Research Article
BibTex RIS Cite
Year 2019, Volume: 61 Issue: 2, 150 - 160, 01.12.2019
https://doi.org/10.33769/aupse.532422

Abstract

References

  • Aydogdu, Y. , Turabi, A.S., Aydogdu, A., Kok, M., Yakinci, Z. D., Karaca, H. E.: The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys, J. Therm. Anal. Calorim. 126, 399–406 (2016)
  • Zhang, B., Zhang, X., Yu, S. , Chen, J., Cao, Z. , Wu, G.: Giant magneto thermal conductivity in the Ni–Mn–In ferromagnetic shape memory alloys, Appl. Phys. Lett. 91, 012510 (2007)
  • Castillo-Villa, P.O., Mañosa, L., Planes, A., Soto-Parra, D.E., Sánchez-Llamazares, J.L., Flores-Zúñiga, H., and Frontera, C.: Elastocaloric and magnetocaloric effects in Ni-Mn-Sn (Cu) shape-memory alloy, J. Appl. Phys. 113, 053506 (2013)
  • Pramanick, S., Chatterjee, S., Giri, S., Majumdar, S., Koledov, V. V., Mashirov, A., Aliev, A. M., Batdalov, A. B., Hernando, B., Rosa, W. O., and Gonzlez-Legarreta, L.: Multiple magneto-functional properties of Ni46Mn41In13 shape memory Alloy, J. Alloys Compd. 578, 157161 (2013).
  • Samanta, T., Saleheen, A. U., Lepkowski, D. L., Shankar, A., Dubenko, I., Quetz, A., Khan, M., Ali, N. and Stadler, S.: Asymmetric switchinglike behavior in the magnetoresistance at low fields in bulk metamagnetic Heusler alloys, Phys. Rev. B. 90, 064412 (2014).
  • Yu, S. Y., Liu, Z. H., Liu, G. D., Chen, J. L., Cao, Z. X., Wu, G. H., Zhang, B., and Zhang, X.: Large magnetoresistance in single-crystalline Ni50Mn50−xInx alloys, x= (14–16) upon martensitic transformation, Appl. Phys. Lett. 89, 162503 (2006).
  • Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K. and Oikawa, K.: Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys, Appl. Phys. Lett. 85, 4358 (2004).
  • Krenke, T., Acet, M., Wassermann, E. F., Moya, X., Manosa, L., and Planes, A.: Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In Alloys, Phys. Rev. B. 73, 174413 (2006).
  • Manosa, L., Alonso, D. G., Planes, A., Bonnot, E., Barrio, M., Tamarit, J. L., Aksoy, S. and Acet, M.: Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy, Nat. Mat. 9, 478–481 (2010).
  • Kirat G, Kizilaslan O, Aksan M. A.: Magnetoresistance properties of magnetic Ni-Mn-Sn-B shape memory ribbons and magnetic field sensor aspects operating at room temperature. J. Magn. Magn. Mater. 477, 366-371 (2019).
  • Chattopadhyay, M. K., Manekar, M. A., Sharma, V. K., Arora, P., Tiwari, P., Tiwari, M. K. and Roy, S. B.: Contrasting magnetic behavior of Ni50Mn35In15 and Ni50Mn34.5In15.5 Alloys, J. Appl. Phys. 108, 073909 (2010).
  • Chen, F., Liu, W.L., Shi, Y.G., Müllner, P.: Influence of annealing on martensitic transformation and magnetic entropy change in Ni37.7Co12.7Mn40.8Sn8.8 magnetic shape memory alloy ribbon, J. Magn. Magn. Mater. 377, 137–14 (2015)
  • Huang, L., Cong, D. Y., Suo, H. L. and Wang, Y. D.: Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy. Appl. Phys. Lett. 104, 132407 (2014).
  • Gschneidner K. A., and Pecharsky, V. K.: Magnetocaloric Materials, Annual Rev. Mater. Sci. 30, 387–429 (2000).
  • Khattak, K. S., Aslani, A., Nwokoye, C. A., Siddique, A., Bennett, L. H., and Torre, E. D.: Magnetocaloric properties of metallic nanostructures, Cogent Engineering 2, 1050324 (2015).
  • Liu, J., Scheerbaum, N., Lyubina, J. and Gutfleisch, O.: Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni-Mn-In-Co., Appl. Phys. Lett. 93, 102512 (2008).
  • Zhang, Y. et al.: Large magnetic entropy change and enhanced mechanical properties of Ni-Mn-Sn-C alloys., Scripta Mater. 75, 26–29 (2014).
  • Tan, C., Tai, Z., Zhang, K., Tian, X. and Cai, W.: Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping., Sci. Rep. 7, 43387 (2017).
  • Tan, C. L., Feng Z. C., Zhang, K., Wu, M. Y., Tian, Guo E. J.: Microstructure, martensitic transformation and mechanical properties of Ni-Mn-Sn alloys by substituting Fe for Ni, Trans. Nonferrous Met. Soc. China. 27, 2234–2238 (2017).
  • Zhang, H. H., Zhang, X., Qian, M., Wei, L., Xing, D., Sun, J., Geng, L.: Enhanced magnetocaloric effects of Ni-Fe-Mn-Sn alloys involving strong metamagnetic behavior. J. Alloy. Compd. 715, 206–213 (2017).
  • Qu, Y.H., Cong, D.Y., Sun X.M., Nie Z.H., Gui, W.Y., Li R.G., Ren Y., Wang, Y.D..: Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys. Acta Mater. 134, 236–248 (2017).
  • Cong, D. Y., Huang, L., Hardy, V., Bourgault, D., Sun, X. M., Nie, Z.H., Wang, M.G., Ren, Y., Entel, P., Wang, Y. D.: Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy. Acta Mater. 146, 142–151 (2018).
  • Liu, C., Li, Z., Zhang, Y., Liu, Y., Sun., J., Huang., Y., Kang, B., Xu, K., Deng, D., Jing, D.: Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn48−xCuxNi42Sn10 Heusler alloys. Phys. Rev. B Condens. Matter. 508, 118–123 (2017).
  • Zhang, X., Zhang, H., Qian, M. and Geng, L.: Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations Sci. Rep. 8, 8235 (2018)
  • Hernando, B., Sanchez Llamazares, J.L., Santos, J.D., Sanchez, M.L., Escoda, Ll., Sunol, J.J., Varga, R., Garcia, C., Gonzalez, J.: Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: Martensitic transformation and magnetic properties, J. Magn. Magn. Mater. 321, 763–768 (2009)
  • Luo, H., Meng, F., Jiang, Q., Liu, H., Liu, E., Wu G. and Wang, Y.: Effect of boron on the martensitic transformation and magnetic properties of Ni50Mn36.5Sb13.5-xBx alloys, Scripta Mater. 63 569–572 (2010)
  • Kübler, J., William, A. R., and Sommers, C. B.: Formation and coupling of magnetic moments in Heusler alloys, Phys. Rev. B. 28, 1745 (1983)
  • Pecharsky, V. K. Gschncidner K. A. Jr.: Giant Magnetocaloric Effect in Gd5(Si2Ge2), Phys. Rev. Lett. 78, 4494 (1997).
  • Khan, M., Ali, N., Stadler, S.: Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+xSb13−x Heusler alloys J. Appl. Phys. 101 (2007) 053919.
  • Varzaneh, A. G., Kameli, P., Amiri, T., Ramachandran, K.K., Mar, A., Sarsari, I. A., Luo, J. L., Etsell, T. H., Salamati, H.: Effect of Cu substitution on magnetocaloric and critical behavior in Ni47Mn40Sn13-xCux alloys, J. Alloy. Compd. 34-42, 708 (2017)
  • Tian, F. Zeng, Y, Xu, M., Yang, S., Lu, T, Wang, J., Chang, T, Adil, M., Zhang, Y, Zhou, C. and Song, X.: A magnetocaloric effect arising from a ferromagnetic transition in the martensitic state in Heusler alloy of Ni50Mn36Sb8Ga6, Appl. Phys. Lett. 107, 012406 (2015).
  • Zhang, Y., Zheng, Q., Xia, W., Zhang, J., Dua, J., and Yana, A.: Enhanced large magnetic entropy change and adiabatic temperature change of Ni43Mn46Sn11 alloys by a rapid solidification method, Scripta Mater. 104, 41–44 (2015).

MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS

Year 2019, Volume: 61 Issue: 2, 150 - 160, 01.12.2019
https://doi.org/10.33769/aupse.532422

Abstract

The
magnetocaloric effect in Ni50-xCuxMn38Sn12B3
ribbons depending on the Cu substitution (x= 0, 1, 3) was investigated around the
Curie temperature. The purpose of the present study was to analyze the
magnetocaloric effect around a second order phase transition (around the Curie
temperature) which has a smaller thermal hysteresis compared to a first order
phase transition (Martensitic transition). The Curie temperature of the ribbons
shifted to higher temperatures with increasing Cu content. A conventional magnetocaloric effect
(MCE) was observed around the Curie temperature when the ribbons are subjected
to a magnetic field change of 5 T. The magnetic entropy changes were
calculated based on the isothermal magnetization
 data using thermodynamic
Maxwell equation. The highest magnetic entropy change and the
refrigerant
capacity

was
obtained for the x=1 ribbon. 

References

  • Aydogdu, Y. , Turabi, A.S., Aydogdu, A., Kok, M., Yakinci, Z. D., Karaca, H. E.: The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys, J. Therm. Anal. Calorim. 126, 399–406 (2016)
  • Zhang, B., Zhang, X., Yu, S. , Chen, J., Cao, Z. , Wu, G.: Giant magneto thermal conductivity in the Ni–Mn–In ferromagnetic shape memory alloys, Appl. Phys. Lett. 91, 012510 (2007)
  • Castillo-Villa, P.O., Mañosa, L., Planes, A., Soto-Parra, D.E., Sánchez-Llamazares, J.L., Flores-Zúñiga, H., and Frontera, C.: Elastocaloric and magnetocaloric effects in Ni-Mn-Sn (Cu) shape-memory alloy, J. Appl. Phys. 113, 053506 (2013)
  • Pramanick, S., Chatterjee, S., Giri, S., Majumdar, S., Koledov, V. V., Mashirov, A., Aliev, A. M., Batdalov, A. B., Hernando, B., Rosa, W. O., and Gonzlez-Legarreta, L.: Multiple magneto-functional properties of Ni46Mn41In13 shape memory Alloy, J. Alloys Compd. 578, 157161 (2013).
  • Samanta, T., Saleheen, A. U., Lepkowski, D. L., Shankar, A., Dubenko, I., Quetz, A., Khan, M., Ali, N. and Stadler, S.: Asymmetric switchinglike behavior in the magnetoresistance at low fields in bulk metamagnetic Heusler alloys, Phys. Rev. B. 90, 064412 (2014).
  • Yu, S. Y., Liu, Z. H., Liu, G. D., Chen, J. L., Cao, Z. X., Wu, G. H., Zhang, B., and Zhang, X.: Large magnetoresistance in single-crystalline Ni50Mn50−xInx alloys, x= (14–16) upon martensitic transformation, Appl. Phys. Lett. 89, 162503 (2006).
  • Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K. and Oikawa, K.: Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys, Appl. Phys. Lett. 85, 4358 (2004).
  • Krenke, T., Acet, M., Wassermann, E. F., Moya, X., Manosa, L., and Planes, A.: Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In Alloys, Phys. Rev. B. 73, 174413 (2006).
  • Manosa, L., Alonso, D. G., Planes, A., Bonnot, E., Barrio, M., Tamarit, J. L., Aksoy, S. and Acet, M.: Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy, Nat. Mat. 9, 478–481 (2010).
  • Kirat G, Kizilaslan O, Aksan M. A.: Magnetoresistance properties of magnetic Ni-Mn-Sn-B shape memory ribbons and magnetic field sensor aspects operating at room temperature. J. Magn. Magn. Mater. 477, 366-371 (2019).
  • Chattopadhyay, M. K., Manekar, M. A., Sharma, V. K., Arora, P., Tiwari, P., Tiwari, M. K. and Roy, S. B.: Contrasting magnetic behavior of Ni50Mn35In15 and Ni50Mn34.5In15.5 Alloys, J. Appl. Phys. 108, 073909 (2010).
  • Chen, F., Liu, W.L., Shi, Y.G., Müllner, P.: Influence of annealing on martensitic transformation and magnetic entropy change in Ni37.7Co12.7Mn40.8Sn8.8 magnetic shape memory alloy ribbon, J. Magn. Magn. Mater. 377, 137–14 (2015)
  • Huang, L., Cong, D. Y., Suo, H. L. and Wang, Y. D.: Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy. Appl. Phys. Lett. 104, 132407 (2014).
  • Gschneidner K. A., and Pecharsky, V. K.: Magnetocaloric Materials, Annual Rev. Mater. Sci. 30, 387–429 (2000).
  • Khattak, K. S., Aslani, A., Nwokoye, C. A., Siddique, A., Bennett, L. H., and Torre, E. D.: Magnetocaloric properties of metallic nanostructures, Cogent Engineering 2, 1050324 (2015).
  • Liu, J., Scheerbaum, N., Lyubina, J. and Gutfleisch, O.: Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni-Mn-In-Co., Appl. Phys. Lett. 93, 102512 (2008).
  • Zhang, Y. et al.: Large magnetic entropy change and enhanced mechanical properties of Ni-Mn-Sn-C alloys., Scripta Mater. 75, 26–29 (2014).
  • Tan, C., Tai, Z., Zhang, K., Tian, X. and Cai, W.: Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping., Sci. Rep. 7, 43387 (2017).
  • Tan, C. L., Feng Z. C., Zhang, K., Wu, M. Y., Tian, Guo E. J.: Microstructure, martensitic transformation and mechanical properties of Ni-Mn-Sn alloys by substituting Fe for Ni, Trans. Nonferrous Met. Soc. China. 27, 2234–2238 (2017).
  • Zhang, H. H., Zhang, X., Qian, M., Wei, L., Xing, D., Sun, J., Geng, L.: Enhanced magnetocaloric effects of Ni-Fe-Mn-Sn alloys involving strong metamagnetic behavior. J. Alloy. Compd. 715, 206–213 (2017).
  • Qu, Y.H., Cong, D.Y., Sun X.M., Nie Z.H., Gui, W.Y., Li R.G., Ren Y., Wang, Y.D..: Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys. Acta Mater. 134, 236–248 (2017).
  • Cong, D. Y., Huang, L., Hardy, V., Bourgault, D., Sun, X. M., Nie, Z.H., Wang, M.G., Ren, Y., Entel, P., Wang, Y. D.: Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy. Acta Mater. 146, 142–151 (2018).
  • Liu, C., Li, Z., Zhang, Y., Liu, Y., Sun., J., Huang., Y., Kang, B., Xu, K., Deng, D., Jing, D.: Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn48−xCuxNi42Sn10 Heusler alloys. Phys. Rev. B Condens. Matter. 508, 118–123 (2017).
  • Zhang, X., Zhang, H., Qian, M. and Geng, L.: Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations Sci. Rep. 8, 8235 (2018)
  • Hernando, B., Sanchez Llamazares, J.L., Santos, J.D., Sanchez, M.L., Escoda, Ll., Sunol, J.J., Varga, R., Garcia, C., Gonzalez, J.: Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: Martensitic transformation and magnetic properties, J. Magn. Magn. Mater. 321, 763–768 (2009)
  • Luo, H., Meng, F., Jiang, Q., Liu, H., Liu, E., Wu G. and Wang, Y.: Effect of boron on the martensitic transformation and magnetic properties of Ni50Mn36.5Sb13.5-xBx alloys, Scripta Mater. 63 569–572 (2010)
  • Kübler, J., William, A. R., and Sommers, C. B.: Formation and coupling of magnetic moments in Heusler alloys, Phys. Rev. B. 28, 1745 (1983)
  • Pecharsky, V. K. Gschncidner K. A. Jr.: Giant Magnetocaloric Effect in Gd5(Si2Ge2), Phys. Rev. Lett. 78, 4494 (1997).
  • Khan, M., Ali, N., Stadler, S.: Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+xSb13−x Heusler alloys J. Appl. Phys. 101 (2007) 053919.
  • Varzaneh, A. G., Kameli, P., Amiri, T., Ramachandran, K.K., Mar, A., Sarsari, I. A., Luo, J. L., Etsell, T. H., Salamati, H.: Effect of Cu substitution on magnetocaloric and critical behavior in Ni47Mn40Sn13-xCux alloys, J. Alloy. Compd. 34-42, 708 (2017)
  • Tian, F. Zeng, Y, Xu, M., Yang, S., Lu, T, Wang, J., Chang, T, Adil, M., Zhang, Y, Zhou, C. and Song, X.: A magnetocaloric effect arising from a ferromagnetic transition in the martensitic state in Heusler alloy of Ni50Mn36Sb8Ga6, Appl. Phys. Lett. 107, 012406 (2015).
  • Zhang, Y., Zheng, Q., Xia, W., Zhang, J., Dua, J., and Yana, A.: Enhanced large magnetic entropy change and adiabatic temperature change of Ni43Mn46Sn11 alloys by a rapid solidification method, Scripta Mater. 104, 41–44 (2015).
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review Articles
Authors

Olcay Kızılaslan 0000-0003-2528-433X

Publication Date December 1, 2019
Submission Date February 26, 2019
Acceptance Date June 25, 2019
Published in Issue Year 2019 Volume: 61 Issue: 2

Cite

APA Kızılaslan, O. (2019). MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 61(2), 150-160. https://doi.org/10.33769/aupse.532422
AMA Kızılaslan O. MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. December 2019;61(2):150-160. doi:10.33769/aupse.532422
Chicago Kızılaslan, Olcay. “MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-X CuxMn38Sn12B3 SHAPE MEMORY RIBBONS”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 61, no. 2 (December 2019): 150-60. https://doi.org/10.33769/aupse.532422.
EndNote Kızılaslan O (December 1, 2019) MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 61 2 150–160.
IEEE O. Kızılaslan, “MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS”, Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng., vol. 61, no. 2, pp. 150–160, 2019, doi: 10.33769/aupse.532422.
ISNAD Kızılaslan, Olcay. “MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-X CuxMn38Sn12B3 SHAPE MEMORY RIBBONS”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 61/2 (December 2019), 150-160. https://doi.org/10.33769/aupse.532422.
JAMA Kızılaslan O. MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2019;61:150–160.
MLA Kızılaslan, Olcay. “MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-X CuxMn38Sn12B3 SHAPE MEMORY RIBBONS”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, vol. 61, no. 2, 2019, pp. 150-6, doi:10.33769/aupse.532422.
Vancouver Kızılaslan O. MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2019;61(2):150-6.

Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.