Research Article
BibTex RIS Cite
Year 2024, Volume: 14 Issue: 2, 109 - 143, 31.07.2024

Abstract

References

  • [1] Y. Akdim, M. El Ansari, S. Lalaoui Rhali, Solvability of some Stefan type problems with L1− data, Rend. Mat. Appl., 44, 2023, 281-307.
  • [2] H.-W. Alt, S. Luckhaus, Quasi-linear elliptic-parabolic differential equations, Math. Z., 183, 1983, 311-341.
  • [3] K. Ammar, P. Wittbold, Existence of renormalized solutions of degenerate elliptic parabolic problems, Proc. Poy. Soc. Edinburgh, 133, 2003, 477-496. [4] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publisher, 1976.
  • [5] M. Bendahmane, P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and L1-data, Nonlinear Anal. TMA, 70, 2009, 567-583.
  • [6] Ph. B´enilan, M.G. Crandall, Completely accretive operators. In Semigroup Theory and Evolution Equations, Lecture Notes in Pure and Appl. Math., 135, 1991, 41-75.
  • [7] D. Blanchard, A. Porretta, Stefan problems with nonlinear diffusion and convection, J. Diff. Equ., 210, 2005, 383-428.
  • [8] D. Blanchard, F. Murat, H. Redwane, Existence and Uniqueness of a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems, J. Diff. Equ, 177, 2001, 331-347.
  • [9] H. Br´ezis, M. Crandall, Uniqueness of solutions of the initial value problem for ut − ∆φ(u) = 0, J. Math. Pures. Appl., 58, 1979, 153-163.
  • [10] J. Crank, Free and Moving Boundary Problems, North-Holland, Amsterdam, 1977.
  • [11] E. Dibenedetto, Friedman, A. The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc., 282, 1984, 183-204.
  • [12] R.J. DiPerna, P-L, Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math., 130, 1989, 321-366.
  • [13] I. Fragal`a, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 215, 2004, 715-734.
  • [14] A. Friedman, Variational principles and free-boundary problems, Wiley, New York, 1982.

Nonlinear Parabolic Problems in Anisotropic Sobolev Spaces

Year 2024, Volume: 14 Issue: 2, 109 - 143, 31.07.2024

Abstract

In this paper, our goal is to establish results on existence of renormalized
solutions for a class of Stefan problems of the form β(u)t − div(a(x, Du) + F(u)) ∋ f,
posed in an open bounded Ω, where data belongs to L
1 −data, β is a maximal monotone graph and div(a(x, Du)) is a Leary-Lions operator with anisotropic growth conditions.

References

  • [1] Y. Akdim, M. El Ansari, S. Lalaoui Rhali, Solvability of some Stefan type problems with L1− data, Rend. Mat. Appl., 44, 2023, 281-307.
  • [2] H.-W. Alt, S. Luckhaus, Quasi-linear elliptic-parabolic differential equations, Math. Z., 183, 1983, 311-341.
  • [3] K. Ammar, P. Wittbold, Existence of renormalized solutions of degenerate elliptic parabolic problems, Proc. Poy. Soc. Edinburgh, 133, 2003, 477-496. [4] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publisher, 1976.
  • [5] M. Bendahmane, P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and L1-data, Nonlinear Anal. TMA, 70, 2009, 567-583.
  • [6] Ph. B´enilan, M.G. Crandall, Completely accretive operators. In Semigroup Theory and Evolution Equations, Lecture Notes in Pure and Appl. Math., 135, 1991, 41-75.
  • [7] D. Blanchard, A. Porretta, Stefan problems with nonlinear diffusion and convection, J. Diff. Equ., 210, 2005, 383-428.
  • [8] D. Blanchard, F. Murat, H. Redwane, Existence and Uniqueness of a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems, J. Diff. Equ, 177, 2001, 331-347.
  • [9] H. Br´ezis, M. Crandall, Uniqueness of solutions of the initial value problem for ut − ∆φ(u) = 0, J. Math. Pures. Appl., 58, 1979, 153-163.
  • [10] J. Crank, Free and Moving Boundary Problems, North-Holland, Amsterdam, 1977.
  • [11] E. Dibenedetto, Friedman, A. The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc., 282, 1984, 183-204.
  • [12] R.J. DiPerna, P-L, Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math., 130, 1989, 321-366.
  • [13] I. Fragal`a, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 215, 2004, 715-734.
  • [14] A. Friedman, Variational principles and free-boundary problems, Wiley, New York, 1982.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematics Education, Science Education, Science and Mathematics Education (Other)
Journal Section Research Article
Authors

Mohammed El Ansari This is me

Youssef Akdim This is me

Publication Date July 31, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA El Ansari, M., & Akdim, Y. (2024). Nonlinear Parabolic Problems in Anisotropic Sobolev Spaces. Azerbaijan Journal of Mathematics, 14(2), 109-143.
AMA El Ansari M, Akdim Y. Nonlinear Parabolic Problems in Anisotropic Sobolev Spaces. AZJM. July 2024;14(2):109-143.
Chicago El Ansari, Mohammed, and Youssef Akdim. “Nonlinear Parabolic Problems in Anisotropic Sobolev Spaces”. Azerbaijan Journal of Mathematics 14, no. 2 (July 2024): 109-43.
EndNote El Ansari M, Akdim Y (July 1, 2024) Nonlinear Parabolic Problems in Anisotropic Sobolev Spaces. Azerbaijan Journal of Mathematics 14 2 109–143.
IEEE M. El Ansari and Y. Akdim, “Nonlinear Parabolic Problems in Anisotropic Sobolev Spaces”, AZJM, vol. 14, no. 2, pp. 109–143, 2024.
ISNAD El Ansari, Mohammed - Akdim, Youssef. “Nonlinear Parabolic Problems in Anisotropic Sobolev Spaces”. Azerbaijan Journal of Mathematics 14/2 (July 2024), 109-143.
JAMA El Ansari M, Akdim Y. Nonlinear Parabolic Problems in Anisotropic Sobolev Spaces. AZJM. 2024;14:109–143.
MLA El Ansari, Mohammed and Youssef Akdim. “Nonlinear Parabolic Problems in Anisotropic Sobolev Spaces”. Azerbaijan Journal of Mathematics, vol. 14, no. 2, 2024, pp. 109-43.
Vancouver El Ansari M, Akdim Y. Nonlinear Parabolic Problems in Anisotropic Sobolev Spaces. AZJM. 2024;14(2):109-43.