Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., Schultz, S., Composite medium
with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 84 (18) (2000),
4184–4187, https://doi.org/10.1103/PhysRevLett.84.4184.
Shelby, R. A., Smith, D. R., Schultz, S., Experimental verification of a negative index of
refraction, Science, 292 (5514) (2001), 77–79, https://doi.org/10.1126/science.1058847.
Shelby, R. A., Smith, D. R., Nemat-Nasser, S. C., Schultz, S., Microwave transmission through
a two-dimensional, isotropic, left-handed metamaterial, Appl. Phys. Lett., 78 (4) (2001),
489–491, https://doi.org/10.1063/1.1343489.
Pendry, J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett., 85 (18) (2000),
3966–3969, https://doi.org/10.1103/PhysRevLett.85.3966.
Erentok, A. and Luljak, P. L. and Ziolkowski, R. W., Characterization of a volumetric meta-material realization of an artificial magnetic conductor for antenna applications, IEEE Trans. Antennas Propag., 53 (1) (2005), 160-172, https://doi.org/10.1109/TAP.2004.840534.
Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., Smith, D.
R., Metamaterial electromagnetic cloak at microwave frequencies, Science, 314 (5801) (2006),
977–980, https://doi.org/10.1126/science.1133628.
Engheta, N., An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability, IEEE Antennas Wireless Propag. Lett., 1 (2002), 10-13,https://doi.org/10.1109/LAWP.2002.802576.
Antoniades, M. A., Eleftheriades, G. V., Compact linear lead/lag metamaterial phase shifters
for broadband applications, IEEE Antennas Wireless Propag. Lett., 2 (2003), 103-106, https://doi.org/10.1109/LAWP.2003.815280.
Falcone, F., Lopetegi, T., Baena, J. D., Marques, R., Martin, F., Sorolla,
M., Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators, IEEE Microw. Wireless Compon. Lett., 14 (6) (2004), 280-282, https://doi.org/10.1109/LMWC.2004.828029.
Antoniades, M. A., Eleftheriades, G. V., A broadband Wilkinson balun using microstrip metamaterial lines, IEEE Antennas Wireless Propag. Lett., 4 (2005), 209–212, https://doi.org/10.1109/LAWP.2005.851005.
Ziolkowski, R. W., Kipple, A. D., Application of double negative materials to increase the
power radiated by electrically small antennas, IEEE Trans. Antennas Propag., 51 (10) (2003),
2626–2640, https://doi.org/10.1109/10.1109/TAP.2003.817561.
Al-Naib, I. A. I., Jansen, C., Koch M., Thin-film sensing with planar asymmetric metamaterial resonators, Appl. Phys. Lett., 93 (8) (2008), 083507, https://doi.org/10.1063/1.2976636.
Melik, R., Unal, E., Perkgoz, N. K., Puttlitz, C., Demir, H. V., Metamaterial based
telemetric strain sensing in different materials, Opt. Express, 18 (5) (2010), 5000–5007,
https://doi.org/10.1364/OE.18.005000.
Tian, X., Lee, P. M. Tan, Y. J., Wu, T. L. Y., Yao, H., Zhang, M., Li, Z., Ng, K. A., Tee, B.
C. K., Ho, J. S., Wireless body sensor networks based on metamaterial textiles, Nat. Electron.,
2 (6) (2019), 243-251, https://doi.org/10.1038/s41928-019-0257-7.
Ekmekci, E., Turhan-Sayan, G., Multi-functional metamaterial sensor based on a broad-side
coupled SRR topology with a multi-layer substrate, Appl. Phys. A: Mater. Sci. Process., 110
(2013), 189-197, https://doi.org/10.1007/s00339-012-7113-1.
Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., Magnetism from conductors and
enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., 47 (11) (1999), 2075-
2084, https://doi.org/10.1109/22.798002.
Engheta, N., Ziolkowski, R. W., Electromagnetic Metamaterials: Physics and Engineering
Explorations, Wiley, Hoboken, N.J., 2006.
Padilla, W. J., Aronsson, M. T., Highstrete, C., Lee, M., Taylor, A. J.,Averitt, R. D., Electrically resonant terahertz metamaterials: Theoretical and experimental investigations, Phys. Rev. B: Condens. Matter, 75 (4) (2007), 041102, https://doi.org/10.1103/PhysRevB.75.041102.
Zhang, J., Tian, G. Y., Marindra, A. M. J., Sunny, A. I., Zhao, A. B., A Review of Passive
RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications,
Sensors, 17 (2) (2017), 265, https://doi.org/10.3390/s17020265.
Melik, R., Unal, E., Perkgoz, N.K., Santoni, B., Kamstock, D., Puttlitz, C., Demir, H.V.,
Nested metamaterials for wireless strain sensing, IEEE J. Sel. Topics Quantum Electron., 16
(2) (2010), 450-458, https://doi.org/10.1109/JSTQE.2009.2033391.
Ozbey, B., Unal, E., Ertugrul, H., Kurc, O., Puttlitz, C. M., Erturk, V. B.,
Altintas, A., Demir, H. V., Wireless displacement sensing enabled by metamaterial
probes for remote structural health monitoring, Sensors, 14 (1) (2014), 1691-1704,
https://doi.org/10.3390/s140101691.
Ozbey, B., Demir, H. V., Kurc, O., Erturk, V. B., Altintas, A., Wireless measurement of
elastic and plastic deformation by a metamaterial-based sensor, Sensors, 14 (10) (2014), 19609-
19621, https://doi.org/10.3390/s141019609.
Ozbey, B., Demir, H. V., Kurc, O., Erturk, V. B., Altintas, A., Wireless sensing in complex
electromagnetic media: Construction materials and structural monitoring, IEEE Sensors J.,
15 (10) (2015), 5545–5554, https://doi.org/10.1109/JSEN.2015.2441555.
Ozbey, B., Erturk, V. B., Demir, H. V., Altintas, A., Kurc, O., A wireless passive sensing
system for displacement/strain measurement in reinforced concrete members, Sensors, 16 (4)
(2016), 496, https://doi.org/10.3390/s16040496.
Ozbey, B., Range extension in coupling-based wireless passive displacement sensors for
remote structural health monitoring, IEEE Sensors J., 22 (21) (2022), 20268-20275,
https://doi.org/10.1109/JSEN.2022.3206475.
Ozbey, B., Ert¨urk, V. B., Kurc, O., Altintas, A., Demir, H. V., Multi-point single-antenna
sensing enabled by wireless nested split-ring resonator sensors, IEEE Sensors J., 16 (21) (2016),
7744–7752, https://doi.org/10.1109/JSEN.2016.2604020.
Ozbey, B., Eibert, T. F., Wireless non-destructive moisture content characterization of trees
by highly-sensitive compact resonating probes, IEEE Sensors J., 21 (5) (2021), 6125–6132,
https://doi.org/10.1109/JSEN.2020.3043304.
Ozbey, B., Altintas, A., Demir, H. V., Ertürk, V. B., An equivalent circuit model fornested split-ring resonators, IEEE Trans. Microw. Theory Tech., 65 (10) (2017), 3733–3743, https://doi.org/10.1109/TMTT.2017.2699650.
Dassault Systemes, CST Studio Suite, Velizy-Villacoublay, France, 2019.
James, W. L., Dielectric Properties of Wood and Hardboard: Variation with Temperature,
Frequency, Moisture Content, and Grain Orientation. Department of Agriculture, Forest Service, Forest Products Laboratory, 1975.
A novel alternative in wireless and passive sensing: the bended nested split-ring resonator
Year 2023,
Volume: 65 Issue: 2, 152 - 165, 29.12.2023
In this paper, a new split-ring resonator variant, called the bended nested split-ring resonator (B-NSRR) is introduced. B-NSRR is a modified version of the nested split-ring resonator (NSRR) geometry, which has been successfully utilized in sensing of various physical quantities such as strain, displacement and moisture content due to its superior sensitivity, resolution and compactness in comparison to more traditional structures such as SRR and electrical SRR (ESRR). The B-NSRR geometry is demonstrated to allow an even more compact structure, while retaining the high sensitivity level of the NSRR. The performances obtained by the SRR, ESRR, NSRR and B-NSRR geometries are compared for displacement and moisture content sensing applications. Simulations are carried out to validate the findings, where modified versions of SRR-based structures are employed as displacement sensors and a comparison is made between their performances. Owing to its compactness and high sensitivity, it is shown that the B-NSRR is a reasonable alternative to available geometries in various sensing applications.
Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., Schultz, S., Composite medium
with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 84 (18) (2000),
4184–4187, https://doi.org/10.1103/PhysRevLett.84.4184.
Shelby, R. A., Smith, D. R., Schultz, S., Experimental verification of a negative index of
refraction, Science, 292 (5514) (2001), 77–79, https://doi.org/10.1126/science.1058847.
Shelby, R. A., Smith, D. R., Nemat-Nasser, S. C., Schultz, S., Microwave transmission through
a two-dimensional, isotropic, left-handed metamaterial, Appl. Phys. Lett., 78 (4) (2001),
489–491, https://doi.org/10.1063/1.1343489.
Pendry, J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett., 85 (18) (2000),
3966–3969, https://doi.org/10.1103/PhysRevLett.85.3966.
Erentok, A. and Luljak, P. L. and Ziolkowski, R. W., Characterization of a volumetric meta-material realization of an artificial magnetic conductor for antenna applications, IEEE Trans. Antennas Propag., 53 (1) (2005), 160-172, https://doi.org/10.1109/TAP.2004.840534.
Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., Smith, D.
R., Metamaterial electromagnetic cloak at microwave frequencies, Science, 314 (5801) (2006),
977–980, https://doi.org/10.1126/science.1133628.
Engheta, N., An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability, IEEE Antennas Wireless Propag. Lett., 1 (2002), 10-13,https://doi.org/10.1109/LAWP.2002.802576.
Antoniades, M. A., Eleftheriades, G. V., Compact linear lead/lag metamaterial phase shifters
for broadband applications, IEEE Antennas Wireless Propag. Lett., 2 (2003), 103-106, https://doi.org/10.1109/LAWP.2003.815280.
Falcone, F., Lopetegi, T., Baena, J. D., Marques, R., Martin, F., Sorolla,
M., Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators, IEEE Microw. Wireless Compon. Lett., 14 (6) (2004), 280-282, https://doi.org/10.1109/LMWC.2004.828029.
Antoniades, M. A., Eleftheriades, G. V., A broadband Wilkinson balun using microstrip metamaterial lines, IEEE Antennas Wireless Propag. Lett., 4 (2005), 209–212, https://doi.org/10.1109/LAWP.2005.851005.
Ziolkowski, R. W., Kipple, A. D., Application of double negative materials to increase the
power radiated by electrically small antennas, IEEE Trans. Antennas Propag., 51 (10) (2003),
2626–2640, https://doi.org/10.1109/10.1109/TAP.2003.817561.
Al-Naib, I. A. I., Jansen, C., Koch M., Thin-film sensing with planar asymmetric metamaterial resonators, Appl. Phys. Lett., 93 (8) (2008), 083507, https://doi.org/10.1063/1.2976636.
Melik, R., Unal, E., Perkgoz, N. K., Puttlitz, C., Demir, H. V., Metamaterial based
telemetric strain sensing in different materials, Opt. Express, 18 (5) (2010), 5000–5007,
https://doi.org/10.1364/OE.18.005000.
Tian, X., Lee, P. M. Tan, Y. J., Wu, T. L. Y., Yao, H., Zhang, M., Li, Z., Ng, K. A., Tee, B.
C. K., Ho, J. S., Wireless body sensor networks based on metamaterial textiles, Nat. Electron.,
2 (6) (2019), 243-251, https://doi.org/10.1038/s41928-019-0257-7.
Ekmekci, E., Turhan-Sayan, G., Multi-functional metamaterial sensor based on a broad-side
coupled SRR topology with a multi-layer substrate, Appl. Phys. A: Mater. Sci. Process., 110
(2013), 189-197, https://doi.org/10.1007/s00339-012-7113-1.
Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., Magnetism from conductors and
enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., 47 (11) (1999), 2075-
2084, https://doi.org/10.1109/22.798002.
Engheta, N., Ziolkowski, R. W., Electromagnetic Metamaterials: Physics and Engineering
Explorations, Wiley, Hoboken, N.J., 2006.
Padilla, W. J., Aronsson, M. T., Highstrete, C., Lee, M., Taylor, A. J.,Averitt, R. D., Electrically resonant terahertz metamaterials: Theoretical and experimental investigations, Phys. Rev. B: Condens. Matter, 75 (4) (2007), 041102, https://doi.org/10.1103/PhysRevB.75.041102.
Zhang, J., Tian, G. Y., Marindra, A. M. J., Sunny, A. I., Zhao, A. B., A Review of Passive
RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications,
Sensors, 17 (2) (2017), 265, https://doi.org/10.3390/s17020265.
Melik, R., Unal, E., Perkgoz, N.K., Santoni, B., Kamstock, D., Puttlitz, C., Demir, H.V.,
Nested metamaterials for wireless strain sensing, IEEE J. Sel. Topics Quantum Electron., 16
(2) (2010), 450-458, https://doi.org/10.1109/JSTQE.2009.2033391.
Ozbey, B., Unal, E., Ertugrul, H., Kurc, O., Puttlitz, C. M., Erturk, V. B.,
Altintas, A., Demir, H. V., Wireless displacement sensing enabled by metamaterial
probes for remote structural health monitoring, Sensors, 14 (1) (2014), 1691-1704,
https://doi.org/10.3390/s140101691.
Ozbey, B., Demir, H. V., Kurc, O., Erturk, V. B., Altintas, A., Wireless measurement of
elastic and plastic deformation by a metamaterial-based sensor, Sensors, 14 (10) (2014), 19609-
19621, https://doi.org/10.3390/s141019609.
Ozbey, B., Demir, H. V., Kurc, O., Erturk, V. B., Altintas, A., Wireless sensing in complex
electromagnetic media: Construction materials and structural monitoring, IEEE Sensors J.,
15 (10) (2015), 5545–5554, https://doi.org/10.1109/JSEN.2015.2441555.
Ozbey, B., Erturk, V. B., Demir, H. V., Altintas, A., Kurc, O., A wireless passive sensing
system for displacement/strain measurement in reinforced concrete members, Sensors, 16 (4)
(2016), 496, https://doi.org/10.3390/s16040496.
Ozbey, B., Range extension in coupling-based wireless passive displacement sensors for
remote structural health monitoring, IEEE Sensors J., 22 (21) (2022), 20268-20275,
https://doi.org/10.1109/JSEN.2022.3206475.
Ozbey, B., Ert¨urk, V. B., Kurc, O., Altintas, A., Demir, H. V., Multi-point single-antenna
sensing enabled by wireless nested split-ring resonator sensors, IEEE Sensors J., 16 (21) (2016),
7744–7752, https://doi.org/10.1109/JSEN.2016.2604020.
Ozbey, B., Eibert, T. F., Wireless non-destructive moisture content characterization of trees
by highly-sensitive compact resonating probes, IEEE Sensors J., 21 (5) (2021), 6125–6132,
https://doi.org/10.1109/JSEN.2020.3043304.
Ozbey, B., Altintas, A., Demir, H. V., Ertürk, V. B., An equivalent circuit model fornested split-ring resonators, IEEE Trans. Microw. Theory Tech., 65 (10) (2017), 3733–3743, https://doi.org/10.1109/TMTT.2017.2699650.
Dassault Systemes, CST Studio Suite, Velizy-Villacoublay, France, 2019.
James, W. L., Dielectric Properties of Wood and Hardboard: Variation with Temperature,
Frequency, Moisture Content, and Grain Orientation. Department of Agriculture, Forest Service, Forest Products Laboratory, 1975.
Özbey, B. (2023). A novel alternative in wireless and passive sensing: the bended nested split-ring resonator. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 65(2), 152-165. https://doi.org/10.33769/aupse.1287277
AMA
Özbey B. A novel alternative in wireless and passive sensing: the bended nested split-ring resonator. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. December 2023;65(2):152-165. doi:10.33769/aupse.1287277
Chicago
Özbey, Burak. “A Novel Alternative in Wireless and Passive Sensing: The Bended Nested Split-Ring Resonator”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 65, no. 2 (December 2023): 152-65. https://doi.org/10.33769/aupse.1287277.
EndNote
Özbey B (December 1, 2023) A novel alternative in wireless and passive sensing: the bended nested split-ring resonator. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 65 2 152–165.
IEEE
B. Özbey, “A novel alternative in wireless and passive sensing: the bended nested split-ring resonator”, Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng., vol. 65, no. 2, pp. 152–165, 2023, doi: 10.33769/aupse.1287277.
ISNAD
Özbey, Burak. “A Novel Alternative in Wireless and Passive Sensing: The Bended Nested Split-Ring Resonator”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 65/2 (December 2023), 152-165. https://doi.org/10.33769/aupse.1287277.
JAMA
Özbey B. A novel alternative in wireless and passive sensing: the bended nested split-ring resonator. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2023;65:152–165.
MLA
Özbey, Burak. “A Novel Alternative in Wireless and Passive Sensing: The Bended Nested Split-Ring Resonator”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, vol. 65, no. 2, 2023, pp. 152-65, doi:10.33769/aupse.1287277.
Vancouver
Özbey B. A novel alternative in wireless and passive sensing: the bended nested split-ring resonator. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2023;65(2):152-65.