Research Article
BibTex RIS Cite

VISUALLY ENHANCED SOCIAL MEDIA ANALYSIS OF REFUGEES IN TURKEY

Year 2018, Volume: 60 Issue: 2, 83 - 102, 01.08.2018

Abstract

The
population of refugees in Turkey is significantly growing since 2014 and it has
already exceeded three millions. This situation urges to study their conditions
and issues as well as their opinions. In this study, we propose a method to
analyze the dataset collected from social media accounts of refugees in Turkey
in a textual and visual manner. Firstly, we acquire social media activities of
refugees, and then we make textual analysis for which the results are presented
using word clouds. Finally, for the most significant words obtained from the
textual analysis, we perform a visual analysis to find out the most
representative image or a group of images shared in social networks. The
association between textual and visual results enhances their perceptibility
and help decreasing the ambiguity of inferences over analysis results. We
experimented with different scenarios and suggested several methods to enhance
computational and qualitative results.

References

  • 3rp:syria regional refugee response inter-agency information sharing portal. http://data.unhcr.org/syrianrefugees/country.php?id=224 (2018), accessed: 2018-01-19
  • Alnafri, M.: Positions and declarations. Aljamal Press, Bagdad, Iraq, PP. 164, (1996).
  • Dahab, M.Y., Ibrahim, A., Al-Mutawa, R.: A comparative study on arabic stemmers. International Journal of Computer Applications 125(8) (2015)
  • UNHCR: United nations refugee agency. http://www.unhcr.org/ figures-at-a-glance.html (2017), accessed: 2018-01-19
  • Paltoglou, G., Thelwall, M.: Twitter, myspace, digg: Unsupervised sentiment analysis in social media. ACM Transactions on Intelligent Systems and Technology (TIST) 3(4), 66 (2012)
  • Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Foundations and Trends R in Information Retrieval 2(1–2), 1–135 (2008)
  • Bulbul, A., Dahyot, R.: Populating virtual cities using social media. Computer Animation and Virtual Worlds 28(5) (2017)
  • Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: ACM transactions on graphics (TOG). vol. 25, pp. 835–846. ACM (2006)
  • Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: ACM transactions on graphics (TOG). vol. 25, pp. 835–846. ACM (2006)
  • Sang, E.T.K., Bos, J.: Predicting the 2011 dutch senate election results with twitter. In: Proceedings of the workshop on semantic analysis in social media. pp. 53–60. Association for Computational Linguistics (2012)
  • Burnap, P., Gibson, R., Sloan, L., Southern, R., Williams, M.: 140 characters to victory?: Using twitter to predict the uk 2015 general election. Electoral Studies 41, 230–233 (2016)
  • Mascaro, C., Agosto, D., Goggins, S.P.: The method to the madness: The 2012 united states presidential election twitter corpus. In: Proceedings of the 7th 2016 International Conference on Social Media & Society. p. 15. ACM (2016)
  • Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with twitter: What 140 characters reveal about political sentiment. Icwsm 10(1), 178–185 (2010)
  • Darwish, K., Magdy, W., Zanouda, T.: Trump vs. hillary: What went viral during the 2016 us presidential election. In: International Conference on Social Informatics. pp. 143–161. Springer (2017)
  • Kutlu M, Darwish K, Elsayed T.: Devam vs. Tamam: 2018 Turkish Elections. arXiv preprint arXiv:1807.06655. (2018)
  • Gayo-Avello, D.: ” i wanted to predict elections with twitter and all i got was this lousy paper”–a balanced survey on election prediction using twitter data. arXiv preprint arXiv:1204.6441 (2012)
  • Kreis, R.: # refugeesnotwelcome: Anti-refugee discourse on twitter. Discourse & Communication 11(5), 498–514 (2017)
  • Rettberg, J.W., Gajjala, R.: Terrorists or cowards: negative portrayals of male syrian refugees in social media. Feminist Media Studies 16(1), 178–181 (2016)
  • Darwish, K., Magdy, W., Rahimi, A., Baldwin, T., Abokhodair, N.: Predicting online islamophopic behavior after# parisattacks. The Journal of Web Science 3(1) (2017)
  • Magdy, W., Darwish, K., Abokhodair, N., Rahimi, A., Baldwin, T.: # isisisnotislam or# deportallmuslims?: Predicting unspoken views. In: Proceedings of the 8th ACM Conference on Web Science. pp. 95–106. ACM (2016)
  • Schreck, T., Keim, D.: Visual analysis of social media data. Computer 46(5), 68–75 (2013)
  • Bulbul, A., Dahyot, R.: Social media based 3d visual popularity. Comput. Graph. 63(C), 28–36 (Apr 2017), https://doi.org/10.1016/j.cag. 2017.01.005
  • Sharma, V., Kumar, A., Agrawal, N., Singh, P., Kulshreshtha, R.: Image summarization using topic modelling. In: Signal and Image Processing Applications (ICSIPA), 2015 IEEE International Conference on. pp. 226–231. IEEE (2015)
  • Bulbul, A., Kaplan, C., Ismail, S.H.: Social media based analysis of refugees in turkey. In: BroDyn18: Workshop on Analysis of Broad Dynamic Topics over Social Media. pp. 35–40 (2018)
  • Esnek, F.: Basin ilan kurumu, hangi ilde ne kadar suriyeli var? iste il il liste. http://www.bik.gov.tr/ hangi-ilde-ne-kadar-suriyeli-var-iste-il-il-liste/ (2017), accessed: 2018-01-19
  • Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International journal of computer vision 60(2), 91–110 (2004)
Year 2018, Volume: 60 Issue: 2, 83 - 102, 01.08.2018

Abstract

References

  • 3rp:syria regional refugee response inter-agency information sharing portal. http://data.unhcr.org/syrianrefugees/country.php?id=224 (2018), accessed: 2018-01-19
  • Alnafri, M.: Positions and declarations. Aljamal Press, Bagdad, Iraq, PP. 164, (1996).
  • Dahab, M.Y., Ibrahim, A., Al-Mutawa, R.: A comparative study on arabic stemmers. International Journal of Computer Applications 125(8) (2015)
  • UNHCR: United nations refugee agency. http://www.unhcr.org/ figures-at-a-glance.html (2017), accessed: 2018-01-19
  • Paltoglou, G., Thelwall, M.: Twitter, myspace, digg: Unsupervised sentiment analysis in social media. ACM Transactions on Intelligent Systems and Technology (TIST) 3(4), 66 (2012)
  • Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Foundations and Trends R in Information Retrieval 2(1–2), 1–135 (2008)
  • Bulbul, A., Dahyot, R.: Populating virtual cities using social media. Computer Animation and Virtual Worlds 28(5) (2017)
  • Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: ACM transactions on graphics (TOG). vol. 25, pp. 835–846. ACM (2006)
  • Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: ACM transactions on graphics (TOG). vol. 25, pp. 835–846. ACM (2006)
  • Sang, E.T.K., Bos, J.: Predicting the 2011 dutch senate election results with twitter. In: Proceedings of the workshop on semantic analysis in social media. pp. 53–60. Association for Computational Linguistics (2012)
  • Burnap, P., Gibson, R., Sloan, L., Southern, R., Williams, M.: 140 characters to victory?: Using twitter to predict the uk 2015 general election. Electoral Studies 41, 230–233 (2016)
  • Mascaro, C., Agosto, D., Goggins, S.P.: The method to the madness: The 2012 united states presidential election twitter corpus. In: Proceedings of the 7th 2016 International Conference on Social Media & Society. p. 15. ACM (2016)
  • Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with twitter: What 140 characters reveal about political sentiment. Icwsm 10(1), 178–185 (2010)
  • Darwish, K., Magdy, W., Zanouda, T.: Trump vs. hillary: What went viral during the 2016 us presidential election. In: International Conference on Social Informatics. pp. 143–161. Springer (2017)
  • Kutlu M, Darwish K, Elsayed T.: Devam vs. Tamam: 2018 Turkish Elections. arXiv preprint arXiv:1807.06655. (2018)
  • Gayo-Avello, D.: ” i wanted to predict elections with twitter and all i got was this lousy paper”–a balanced survey on election prediction using twitter data. arXiv preprint arXiv:1204.6441 (2012)
  • Kreis, R.: # refugeesnotwelcome: Anti-refugee discourse on twitter. Discourse & Communication 11(5), 498–514 (2017)
  • Rettberg, J.W., Gajjala, R.: Terrorists or cowards: negative portrayals of male syrian refugees in social media. Feminist Media Studies 16(1), 178–181 (2016)
  • Darwish, K., Magdy, W., Rahimi, A., Baldwin, T., Abokhodair, N.: Predicting online islamophopic behavior after# parisattacks. The Journal of Web Science 3(1) (2017)
  • Magdy, W., Darwish, K., Abokhodair, N., Rahimi, A., Baldwin, T.: # isisisnotislam or# deportallmuslims?: Predicting unspoken views. In: Proceedings of the 8th ACM Conference on Web Science. pp. 95–106. ACM (2016)
  • Schreck, T., Keim, D.: Visual analysis of social media data. Computer 46(5), 68–75 (2013)
  • Bulbul, A., Dahyot, R.: Social media based 3d visual popularity. Comput. Graph. 63(C), 28–36 (Apr 2017), https://doi.org/10.1016/j.cag. 2017.01.005
  • Sharma, V., Kumar, A., Agrawal, N., Singh, P., Kulshreshtha, R.: Image summarization using topic modelling. In: Signal and Image Processing Applications (ICSIPA), 2015 IEEE International Conference on. pp. 226–231. IEEE (2015)
  • Bulbul, A., Kaplan, C., Ismail, S.H.: Social media based analysis of refugees in turkey. In: BroDyn18: Workshop on Analysis of Broad Dynamic Topics over Social Media. pp. 35–40 (2018)
  • Esnek, F.: Basin ilan kurumu, hangi ilde ne kadar suriyeli var? iste il il liste. http://www.bik.gov.tr/ hangi-ilde-ne-kadar-suriyeli-var-iste-il-il-liste/ (2017), accessed: 2018-01-19
  • Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International journal of computer vision 60(2), 91–110 (2004)
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review Articles
Authors

Abdullah Bülbül 0000-0002-2527-2729

Salah Haj Ismail 0000-0001-6682-6663

Publication Date August 1, 2018
Submission Date September 3, 2018
Acceptance Date November 1, 2018
Published in Issue Year 2018 Volume: 60 Issue: 2

Cite

APA Bülbül, A., & Haj Ismail, S. (2018). VISUALLY ENHANCED SOCIAL MEDIA ANALYSIS OF REFUGEES IN TURKEY. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 60(2), 83-102.
AMA Bülbül A, Haj Ismail S. VISUALLY ENHANCED SOCIAL MEDIA ANALYSIS OF REFUGEES IN TURKEY. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. August 2018;60(2):83-102.
Chicago Bülbül, Abdullah, and Salah Haj Ismail. “VISUALLY ENHANCED SOCIAL MEDIA ANALYSIS OF REFUGEES IN TURKEY”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 60, no. 2 (August 2018): 83-102.
EndNote Bülbül A, Haj Ismail S (August 1, 2018) VISUALLY ENHANCED SOCIAL MEDIA ANALYSIS OF REFUGEES IN TURKEY. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 60 2 83–102.
IEEE A. Bülbül and S. Haj Ismail, “VISUALLY ENHANCED SOCIAL MEDIA ANALYSIS OF REFUGEES IN TURKEY”, Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng., vol. 60, no. 2, pp. 83–102, 2018.
ISNAD Bülbül, Abdullah - Haj Ismail, Salah. “VISUALLY ENHANCED SOCIAL MEDIA ANALYSIS OF REFUGEES IN TURKEY”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 60/2 (August 2018), 83-102.
JAMA Bülbül A, Haj Ismail S. VISUALLY ENHANCED SOCIAL MEDIA ANALYSIS OF REFUGEES IN TURKEY. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2018;60:83–102.
MLA Bülbül, Abdullah and Salah Haj Ismail. “VISUALLY ENHANCED SOCIAL MEDIA ANALYSIS OF REFUGEES IN TURKEY”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, vol. 60, no. 2, 2018, pp. 83-102.
Vancouver Bülbül A, Haj Ismail S. VISUALLY ENHANCED SOCIAL MEDIA ANALYSIS OF REFUGEES IN TURKEY. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2018;60(2):83-102.

Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.