Research Article
BibTex RIS Cite

Optical fiber bending sensor based on speckle pattern imaging

Year 2024, Volume: 66 Issue: 2, 201 - 213, 11.12.2024
https://doi.org/10.33769/aupse.1461078

Abstract

In this paper, we propose a new fiber bending sensor based on speckle
pattern imaging. The design and implementation of the sensor are demonstrated by
simulated studies. The speckle pattern imaging technique by using a multimode
fiber can offer high spatial resolution. In this study, we showed that the bending
sensor responds very sensitively by using the correlation of the images. The fiber
sensing part consists of a curve in a form similar to the S structure. We reached a
sensitivity of 0.0295 μm-1 by bending the fiber only 60°. Sensitivity can be further
increased by reducing the bending diameter or creating a full loop.

Supporting Institution

TUBITAK

Project Number

1919B012219546

Thanks

This research was supported by the Scientific and Technological Research Council of Turkey (TUBITAK 2209-A Program in 2023).

References

  • Gao, H., Hu, H., Zhao, Y., Li, J., Lei, M., Zhang, Y., Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures, Sens. Actuators A Phys., 284 (2018), 22-27, https://doi.org/10.1016/j.sna.2018.10.011.
  • Su, H., Zhang, Y., Ma, K., Zhao, Y., Wang, J., High-temperature sensor based on suspended-core microstructured optical fiber, Opt. Express, 27 (2019), 20156, https://doi.org/10.1364/OE.27.020156.
  • Li, M., Gong, Y., Yin, J., Li, W., Shao, Y., Cong, A., Huang, G., Highly-sensitive and wide-range temperature sensor based on polymer-filled micro-cavity in fibre Bragg grating by temperature segmentation, Optik, 245 (2021), 167707.
  • Sun, X., Zhang, L., Zeng, L., Hu, Y., Duan, J., Micro-bending sensing based on single mode fiber spliced multimode fiber Bragg grating structure, Opt. Commun., 505 (2022), 127513, https://doi.org/10.1016/j.optcom.2021.127513.
  • Perez-Herrera, R.A., Andre, R.M., Silva, S.F. et al., Simultaneous measurement of strain and temperature based on clover microstructured fiber loop mirror, Measurement, 65 (2015), 50-53, https://doi.org/10.1016/j.measurement.2014.12.052.
  • Bilsel, M., Navruz, I., Tapered optical fiber sensor for discrimination of strain and temperature, Advances in Electrical and Electronic Eng., 18 (2020), 50-56.
  • Kissinger, T., Correia, R., Charrett, T. O. H., James, S. W., Tatam, R. P., Fiber segment interferometry for dynamic strain measurements, J. Light. Technol., 34 (2016), 4620-4626, https://doi.org/10.1109/JLT.2016.2530940.
  • Sazio, P. J. A., Microstructured optical fibers as high-pressure microfluidic reactors, Science, 311 (2006), 1583-1586.
  • Dong, N., Wang, S., Jiang, L., Jiang, Y., Wang, P., Zhang, L., Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings, IEEE Photonics Technol. Lett., 30 (2018), 431-434, https://doi.org/10.1109/LPT.2017.2786292.
  • Zhang, W., Ni, X., Wang, J., Ai, F., Luo et al., Microstructured optical fiber based distributed sensor for in vivo pressure detection, J. Lightwave Technol., 37 (2019), 1865-1872.
  • Kim, H. J., Shin, H. Y., Pyeon, C. H., Kim, S., Lee, B., Fiber-optic humidity sensor system for the monitoring and detection of coolant leakage in nuclear power plants, Nucl. Eng. Technol., 52 (2020), 1689-1696.
  • Bian, C., Wang, J., Bai, X., Hu, M., Gang, T., Optical fiber based on humidity sensor with improved sensitivity for monitoring applications, Opt. Laser Technol., 130 (2020), 106342.
  • Zhang, J., Shen, X., Qian, M., Xiang, Z., Hu, X., An optical fiber sensor based on polyimide coated fiber Bragg grating for measurement of relative humidity, Opt. Fiber Technol., 61 (2021), 102406, https://doi.org/10.1016/j.yofte.2020.102406.
  • Huang, X. Lai, M., Zhao, Z., Yang, Y. et al., Fiber optic evanescent wave humidity sensor based on SiO2/TiO2 bilayer films. Appl. Opt., 60 (2021), 2158-2165.
  • Wang, T., Yasukochi, W., Korposh, S., James, S. W., Tatam, R. P., Lee, S.-W., A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas, Sens. Actuators B, 228 (2016), 573-580.
  • Yu, C.-B., Wu, Y., Li, C., Wu, F., Zhou, J.-H., Gong, Y., Rao, Y.-J., Chen, Y.-F., Highly sensitive and selective fiber-optic Fabry-Perot volatile organic compounds sensor based on a PMMA film, Opt. Mater. Express, 7 (6) (2017), 2111-2116.
  • Sultangazin, A., Kusmangaliyev, J., Aitkulov, A., Akilbekova, D., Olivero, M., Tosi, D., Design of a smartphone plastic optical fiber chemical sensor for hydrogen sulfide detection, IEEE Sens. J., 17 (21) (2017), 6935-6940.
  • Hosok, A., Nishiyama M., Kumekawa N., Watanabe, K. Et al., Hetero-core structured fiber optic chemical sensor based on surface plasmon resonance using Au/lipid films, Opt. Commun., 524 (2022), 128751, https://doi.org/10.1016/j.optcom.2022.128751.
  • Wu, Y. Pei, L. Jin, W., Youchao, J., Yang, Y. Et al., Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber, Opt. Laser Technol., 92 (2017), 74-79, https://doi.org/10.1016/j.optlastec.2017.01.007.
  • Gong, Y., Zhao, T., Rao, Y-J., Wu, Y., All-fiber curvature sensor based on multimode interference, IEEE Photonics Technol. Lett., 23 (2011), 679-681.
  • Li, Y-P., Zhang, W-G., Wang, S., Chen, J. et al., Bending vector sensor based on a pair of opposite tilted long-period fiber gratings, IEEE Photonics Technol. Lett., 29 (2017), 224-227, https://doi.org/10.1109/LPT.2016.2636446.
  • Chen, Y., Yu, Z., Chen, H., Tao, C., et al., Experimental study on temperature insensitive curvature sensor based on reflective all-fiber structure, Infrared Phys. Techn., 137 (2024), 105146, https://doi.org/10.1016/j.infrared.2024.105146.
  • Anderson, D. Z., Bolshtyansky, M. A., and Zel’dovich, B. Y., Stabilization of the speckle pattern of a multimode fiber undergoing bending, Opt. Lett., 21 (11) (1996), 785-787.
  • Asawa, C. K., Taylor, H. F., Propagation of light trapped within a set of lowest-order modes of graded-index multimode fiber undergoing bending, Appl. Opt., 39 (2000), 2029-2037.
  • Keiser, G. Optical Fiber Communication, Mc Graw Hills, Third Edition, Singapore, 2000.
  • Schreier, H., Orteu, J-J., Sutton, M. A., Image correlation for shape, motion and deformation measurements, Springer, 2009.
  • Ari, F., Serbetci, H., Navruz, I., Tapered fiber optic refractive index sensor using speckle pattern imaging, Opt. Fiber Technol., 79 (2023), 103366.
  • Schermer, R. T., Mode scalability in bent optical fibers, Optics Express, 15 (24) (2007), 15674-15701, https://doi.org/10.1364/OE.15.015674.
Year 2024, Volume: 66 Issue: 2, 201 - 213, 11.12.2024
https://doi.org/10.33769/aupse.1461078

Abstract

Project Number

1919B012219546

References

  • Gao, H., Hu, H., Zhao, Y., Li, J., Lei, M., Zhang, Y., Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures, Sens. Actuators A Phys., 284 (2018), 22-27, https://doi.org/10.1016/j.sna.2018.10.011.
  • Su, H., Zhang, Y., Ma, K., Zhao, Y., Wang, J., High-temperature sensor based on suspended-core microstructured optical fiber, Opt. Express, 27 (2019), 20156, https://doi.org/10.1364/OE.27.020156.
  • Li, M., Gong, Y., Yin, J., Li, W., Shao, Y., Cong, A., Huang, G., Highly-sensitive and wide-range temperature sensor based on polymer-filled micro-cavity in fibre Bragg grating by temperature segmentation, Optik, 245 (2021), 167707.
  • Sun, X., Zhang, L., Zeng, L., Hu, Y., Duan, J., Micro-bending sensing based on single mode fiber spliced multimode fiber Bragg grating structure, Opt. Commun., 505 (2022), 127513, https://doi.org/10.1016/j.optcom.2021.127513.
  • Perez-Herrera, R.A., Andre, R.M., Silva, S.F. et al., Simultaneous measurement of strain and temperature based on clover microstructured fiber loop mirror, Measurement, 65 (2015), 50-53, https://doi.org/10.1016/j.measurement.2014.12.052.
  • Bilsel, M., Navruz, I., Tapered optical fiber sensor for discrimination of strain and temperature, Advances in Electrical and Electronic Eng., 18 (2020), 50-56.
  • Kissinger, T., Correia, R., Charrett, T. O. H., James, S. W., Tatam, R. P., Fiber segment interferometry for dynamic strain measurements, J. Light. Technol., 34 (2016), 4620-4626, https://doi.org/10.1109/JLT.2016.2530940.
  • Sazio, P. J. A., Microstructured optical fibers as high-pressure microfluidic reactors, Science, 311 (2006), 1583-1586.
  • Dong, N., Wang, S., Jiang, L., Jiang, Y., Wang, P., Zhang, L., Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings, IEEE Photonics Technol. Lett., 30 (2018), 431-434, https://doi.org/10.1109/LPT.2017.2786292.
  • Zhang, W., Ni, X., Wang, J., Ai, F., Luo et al., Microstructured optical fiber based distributed sensor for in vivo pressure detection, J. Lightwave Technol., 37 (2019), 1865-1872.
  • Kim, H. J., Shin, H. Y., Pyeon, C. H., Kim, S., Lee, B., Fiber-optic humidity sensor system for the monitoring and detection of coolant leakage in nuclear power plants, Nucl. Eng. Technol., 52 (2020), 1689-1696.
  • Bian, C., Wang, J., Bai, X., Hu, M., Gang, T., Optical fiber based on humidity sensor with improved sensitivity for monitoring applications, Opt. Laser Technol., 130 (2020), 106342.
  • Zhang, J., Shen, X., Qian, M., Xiang, Z., Hu, X., An optical fiber sensor based on polyimide coated fiber Bragg grating for measurement of relative humidity, Opt. Fiber Technol., 61 (2021), 102406, https://doi.org/10.1016/j.yofte.2020.102406.
  • Huang, X. Lai, M., Zhao, Z., Yang, Y. et al., Fiber optic evanescent wave humidity sensor based on SiO2/TiO2 bilayer films. Appl. Opt., 60 (2021), 2158-2165.
  • Wang, T., Yasukochi, W., Korposh, S., James, S. W., Tatam, R. P., Lee, S.-W., A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas, Sens. Actuators B, 228 (2016), 573-580.
  • Yu, C.-B., Wu, Y., Li, C., Wu, F., Zhou, J.-H., Gong, Y., Rao, Y.-J., Chen, Y.-F., Highly sensitive and selective fiber-optic Fabry-Perot volatile organic compounds sensor based on a PMMA film, Opt. Mater. Express, 7 (6) (2017), 2111-2116.
  • Sultangazin, A., Kusmangaliyev, J., Aitkulov, A., Akilbekova, D., Olivero, M., Tosi, D., Design of a smartphone plastic optical fiber chemical sensor for hydrogen sulfide detection, IEEE Sens. J., 17 (21) (2017), 6935-6940.
  • Hosok, A., Nishiyama M., Kumekawa N., Watanabe, K. Et al., Hetero-core structured fiber optic chemical sensor based on surface plasmon resonance using Au/lipid films, Opt. Commun., 524 (2022), 128751, https://doi.org/10.1016/j.optcom.2022.128751.
  • Wu, Y. Pei, L. Jin, W., Youchao, J., Yang, Y. Et al., Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber, Opt. Laser Technol., 92 (2017), 74-79, https://doi.org/10.1016/j.optlastec.2017.01.007.
  • Gong, Y., Zhao, T., Rao, Y-J., Wu, Y., All-fiber curvature sensor based on multimode interference, IEEE Photonics Technol. Lett., 23 (2011), 679-681.
  • Li, Y-P., Zhang, W-G., Wang, S., Chen, J. et al., Bending vector sensor based on a pair of opposite tilted long-period fiber gratings, IEEE Photonics Technol. Lett., 29 (2017), 224-227, https://doi.org/10.1109/LPT.2016.2636446.
  • Chen, Y., Yu, Z., Chen, H., Tao, C., et al., Experimental study on temperature insensitive curvature sensor based on reflective all-fiber structure, Infrared Phys. Techn., 137 (2024), 105146, https://doi.org/10.1016/j.infrared.2024.105146.
  • Anderson, D. Z., Bolshtyansky, M. A., and Zel’dovich, B. Y., Stabilization of the speckle pattern of a multimode fiber undergoing bending, Opt. Lett., 21 (11) (1996), 785-787.
  • Asawa, C. K., Taylor, H. F., Propagation of light trapped within a set of lowest-order modes of graded-index multimode fiber undergoing bending, Appl. Opt., 39 (2000), 2029-2037.
  • Keiser, G. Optical Fiber Communication, Mc Graw Hills, Third Edition, Singapore, 2000.
  • Schreier, H., Orteu, J-J., Sutton, M. A., Image correlation for shape, motion and deformation measurements, Springer, 2009.
  • Ari, F., Serbetci, H., Navruz, I., Tapered fiber optic refractive index sensor using speckle pattern imaging, Opt. Fiber Technol., 79 (2023), 103366.
  • Schermer, R. T., Mode scalability in bent optical fibers, Optics Express, 15 (24) (2007), 15674-15701, https://doi.org/10.1364/OE.15.015674.
There are 28 citations in total.

Details

Primary Language English
Subjects Photonic and Electro-Optical Devices, Sensors and Systems (Excl. Communications), Optical Fibre Communication Systems and Technologies
Journal Section Research Articles
Authors

İsa Navruz 0000-0003-2976-076X

Ceren Dilsiz 0009-0001-6486-0574

Eylül Sevim Ortak 0009-0006-0640-0277

Sevde Nur Boyraz 0009-0008-0157-1362

Project Number 1919B012219546
Publication Date December 11, 2024
Submission Date April 2, 2024
Acceptance Date May 22, 2024
Published in Issue Year 2024 Volume: 66 Issue: 2

Cite

APA Navruz, İ., Dilsiz, C., Ortak, E. S., Boyraz, S. N. (2024). Optical fiber bending sensor based on speckle pattern imaging. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 66(2), 201-213. https://doi.org/10.33769/aupse.1461078
AMA Navruz İ, Dilsiz C, Ortak ES, Boyraz SN. Optical fiber bending sensor based on speckle pattern imaging. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. December 2024;66(2):201-213. doi:10.33769/aupse.1461078
Chicago Navruz, İsa, Ceren Dilsiz, Eylül Sevim Ortak, and Sevde Nur Boyraz. “Optical Fiber Bending Sensor Based on Speckle Pattern Imaging”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 66, no. 2 (December 2024): 201-13. https://doi.org/10.33769/aupse.1461078.
EndNote Navruz İ, Dilsiz C, Ortak ES, Boyraz SN (December 1, 2024) Optical fiber bending sensor based on speckle pattern imaging. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 66 2 201–213.
IEEE İ. Navruz, C. Dilsiz, E. S. Ortak, and S. N. Boyraz, “Optical fiber bending sensor based on speckle pattern imaging”, Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng., vol. 66, no. 2, pp. 201–213, 2024, doi: 10.33769/aupse.1461078.
ISNAD Navruz, İsa et al. “Optical Fiber Bending Sensor Based on Speckle Pattern Imaging”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 66/2 (December 2024), 201-213. https://doi.org/10.33769/aupse.1461078.
JAMA Navruz İ, Dilsiz C, Ortak ES, Boyraz SN. Optical fiber bending sensor based on speckle pattern imaging. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2024;66:201–213.
MLA Navruz, İsa et al. “Optical Fiber Bending Sensor Based on Speckle Pattern Imaging”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, vol. 66, no. 2, 2024, pp. 201-13, doi:10.33769/aupse.1461078.
Vancouver Navruz İ, Dilsiz C, Ortak ES, Boyraz SN. Optical fiber bending sensor based on speckle pattern imaging. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2024;66(2):201-13.

Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.