reaction sintering. J Euro Ceram Soc 1993;11(3):237-9.
  • [27] Krnel K, Maglica A, Kosmač T. β-SiAlON/TiN nanocomposites prepared from TiO2-coated Si3 N4 powder. J Euro Ceram Soc 2008;28(5):953-7.
  • [28] Shimada S, Kato K. Coating and spark plasma sintering of nano-sized TiN on Y-α-SiAlON. Mater Sci Eng: A. 2007;443(1):47-53. [29] Lenčéš Z, Šajgalı́k P, Toriyama M, Brito ME, Kanzaki S. Multifunctional Si3N4/(β-SiAlON+ TiN) layered composites. J Euro Ceram Soc 2000;20(3):347-55.
  • [30] Bellosi A, Guicciardi S, Tampieri A. Development and characterization of electroconductive Si3N4-TiN composites. J Euro Ceram Soc 1992;9(2):83-93.
  • [31] Trueman CS, Huddleston J. Material removal by spalling during EDM of ceramics. J Euro Ceram Soc 2000;20(10):1629-35.
  • [32] Acikbas NC, Kara F. The effect of z value on intergranular phase crystallization of α ı/β ı-SiAlON-TiN composites. J Euro Ceram Soc 2017;37(3):923-30.
  • [33] Acikbas NC, Demir O. The effect of cation type, intergranular phase amount and cation mole ratios on z value and intergranular phase crystallization of SiAlON ceramics. Ceram Int 2013;39(3):3249-59.
  • [34] Acikbas NC. Tribological Behaviour of SiAlON-TiN Composites. J Euro Ceram Soc.DOI:10.1016/j.jeurceramsoc.2018.01.013
  • [35] Niihara K, Nakahira A. Strengthening and toughening mechanisms in nanocomposite ceramics. InAnnales de chimie 1991 (Vol. 16, No. 4-6, pp. 479-486). Lavoisier.
  • [36] Niihara K. New design concept of structural ceramics. J Ceram Soc Jap 1991;99(1154):974-82.
  • [37] Acikbas NC, Ozcan S, Acikbas G. The effect of surface roughness on tribological behavior of SiAlON-TiN composites. II. INES International Academic Research Congress Abstract Book, 18-21 October 2017-Alanya/ANTALYA, pp. 584.
  • [38] Nagaoka T, Yasuoka M, Hirao K, Kanzaki S. Effects of TiN particle size on mechanical properties of Si3N4/TiN particulate composites. J Ceram Soc Jap 1992;100(1160):617-620.
  • [39] Özcan S, Açıkbaş G, Özbay N, Açıkbaş NÇ. The effect of silicon nitride powder characteristics on SiAlON microstructures, densification and phase assemblage. Ceram Int 2017;43(13):10057-65.
  • [40] Liddell K. X-ray Analysis of Nitrogen Ceramic Phases MSc. Thesis, University of Newcastle, Upon Tyne, UK, 1979.
  • [41] EVans AG, Charles EA. Fracture toughness determinations by indentation. J Amer Ceram Soc 1976;59(7‐8):371-372.
  • [42] Niihara K, Morena R, Hasselman DP. Evaluation ofK Ic of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett 1982;1(1):13-6.
  • [43] Zhang C, Sun WY, Yan DS. Optimizing mechanical properties and thermal stability of Ln-α-β-sialon by using duplex Ln elements (Dy and Sm). J Euro Ceram Soc 1999;19(1):33-9.
Year 2018, Volume: 19 Issue: 2, 356 - 367, 30.06.2018
https://doi.org/10.18038/aubtda.381251

Abstract

References

  • [1] Li W, Zhang B, Zhuang H, Li W. Effect of TiN on the corrosion behavior of Y-(α+β)-SiAlON/TiN materials in hot hydrochloric acidic solutions. Ceram Int 2005;31(2):277-280.
  • [2] Jiang T, Xue XX, Li Zf, Duan PN. High temperature oxidation behavior of electroconductive TiN/O′-SiAlON ceramics prepared from high titania slag-based mixture. T Nonferr Metal Soc 2011;21(12):2638-43.
  • [3] Acikbas NC, Tegmen S, Ozcan S, Acikbas G. Thermal shock behaviour of α: β-SiAlON–TiN composites. Ceram Int 2014;40(2):3611-8.
  • [4] Kumar A, Mallik AK, Acikbas NC, Yaygıngol M, Kara F, Mandal H, Basu D, Biswas K, Basu B. Cytocompatibility property evaluation of gas pressure sintered SiAlON–SiC composites with L929 fibroblast cells and Saos-2 osteoblast-like cells. Materials Science and Engineering: C. 2012;32(3):464-9.
  • [5] Kumar R, Acikbas NC, Kara F, Mandal H, Basu B. Microstructure–mechanical properties–wear resistance relationship of SiAlON ceramics. Metall Mater Trans A. 2009;40(10):2319-32.
  • [6] Riley F. Silicon nitride and related materials. J Am Ceram Soc 2000; 83: 245-265.
  • [7] Hong F, Lewis MH. Ceramic‐Matrix Composites Via in‐Situ Reaction Sintering. InProceedings of the 17th Annual Conference on Composites and Advanced Ceramic Materials, Part 2 of 2: Ceramic Engineering and Science Proceedings, Volume 14, Issue 9/10 2009 Sep 28 (pp. 699-706). John Wiley & Sons, Inc.
  • [8] Akin SR, Turan S, Gencoglu P, Mandal H. Effect of SiC addition on the thermal diffusivity of SiAlON ceramics. Ceram Int 2017;43(16):13469-74.
  • [9] Vleugels J, Jiang DT, Van der Biest O. Development and characterisation of SiAlON composites with TiB 2, TiN, TiC and TiCN. J Mater Sci 2004; 39(10):3375-81.
  • [10] Bitterlich B, Bitsch S, Friederich K. SiAlON based ceramic cutting tools. J Eur Ceram Soc 2008;28(5):989-94.
  • [11] Ayas E, Kara A, Kara F. α/β SiAlON based composites incorporated with MoSi2 for electrical applications. In: Singh D, Zhu D, Zhou Y, editors. Design, Development and Applications of Engineering Ceramics and Composites. USA: Ceramic Transactions, 2010. pp. 189-195. [12] Kumar Mallik A, Madhav Reddy K, Calis Acikbas N, Kara F, Mandal H, Basu D, Basu B. Influence of SiC addition on tribological properties of SiAlON. Ceram Int 2011; 37: 2495–2504.
  • [13] Ayas E, Kara A. Novel electrically conductive α/β SiAlON/TiCN composites. J Euro Ceram Soc 2011; 31: 903–911.
  • [14] Ayas E. Mechanical, electrical and thermal properties of α/β SiAlON-SiC composites fabricated by gas pressure sintering method. Anadolu University of Sciences & Technology-A: Applied Sciences & Engineering. 2016;17(5).
  • [15] Ayas E, Kara A, Mandal H, Turan S, Kara F. Production of alpha-beta SiAlON-TiN/TiCN composites by gas pressure sintering. Silic Ind 2004;69(7):287-92.
  • [16] Nordberg LO, Ekström T. Hot‐Pressed MoSi2‐Particulate‐Reinforced α‐SiAlON Composites. J Am Ceram Soc 1995;78(3):797-800.
  • [17] Mallik AK, Acikbas NC, Kara F, Mandal H, Basu D. A comparative study of SiAlON ceramics. Ceram Int. 2012;38(7):5757-67.
  • [18] Graziani TB, Bellosi AB. Densification and characteristics of TiN ceramics. J Mater Sci 1995;14(15):1078-81.
  • [19] Smirnov KL. β-SiAlON-TiN/TiB2. Int J Self-Propag High-Temp Synth 2016;25(2):80-5.
  • [20] Desmaison J, Desmaison M. Boride/nitride composites: synthesis and properties. In Materials Science of Carbides, Nitrides and Borides 1999 (pp. 267-284). Springer Netherlands.
  • [21] Blugan G, Hadad M, Janczak‐Rusch J, Kuebler J, Graule T. Fractography, mechanical properties, and microstructure of commercial silicon nitride–titanium nitride composites. J Am Ceram Soc 2005;88(4):926-33.
  • [22] Ayas E, Kara A, Kara F. A novel approach for preparing electrically conductive α/β SiAlON-TiN composites by spark plasma sintering. J Ceram Soc Jap 2008;116(1355):812-4.
  • [23] Duan RG, Roebben G, Vleugels J, Van der Biest O. Optimization of microstructure and properties of in situ formed β-O-SiAlON–TiN composite. Mater Sci Eng: A. 2006;427(1):195-202.
  • [24] Xu F, Wen S, Nordberg LO, Ekström T. TEM study of Y-doped α-SiAlON composite with 10 vol% TiN particulates. Mater Lett 1998;34(3):248-52.
  • [25] Ekström T, Olsson PO. ß-SiAlON ceramics with TiN particle inclusions. J Euro Ceram Soc 1994;13(6):551-9.
  • [26] Hong F, Lumby RJ, Lewis MH. TiN/SiAlON composites via in-situ reaction sintering. J Euro Ceram Soc 1993;11(3):237-9.
  • [27] Krnel K, Maglica A, Kosmač T. β-SiAlON/TiN nanocomposites prepared from TiO2-coated Si3 N4 powder. J Euro Ceram Soc 2008;28(5):953-7.
  • [28] Shimada S, Kato K. Coating and spark plasma sintering of nano-sized TiN on Y-α-SiAlON. Mater Sci Eng: A. 2007;443(1):47-53. [29] Lenčéš Z, Šajgalı́k P, Toriyama M, Brito ME, Kanzaki S. Multifunctional Si3N4/(β-SiAlON+ TiN) layered composites. J Euro Ceram Soc 2000;20(3):347-55.
  • [30] Bellosi A, Guicciardi S, Tampieri A. Development and characterization of electroconductive Si3N4-TiN composites. J Euro Ceram Soc 1992;9(2):83-93.
  • [31] Trueman CS, Huddleston J. Material removal by spalling during EDM of ceramics. J Euro Ceram Soc 2000;20(10):1629-35.
  • [32] Acikbas NC, Kara F. The effect of z value on intergranular phase crystallization of α ı/β ı-SiAlON-TiN composites. J Euro Ceram Soc 2017;37(3):923-30.
  • [33] Acikbas NC, Demir O. The effect of cation type, intergranular phase amount and cation mole ratios on z value and intergranular phase crystallization of SiAlON ceramics. Ceram Int 2013;39(3):3249-59.
  • [34] Acikbas NC. Tribological Behaviour of SiAlON-TiN Composites. J Euro Ceram Soc.DOI:10.1016/j.jeurceramsoc.2018.01.013
  • [35] Niihara K, Nakahira A. Strengthening and toughening mechanisms in nanocomposite ceramics. InAnnales de chimie 1991 (Vol. 16, No. 4-6, pp. 479-486). Lavoisier.
  • [36] Niihara K. New design concept of structural ceramics. J Ceram Soc Jap 1991;99(1154):974-82.
  • [37] Acikbas NC, Ozcan S, Acikbas G. The effect of surface roughness on tribological behavior of SiAlON-TiN composites. II. INES International Academic Research Congress Abstract Book, 18-21 October 2017-Alanya/ANTALYA, pp. 584.
  • [38] Nagaoka T, Yasuoka M, Hirao K, Kanzaki S. Effects of TiN particle size on mechanical properties of Si3N4/TiN particulate composites. J Ceram Soc Jap 1992;100(1160):617-620.
  • [39] Özcan S, Açıkbaş G, Özbay N, Açıkbaş NÇ. The effect of silicon nitride powder characteristics on SiAlON microstructures, densification and phase assemblage. Ceram Int 2017;43(13):10057-65.
  • [40] Liddell K. X-ray Analysis of Nitrogen Ceramic Phases MSc. Thesis, University of Newcastle, Upon Tyne, UK, 1979.
  • [41] EVans AG, Charles EA. Fracture toughness determinations by indentation. J Amer Ceram Soc 1976;59(7‐8):371-372.
  • [42] Niihara K, Morena R, Hasselman DP. Evaluation ofK Ic of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett 1982;1(1):13-6.
  • [43] Zhang C, Sun WY, Yan DS. Optimizing mechanical properties and thermal stability of Ln-α-β-sialon by using duplex Ln elements (Dy and Sm). J Euro Ceram Soc 1999;19(1):33-9.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nurcan Çalış Açıkbaş

Gökhan Açıkbaş

Publication Date June 30, 2018
Published in Issue Year 2018 Volume: 19 Issue: 2

Cite

APA Çalış Açıkbaş, N., & Açıkbaş, G. (2018). DEPENDENCE OF SiAlON-TiN COMPOSITE PROPERTIES ON TiN REINFORCEMENT PARTICLE SIZES. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 19(2), 356-367. https://doi.org/10.18038/aubtda.381251
AMA Çalış Açıkbaş N, Açıkbaş G. DEPENDENCE OF SiAlON-TiN COMPOSITE PROPERTIES ON TiN REINFORCEMENT PARTICLE SIZES. AUJST-A. June 2018;19(2):356-367. doi:10.18038/aubtda.381251
Chicago Çalış Açıkbaş, Nurcan, and Gökhan Açıkbaş. “DEPENDENCE OF SiAlON-TiN COMPOSITE PROPERTIES ON TiN REINFORCEMENT PARTICLE SIZES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19, no. 2 (June 2018): 356-67. https://doi.org/10.18038/aubtda.381251.
EndNote Çalış Açıkbaş N, Açıkbaş G (June 1, 2018) DEPENDENCE OF SiAlON-TiN COMPOSITE PROPERTIES ON TiN REINFORCEMENT PARTICLE SIZES. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19 2 356–367.
IEEE N. Çalış Açıkbaş and G. Açıkbaş, “DEPENDENCE OF SiAlON-TiN COMPOSITE PROPERTIES ON TiN REINFORCEMENT PARTICLE SIZES”, AUJST-A, vol. 19, no. 2, pp. 356–367, 2018, doi: 10.18038/aubtda.381251.
ISNAD Çalış Açıkbaş, Nurcan - Açıkbaş, Gökhan. “DEPENDENCE OF SiAlON-TiN COMPOSITE PROPERTIES ON TiN REINFORCEMENT PARTICLE SIZES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19/2 (June 2018), 356-367. https://doi.org/10.18038/aubtda.381251.
JAMA Çalış Açıkbaş N, Açıkbaş G. DEPENDENCE OF SiAlON-TiN COMPOSITE PROPERTIES ON TiN REINFORCEMENT PARTICLE SIZES. AUJST-A. 2018;19:356–367.
MLA Çalış Açıkbaş, Nurcan and Gökhan Açıkbaş. “DEPENDENCE OF SiAlON-TiN COMPOSITE PROPERTIES ON TiN REINFORCEMENT PARTICLE SIZES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 19, no. 2, 2018, pp. 356-67, doi:10.18038/aubtda.381251.
Vancouver Çalış Açıkbaş N, Açıkbaş G. DEPENDENCE OF SiAlON-TiN COMPOSITE PROPERTIES ON TiN REINFORCEMENT PARTICLE SIZES. AUJST-A. 2018;19(2):356-67.