Research Article
BibTex RIS Cite

An Investigation on Molecular Basis of the Effects of SGLT2 İnhibitor Dapagliflozin on Hyperglycemia-Associated Heart Dysfunction

Year 2018, Volume: 71 Issue: 3, 131 - 138, 31.12.2018

Abstract

Objectives: It has been reported that sodium glucose co-transporter (SGLT) inhibitors lowering blood glucose in diabetic patients via inhibiting glucose re-absorption. Although it has not been clearly identified the effects of these inhibitors on heart function, these inhibitors may act like Na+/H+-exchanger (NHE) inhibitors. In this study, we were aimed to clarify the underlying cellular mechanism of a SGLT2-inhibitor, Dapagliflozin (DAPA), on hyperglycemic embryonic rat ventricular cells (H9c2 cell line) via electrophysiological measurements.

Materials and Methods: One group of H9c2 cells were incubated with high glucose (25 mM) medium for 24-hours and 48-hours at 37 °C to obtain hyperglycemic (HG) cardiomyocytes. Another group of H9c2 cells were incubated together with high glucose medium and DAPA (D185360, TORONTO Research Chemicals; 100 nM or 1 μM). Intracellular ion concentrations, ([X]in), reactive oxygen species, ([ROS]in) and mitochondrial membrane potential, (MMP) were monitored via specific fluorescent dyes (DCFDA, FluoZin-3AM, JC-1, SNARF, FURA-2AM and SBFI) with confocal microscope and microspectrofluorometer. All data are presented as mean (± SEM) and statistical analysis performed by student t-test. Significance level considered at p<0.05 for all comparisons.

Results: Due to the toxic effects of 1 μM DAPA incubation, all experiments were conducted with 100 nM DAPA incubated cells. [Na+]in levels were not significantly changed in any group. Moreover, increased [H+]in level in HG incubation (48-hours) significantly augmented following DAPA treatment (24-hours and 48-hours). However [Zn+2]in levels in HG incubated (24-hours and 48-hours) cells were significantly increased, DAPA treatment had no further effect. In addition, increased [Ca+2]in in HG reduced with DAPA treatment to control values. Importantly, DAPA treatment significantly reduced elevated [ROS]in but did not improve depolarized MMP in HG cardiomyocytes.

Conclusion: In conclusion these results indicate that DAPA treatment restores [H+]in and [ROS]in homeostasis and improve contraction-relaxation activity of the heart in HG conditions.

Ethical Statement

-

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Hanson RL, Imperatore G, Bennett PH, et al. Components of the “metabolic syndrome” and incidence of type 2 diabetes. Diabetes 2002; 51(10): 3120-7.
  • 2. Meigs JB, Larson MG, D’Agostino RB, et al. Coronary artery calcification in type 2 diabetes and insulin resistance: the framingham offspring study. Diabetes Care 2002; 25(8): 1313-1319.
  • 3. Fleischman A and Rhodes ET. Management of obesity, insulin resistance and type 2 diabetes in children: consensus and controversy. Diabetes Metab Syndr Obes 2009; 2: 185-202.
  • 4. Porte D and Woods SC. Regulation of food intake and body weight in insulin. Diabetologia 1981; 20 Suppl: 274-280.
  • 5. Satman I, Yilmaz T, Sengul A, et al. Population-based study of diabetes and risk characteristics in Turkey: results of the turkish diabetes epidemiology study (TURDEP). Diabetes Care 2002; 25(9): 1551-1556.
  • 6. Gundogan K, Bayram F, Capak M, et al. Prevalence of metabolic syndrome in the Mediterranean region of Turkey: evaluation of hypertension, diabetes mellitus, obesity, and dyslipidemia. Metab Syndr Relat Disord 2009; 7(5): 427-434.
  • 7. Onat A, Yuksel M, Koroglu B, et al. [Turkish Adult Risk Factor Study survey 2012: overall and coronary mortality and trends in the prevalence of metabolic syndrome]. Turk Kardiyol Dern Ars 2013; 41(5): 373-378.
  • 8. Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972; 30(6): 595- 602.
  • 9. Fein FS, Kornstein LB, Strobeck JE, et al. Altered myocardial mechanics in diabetic rats. Circ Res 1980; 47(6): 922-933.
  • 10. Penpargkul S, Schaible T, Yipintsoi T, et al. The effect of diabetes on performance and metabolism of rat hearts. Circ Res 1980; 47(6): 911-921.
  • 11. Pierce GN and Russell JC. Regulation of intracellular Ca2+ in the heart during diabetes. Cardiovasc Res 1997; 34(1): 41-47.
  • 12. Choi KM, Zhong Y, Hoit BD, et al. Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 2002; 283(4): H1398-1408.
  • 13. Ozdemir S, Ugur M, Gurdal H, et al. Treatment with AT(1) receptor blocker restores diabetes-induced alterations in intracellular Ca(2+) transients and contractile function of rat myocardium. Arch Biochem Biophys 2005; 435(1): 166-174.
  • 14. Aydemir-Koksoy A, Bilginoglu A, Sariahmetoglu M, et al. Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. J Nutr Biochem 2010; 21(9): 827-833.
  • 15. Ren J, Pulakat L, Whaley-Connell A, et al. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 2010; 88(10): 993-1001.
  • 16. Whaley-Connell A and Sowers JR. Oxidative stress in the cardiorenal metabolic syndrome. Curr Hypertens Rep 2012; 14(4): 360-365.
  • 17. Ilkun O and Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 2013; 19(27): 4806-4817.
  • 18. Tuncay E, Okatan EN, Vassort G, et al. ss-blocker timolol prevents arrhythmogenic Ca(2)(+) release and normalizes Ca(2)(+) and Zn(2)(+) dyshomeostasis in hyperglycemic rat heart. PLoS One 2013; 8(7): e71014.
  • 19. Tuncay E, Okatan EN, Toy A, et al. Enhancement of cellular antioxidantdefence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxid Med Cell Longev 2014; 2014: 290381.
  • 20. Han S, Hagan DL, Taylor JR, et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 2008; 57(6): 1723-1729.
  • 21. Hansen HH, Jelsing J, Hansen CF, et al. The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves beta-cell mass and restores glucose homeostasis in the male zucker diabetic fatty rat. J Pharmacol Exp Ther 2014; 350(3): 657-664
  • 22. Riggs K, Ali H, Taegtmeyer H, et al. The Use of SGLT-2 Inhibitors in Type 2 Diabetes and Heart Failure. Metab Syndr Relat Disord 2015; 13(7): 292-297.
  • 23. Martens P, Mathieu C, and Verbrugge FH. Promise of SGLT2 Inhibitors in Heart Failure: Diabetes and Beyond. Curr Treat Options Cardiovasc Med 2017;19(3):23.
  • 24. Packer M, Anker SD, Butler J, et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure: Proposal of a Novel Mechanism of Action. JAMA Cardiol 2017;2(9):1025-1029.
  • 25. Kosiborod M, Cavender MA, Fu AZ, et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017;136(3):249-259.
  • 26. Lee TM, Chang NC, and Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via 310.27. Bilginoglu A, Kandilci HB, and Turan B. Intracellular levels of Na(+) and TTXsensitive Na(+) channel current in diabetic rat ventricular cardiomyocytes. Cardiovasc Toxicol 2013;13(2):138-47.
  • 28. Yaras N, Ugur M, Ozdemir S, et al. Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 2005;54(11):3082-8.
  • 29. Panchal SK, Poudyal H, Iyer A, et al. High-carbohydrate high-fat dietinduced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 2011;57(1):51-64.
  • 30. Roberts CK, Barnard RJ, Sindhu RK, et al. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 2006; 55(7):928-934.
  • 31. Okatan EN, Tuncay E, Hafez G, et al. Profiling of cardiac beta-adrenoceptor subtypes in the cardiac left ventricle of rats with metabolic syndrome: Comparison with streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2015;93(7):517-525.
  • 32. Dutta K, Podolin DA, Davidson MB, et al. Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance. Diabetes 2001; 50(5): 1186-92.
  • 33. George P and McCrimmon RJ. Potential role of non-insulin adjunct therapy in Type 1 diabetes. Diabet Med 2013;30(2):179-188.
  • 34. Stone ML, Walker JL, Chisholm D, et al. The addition of rosiglitazone to insulin in adolescents with type 1 diabetes and poor glycaemic control: a randomized-controlled trial. Pediatr Diabetes 2008;9(4 Pt 1):326-334.
  • 35. Polsky S and Ellis SL. Obesity, insulin resistance, and type 1 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2015;22(4):277-282.
  • 36. Ahmadieh H, Ghazal N, and Azar ST. Role of sodium glucose cotransporter-2 inhibitors in type I diabetes mellitus. Diabetes Metab Syndr Obes 2017;10:161-167.
  • 37. Ferrannini E, Ramos SJ, Salsali A, et al. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 2010; 33(10): 2217-2224.
  • 38. Bailey CJ, Iqbal N, T’Joen C, et al. Dapagliflozin monotherapy in drug-naive patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab 2012;14(10): 951-959.
  • 39. Strojek K, Yoon KH, Hruba V, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab 2011; 13(10): 928-938.
  • 40. Wilding JP, Charpentier G, Hollander P, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract 2013; 67(12): 1267-82.
  • 41. Haring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 2014; 37(6): 1650- 1629.
  • 42. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose cotransporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 2015; 75(1): 33-59.
  • 43. Whaley-Connell A and Sowers JR. Is it time to target prehypertension. Cardiovasc Ther 2010; 28(6): 337-338.
  • 44. Sattar N, McLaren J, Kristensen SL, et al. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 2016; 59(7): 1333-1339.

SGLT2 İnhibitörü Dapagliflozinin Hiperglisemi-Aracılı Kalp Fonksiyon Bozukluğu Üzerindeki Etkisinin Moleküler Temellerinin İncelenmesi

Year 2018, Volume: 71 Issue: 3, 131 - 138, 31.12.2018

Abstract

Amaç: Sodyum glukoz ko-transporter (SGLT) inhibitörlerinin diyabetli bireylerde glukoz re-absorbsiyonunu inhibe ederek kan şekerini düşürdüğü ileri sürülmektedir. Bu inhibitörlerin kalp fonksiyonu üzerindeki etkileri henüz tam olarak bilinmemesine karşın, Na+/H+-değiştokuşçusu (NHE) inhibitörü gibi etkiler gösterebildiği ileri sürülmektedir. Bu çalışmada, SGLT2-inhibitörü Dapagliflozin (DAPA), in vitro olarak sıçan embriyonik hiperglisemik ventriküler hücrelerine (H9c2-hücre hattı) uygulanarak hücre seviyesindeki etki mekanizmasının elektrofizyolojik yöntemler kullanılarak incelenmesi hedeflenmiştir.

Gereç ve Yöntem: H9c2 hücreleri deney koşullarına hazır hale getirildikten sonra, H9c2’ler bir grubu 25 mM glukoz ile 24-saat veya 48-saat 37 °C’de inkübe edilerek hiperglisemik kardiyomiyositler (HG) elde edilmiş, bir diğer grubun inkübasyonu ise 25 mM glukoz ve DAPA (D185360, TORONTO Research Chemicals; 100 nM veya 1 μM) ile aynı sürelerde gerçekleştirilmiştir. Hücreiçi iyon derişimleri ([X]in, [ROS]in ve mitokondri membran potansiyeli, (MMP, X= Na+, Ca2+, H+, Zn2+) ölçümleri hücreler özel floresans boyalarla yüklenerek (DCFDA, FluoZin-3AM, JC-1, SNARF-1AM, FURA-2AM ve SBFI) konfokal mikroskobu ve mikrospektrofluorometre kullanılarak ölçülmüştür. Gruplar arası karşılaştırmalar student t-testi ile gerçekleştirilmiş ve anlamlılık (p) değeri 0,05’den küçük değerler kabul edilmiştir.

Bulgular: Normal ve hiperglisemik hücrelerde 1 μM DAPA uygulamasında toksik etkiler gözlendiğinden, tüm incelemeler 100 nM DAPA uygulaması ile yapılmıştır. [Na+]in değeri bu uygulamalarda değişmezken, HG inkübasyonda (48-saat) istatistiksel olarak anlamlı düzeyde artış olan [H+]in değeri, DAPA uygulaması ile (24-saat ve 48-saat) çok belirgin olarak artmıştır. Buna karşın, HG’li hücrelerde (24-saat ve 48-saat) artmış olan [Zn+2]in değerlerini DAPA uygulaması etkilememiştir. Buna karşın, HG’li hücrelerde (24-saat ve 48-saat) artmış olan [Ca+2]in değerlerinin DAPA uygulaması ile normal değerlere yakın olduğu gözlenmiştir. Bunlara ek olarak, HG koşullarında önemli derecelerde artmış olan [ROS]in değerinin DAPA ile normal değerler civarında gözlendiği, fakat HG sonucu depolarize durumdaki MMP’lerini etkilemediği sonuçları elde edilmiştir.

Sonuç: Sonuç olarak elde edilen verilerimiz, SGLT2 inhibitörlerinin HG hücrelerde, artan [H+]in ve [ROS]in baskılayarak, artmış olan bazal [Ca+2]in’nin düzelmesine ve böylece kalbin kasılma-gevşeme aktivitesinin HG koşullarında normal fonksiyon göstermesine yol açabileceğini işaret etmektedir

Ethical Statement

Etik Kurul Onayı: Etik kurul onayı alınmamıştır. Hasta Onayı: Hasta onayı alınmamıştır. Hakem Değerlendirmesi: Editörler kurulu tarafından değerlendirilmiştir. Yazarlık Katkıları Konsept: B.T., Dizayn: B.T., Veri Toplama veya İşleme: A.D., Y.O., S.D., N.E., M.T.A., A.A., M.C.D., M.F.E., B.T.Y., M.S.Y., Analiz veya Yorumlama: Y.O., E.T., Literatür Arama: A.D., Y.O., S.D., N.E., M.T.A., A.A., M.C.D., M.F.E., B.T.Y., M.S.Y., Yazan: B.T. Çıkar Çatışması: Yazarlar tarafından çıkar çatışması bildirilmemiştir. Finansal Destek: Bu çalışmanın finansal desteği, TÜBİTAK SBAG-214S254 nolu projeden sağlanmıştır

Project Number

-

References

  • 1. Hanson RL, Imperatore G, Bennett PH, et al. Components of the “metabolic syndrome” and incidence of type 2 diabetes. Diabetes 2002; 51(10): 3120-7.
  • 2. Meigs JB, Larson MG, D’Agostino RB, et al. Coronary artery calcification in type 2 diabetes and insulin resistance: the framingham offspring study. Diabetes Care 2002; 25(8): 1313-1319.
  • 3. Fleischman A and Rhodes ET. Management of obesity, insulin resistance and type 2 diabetes in children: consensus and controversy. Diabetes Metab Syndr Obes 2009; 2: 185-202.
  • 4. Porte D and Woods SC. Regulation of food intake and body weight in insulin. Diabetologia 1981; 20 Suppl: 274-280.
  • 5. Satman I, Yilmaz T, Sengul A, et al. Population-based study of diabetes and risk characteristics in Turkey: results of the turkish diabetes epidemiology study (TURDEP). Diabetes Care 2002; 25(9): 1551-1556.
  • 6. Gundogan K, Bayram F, Capak M, et al. Prevalence of metabolic syndrome in the Mediterranean region of Turkey: evaluation of hypertension, diabetes mellitus, obesity, and dyslipidemia. Metab Syndr Relat Disord 2009; 7(5): 427-434.
  • 7. Onat A, Yuksel M, Koroglu B, et al. [Turkish Adult Risk Factor Study survey 2012: overall and coronary mortality and trends in the prevalence of metabolic syndrome]. Turk Kardiyol Dern Ars 2013; 41(5): 373-378.
  • 8. Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972; 30(6): 595- 602.
  • 9. Fein FS, Kornstein LB, Strobeck JE, et al. Altered myocardial mechanics in diabetic rats. Circ Res 1980; 47(6): 922-933.
  • 10. Penpargkul S, Schaible T, Yipintsoi T, et al. The effect of diabetes on performance and metabolism of rat hearts. Circ Res 1980; 47(6): 911-921.
  • 11. Pierce GN and Russell JC. Regulation of intracellular Ca2+ in the heart during diabetes. Cardiovasc Res 1997; 34(1): 41-47.
  • 12. Choi KM, Zhong Y, Hoit BD, et al. Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 2002; 283(4): H1398-1408.
  • 13. Ozdemir S, Ugur M, Gurdal H, et al. Treatment with AT(1) receptor blocker restores diabetes-induced alterations in intracellular Ca(2+) transients and contractile function of rat myocardium. Arch Biochem Biophys 2005; 435(1): 166-174.
  • 14. Aydemir-Koksoy A, Bilginoglu A, Sariahmetoglu M, et al. Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. J Nutr Biochem 2010; 21(9): 827-833.
  • 15. Ren J, Pulakat L, Whaley-Connell A, et al. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 2010; 88(10): 993-1001.
  • 16. Whaley-Connell A and Sowers JR. Oxidative stress in the cardiorenal metabolic syndrome. Curr Hypertens Rep 2012; 14(4): 360-365.
  • 17. Ilkun O and Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 2013; 19(27): 4806-4817.
  • 18. Tuncay E, Okatan EN, Vassort G, et al. ss-blocker timolol prevents arrhythmogenic Ca(2)(+) release and normalizes Ca(2)(+) and Zn(2)(+) dyshomeostasis in hyperglycemic rat heart. PLoS One 2013; 8(7): e71014.
  • 19. Tuncay E, Okatan EN, Toy A, et al. Enhancement of cellular antioxidantdefence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxid Med Cell Longev 2014; 2014: 290381.
  • 20. Han S, Hagan DL, Taylor JR, et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 2008; 57(6): 1723-1729.
  • 21. Hansen HH, Jelsing J, Hansen CF, et al. The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves beta-cell mass and restores glucose homeostasis in the male zucker diabetic fatty rat. J Pharmacol Exp Ther 2014; 350(3): 657-664
  • 22. Riggs K, Ali H, Taegtmeyer H, et al. The Use of SGLT-2 Inhibitors in Type 2 Diabetes and Heart Failure. Metab Syndr Relat Disord 2015; 13(7): 292-297.
  • 23. Martens P, Mathieu C, and Verbrugge FH. Promise of SGLT2 Inhibitors in Heart Failure: Diabetes and Beyond. Curr Treat Options Cardiovasc Med 2017;19(3):23.
  • 24. Packer M, Anker SD, Butler J, et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure: Proposal of a Novel Mechanism of Action. JAMA Cardiol 2017;2(9):1025-1029.
  • 25. Kosiborod M, Cavender MA, Fu AZ, et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017;136(3):249-259.
  • 26. Lee TM, Chang NC, and Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via 310.27. Bilginoglu A, Kandilci HB, and Turan B. Intracellular levels of Na(+) and TTXsensitive Na(+) channel current in diabetic rat ventricular cardiomyocytes. Cardiovasc Toxicol 2013;13(2):138-47.
  • 28. Yaras N, Ugur M, Ozdemir S, et al. Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 2005;54(11):3082-8.
  • 29. Panchal SK, Poudyal H, Iyer A, et al. High-carbohydrate high-fat dietinduced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 2011;57(1):51-64.
  • 30. Roberts CK, Barnard RJ, Sindhu RK, et al. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 2006; 55(7):928-934.
  • 31. Okatan EN, Tuncay E, Hafez G, et al. Profiling of cardiac beta-adrenoceptor subtypes in the cardiac left ventricle of rats with metabolic syndrome: Comparison with streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2015;93(7):517-525.
  • 32. Dutta K, Podolin DA, Davidson MB, et al. Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance. Diabetes 2001; 50(5): 1186-92.
  • 33. George P and McCrimmon RJ. Potential role of non-insulin adjunct therapy in Type 1 diabetes. Diabet Med 2013;30(2):179-188.
  • 34. Stone ML, Walker JL, Chisholm D, et al. The addition of rosiglitazone to insulin in adolescents with type 1 diabetes and poor glycaemic control: a randomized-controlled trial. Pediatr Diabetes 2008;9(4 Pt 1):326-334.
  • 35. Polsky S and Ellis SL. Obesity, insulin resistance, and type 1 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2015;22(4):277-282.
  • 36. Ahmadieh H, Ghazal N, and Azar ST. Role of sodium glucose cotransporter-2 inhibitors in type I diabetes mellitus. Diabetes Metab Syndr Obes 2017;10:161-167.
  • 37. Ferrannini E, Ramos SJ, Salsali A, et al. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 2010; 33(10): 2217-2224.
  • 38. Bailey CJ, Iqbal N, T’Joen C, et al. Dapagliflozin monotherapy in drug-naive patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab 2012;14(10): 951-959.
  • 39. Strojek K, Yoon KH, Hruba V, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab 2011; 13(10): 928-938.
  • 40. Wilding JP, Charpentier G, Hollander P, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract 2013; 67(12): 1267-82.
  • 41. Haring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 2014; 37(6): 1650- 1629.
  • 42. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose cotransporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 2015; 75(1): 33-59.
  • 43. Whaley-Connell A and Sowers JR. Is it time to target prehypertension. Cardiovasc Ther 2010; 28(6): 337-338.
  • 44. Sattar N, McLaren J, Kristensen SL, et al. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 2016; 59(7): 1333-1339.
There are 43 citations in total.

Details

Primary Language English
Subjects Human Biophysics
Journal Section Research Article
Authors

Ayşegül Durak 0000-0001-8365-316X

Yusuf Olğar 0000-0002-3226-7450

Sinan Değirmenci 0000-0003-4019-9459

Naci Ertürk This is me 0000-0002-8323-6101

Muhammet Talha Akbaş This is me 0000-0002-2767-1213

Ahmet Aygün This is me 0000-0002-3602-3445

Mehmet Cihangir Deniz This is me 0000-0002-2421-7170

Muhammed Furkan Erciyas This is me 0000-0003-0269-8521

Burak Tahir Yazar This is me 0000-0002-3648-5017

Mustafa Salih Yılmaz This is me 0000-0001-8863-9383

Erkan Tuncay 0000-0002-6675-2534

Belma Turan 0000-0003-2583-9294

Project Number -
Publication Date December 31, 2018
Published in Issue Year 2018 Volume: 71 Issue: 3

Cite

APA Durak, A., Olğar, Y., Değirmenci, S., … Ertürk, N. (2018). An Investigation on Molecular Basis of the Effects of SGLT2 İnhibitor Dapagliflozin on Hyperglycemia-Associated Heart Dysfunction. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 71(3), 131-138. https://doi.org/10.4274/atfm.02996
AMA Durak A, Olğar Y, Değirmenci S, et al. An Investigation on Molecular Basis of the Effects of SGLT2 İnhibitor Dapagliflozin on Hyperglycemia-Associated Heart Dysfunction. Ankara Üniversitesi Tıp Fakültesi Mecmuası. December 2018;71(3):131-138. doi:10.4274/atfm.02996
Chicago Durak, Ayşegül, Yusuf Olğar, Sinan Değirmenci, Naci Ertürk, Muhammet Talha Akbaş, Ahmet Aygün, Mehmet Cihangir Deniz, et al. “An Investigation on Molecular Basis of the Effects of SGLT2 İnhibitor Dapagliflozin on Hyperglycemia-Associated Heart Dysfunction”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 71, no. 3 (December 2018): 131-38. https://doi.org/10.4274/atfm.02996.
EndNote Durak A, Olğar Y, Değirmenci S, Ertürk N, Akbaş MT, Aygün A, Deniz MC, Erciyas MF, Yazar BT, Yılmaz MS, Tuncay E, Turan B (December 1, 2018) An Investigation on Molecular Basis of the Effects of SGLT2 İnhibitor Dapagliflozin on Hyperglycemia-Associated Heart Dysfunction. Ankara Üniversitesi Tıp Fakültesi Mecmuası 71 3 131–138.
IEEE A. Durak et al., “An Investigation on Molecular Basis of the Effects of SGLT2 İnhibitor Dapagliflozin on Hyperglycemia-Associated Heart Dysfunction”, Ankara Üniversitesi Tıp Fakültesi Mecmuası, vol. 71, no. 3, pp. 131–138, 2018, doi: 10.4274/atfm.02996.
ISNAD Durak, Ayşegül et al. “An Investigation on Molecular Basis of the Effects of SGLT2 İnhibitor Dapagliflozin on Hyperglycemia-Associated Heart Dysfunction”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 71/3 (December2018), 131-138. https://doi.org/10.4274/atfm.02996.
JAMA Durak A, Olğar Y, Değirmenci S, Ertürk N, Akbaş MT, Aygün A, Deniz MC, Erciyas MF, Yazar BT, Yılmaz MS, Tuncay E, Turan B. An Investigation on Molecular Basis of the Effects of SGLT2 İnhibitor Dapagliflozin on Hyperglycemia-Associated Heart Dysfunction. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2018;71:131–138.
MLA Durak, Ayşegül et al. “An Investigation on Molecular Basis of the Effects of SGLT2 İnhibitor Dapagliflozin on Hyperglycemia-Associated Heart Dysfunction”. Ankara Üniversitesi Tıp Fakültesi Mecmuası, vol. 71, no. 3, 2018, pp. 131-8, doi:10.4274/atfm.02996.
Vancouver Durak A, Olğar Y, Değirmenci S, Ertürk N, Akbaş MT, Aygün A, et al. An Investigation on Molecular Basis of the Effects of SGLT2 İnhibitor Dapagliflozin on Hyperglycemia-Associated Heart Dysfunction. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2018;71(3):131-8.