Research Article
BibTex RIS Cite

Year 2025, Volume: 13 Issue: 3, 263 - 271, 30.09.2025
https://doi.org/10.17694/bajece.1577914

Abstract

References

  • [1] N. Shamriz, M. Yaganoglu. ”Classification of Epileptic Seizure Dataset Using Different Machine Learning Algorithms and PCA Feature Reduction Technique”, Journal of Investigations on Engineering & Technology, Vol. 4, iss. 2, pp. 47-60, 2021.
  • [2] T. Sonmezocak, G. Guler, M. Yildiz. “Classification of Resampled Pediatric Epilepsy EEG Data Using Artificial Neural Networks with Discrete Fourier Transforms”, ELEKTRONIKA IR ELEKTROTECHNIKA, Vol. 29, pp. 19-25, 2023.
  • [3] K. Rasheed, A. Qayyum, J. Qadir, et al. “Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review”, IEEE Reviews in Biomed. Engineering, vol. 14, pp. 139-155, 2020.
  • [4] S. A. R. B. Rombouts, R. W. M. Keunen and C. J. Stam. “Investigation of nonlinear structure in multichannel EEG”, Phys Lett A, vol. 202, pp. 352-358, 1995.
  • [5] F. H. Lopes Da Silva, J. P. Pijn, D. Velis, P. C. G. Nijssen. “Alpha rhythms: noise, dynamics and models”, Int J Psychophysiology, vol. 26, pp. 237-249, 1997.
  • [6] W. S. Pritchard, D. W. Duke, K. K. Krieble. “Dimensional analysis of resting human EEG II: surrogate-Data testing indicates nonlinearity but not low-dimensional chaos”, Int J Psychophysiology, 1995.
  • [7] S. Mahmud, M. S. Hossain, M. E. H. Chowdhury, M. B. I. Reaz. “MLMRS-Net: Electroencephalography (EEG) motion artifacts removal using a multi-layer multi-resolution spatially pooled 1D signal reconstruction network”, Neural Comput. & Applications, pp. 8371–8388, 2023.
  • [8] S. A. Taywade, R. D. Raut. “A Review: EEG Signal Analysis with Different Methodologies”, IJCA Proceedings on National Conference on Innovative Paradigms in Eng. and Tech., vol. 6, pp. 29 – 31, 2014.
  • [9] M. Eberlein, et al. “Convolutional Neural Networks for Epileptic Seizure Prediction”, IEEE International Conference on Bioinformatics and Biomedicine. 2018, pp. 2577-2582, 2018.
  • [10] M. S. Munoz, C. E. S. Torres, R. Salazar-Carera, D. M. Lopez, R. Vargas-Canas. “Digital Transformation in Epilepsy Diagnosis Using Raw Images and Transfer Learning in Electroencephalograms”, Sustainability, 14(18), 2022.
  • [11] T. Sonmezocak, S. Kurt. “Detection of lower jaw activities from micro vibration signals of masseter muscles using MEMS accelerometer”, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Vol. 11, pp. 476-484, 2023.
  • [12] P. K. Sethy, M. Panigrahi, K. Vijayakumar, S. K. Behera. “Machine learning based classification of EEG signal for detection of child epileptic seizure without snipping”, Int J Speech Technology, 2021.
  • [13] M. SAVADKOOHI, T. Oladunni, L. Thompson. “A machine learning approach to epileptic seizure prediction using Electroencephologram (EEG) Signal”, Biocybernetics and Biomedical Engineering, pp. 1328-1341, 2020.
  • [14] T. Sonmezocak, S. Kurt. “Machine learning and regression analysis for diagnosis of bruxism by using EMG signals of jaw muscles”, Biomedical Signal Processing and Control, Vol. 69, 2021.
  • [15] K. Zeng, J. Yan, Y. Wang, A. Sık, G. Ouyang and X. Li. “Automatic detection of absence seizures with compressive sensing EEG”, Neurocomputing. 2016, vol. 171, pp. 497-502, 2016.
  • [16] S. Karlsson, B. Gerdlle. “Mean frequency and signal amplitude of the surface EMG of the quadriceps muscles increase with increasing torque-a study using the continuous wavelet transform”, J. Electromyogr. Kinesiology. 2001, pp. 131–140, 2001.
  • [17] A. Georgakis, A., L. K. “Stergioulas and G. Giakas. Fatigue analysis of the surface EMG signal in isometric Constant force contractions using the average instantaneous frequency”, IEEE Trans. Biomed. Engineering. 2003, pp. 262– 265.
  • [18] M. A. Oskoei, H. Hu. “Support vector machine-based classification scheme for myoelectric control applied to upper limb”. IEEE Transactions on Biomedical Engineering. 2008, 1956-1965.
  • [19] A. Phinyomark, P. Phukpattaranont, C. Limsakul. “Feature reduction and selection for EMG signal classification”, Expert Systems with Applications, vol. 39, pp. 7420–7431, 2012.
  • [20] S. P. Arjunan, D. K. Kumar. “Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors”, Journal of NeuroEngineering and Rehabilitation. 2010, 7(1):53.
  • [21] A. N. Kamarudin, T. Cox and R. Kolamunnage-Dona. “Time-dependent ROC curve analysis in medical research: current methods and applications”, BMC Med. Res. Methodology, 2017.
  • [22] M. Maeda, T. Yamaguchi, S. Mikami, W. Yachida, T. Saito, T. Sakuma, H. Nakamura et al., “Validity of single-channel masseteric electromyography by using an ultraminiature wearable electromyographic device for diagnosis of sleep bruxism”, Journal of Prosthodontic Research. 2020, vol. 64, pp. 90–97.
  • [23] M. V. Artega, J. C. Castiblanco, I. F. Mondragon, J. D. Colorado, C. Alvarado-Rojas. “EMG-driven hand model based on the classification of individual finger movements”, Biomed. Signal Process. And Control. 2020.
  • [24] R. Asif, A. Merceron and M. K. Pathan. “Predicting Student Academic Performance at Degree Level: A Case Study”, I. J. Intell. Syst. And App., 2015, pp. 49–61.
  • [25] J. Too, A. R. Abdullah, N. M. Saad and W. Tee. “EMG feature Selection and classification using a pbest-guide binary particle swarm optimization”, Computation, vol. 7, iss. 1, 2019.
  • [26] A. Shoeb, J. Guttag. “Application of Machine Learning To Epileptic Seizure Detection”, Appearing in Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel. 2010. pp. 975-982.

Detection of Epileptic Seizures with Different Machine Learning Algorithms Using EEG Signals in Daily Life

Year 2025, Volume: 13 Issue: 3, 263 - 271, 30.09.2025
https://doi.org/10.17694/bajece.1577914

Abstract

Today, Electroencephalography (EEG) is commonly used as a diagnostic tool for epilepsy. In this study, an effective method for diagnosing epileptic seizures in non-clinical settings is proposed. To evaluate the performance of this method, EEG data from 7 pediatric patients at Boston Children's Hospital were analyzed using Decision Tree (DT), Linear Discriminant (LD), Naive Bayes (NB), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN). The time and frequency characteristics of the EEG signals were compared. Experimental results show that epileptic seizures can be determined effectively with 100% accuracy by using only 3 channels (FP1-F7, FP2-F4 and T8-P8) with mean amplitude, mean frequency, median frequency and variance features with SVM, KNN or DT.

References

  • [1] N. Shamriz, M. Yaganoglu. ”Classification of Epileptic Seizure Dataset Using Different Machine Learning Algorithms and PCA Feature Reduction Technique”, Journal of Investigations on Engineering & Technology, Vol. 4, iss. 2, pp. 47-60, 2021.
  • [2] T. Sonmezocak, G. Guler, M. Yildiz. “Classification of Resampled Pediatric Epilepsy EEG Data Using Artificial Neural Networks with Discrete Fourier Transforms”, ELEKTRONIKA IR ELEKTROTECHNIKA, Vol. 29, pp. 19-25, 2023.
  • [3] K. Rasheed, A. Qayyum, J. Qadir, et al. “Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review”, IEEE Reviews in Biomed. Engineering, vol. 14, pp. 139-155, 2020.
  • [4] S. A. R. B. Rombouts, R. W. M. Keunen and C. J. Stam. “Investigation of nonlinear structure in multichannel EEG”, Phys Lett A, vol. 202, pp. 352-358, 1995.
  • [5] F. H. Lopes Da Silva, J. P. Pijn, D. Velis, P. C. G. Nijssen. “Alpha rhythms: noise, dynamics and models”, Int J Psychophysiology, vol. 26, pp. 237-249, 1997.
  • [6] W. S. Pritchard, D. W. Duke, K. K. Krieble. “Dimensional analysis of resting human EEG II: surrogate-Data testing indicates nonlinearity but not low-dimensional chaos”, Int J Psychophysiology, 1995.
  • [7] S. Mahmud, M. S. Hossain, M. E. H. Chowdhury, M. B. I. Reaz. “MLMRS-Net: Electroencephalography (EEG) motion artifacts removal using a multi-layer multi-resolution spatially pooled 1D signal reconstruction network”, Neural Comput. & Applications, pp. 8371–8388, 2023.
  • [8] S. A. Taywade, R. D. Raut. “A Review: EEG Signal Analysis with Different Methodologies”, IJCA Proceedings on National Conference on Innovative Paradigms in Eng. and Tech., vol. 6, pp. 29 – 31, 2014.
  • [9] M. Eberlein, et al. “Convolutional Neural Networks for Epileptic Seizure Prediction”, IEEE International Conference on Bioinformatics and Biomedicine. 2018, pp. 2577-2582, 2018.
  • [10] M. S. Munoz, C. E. S. Torres, R. Salazar-Carera, D. M. Lopez, R. Vargas-Canas. “Digital Transformation in Epilepsy Diagnosis Using Raw Images and Transfer Learning in Electroencephalograms”, Sustainability, 14(18), 2022.
  • [11] T. Sonmezocak, S. Kurt. “Detection of lower jaw activities from micro vibration signals of masseter muscles using MEMS accelerometer”, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Vol. 11, pp. 476-484, 2023.
  • [12] P. K. Sethy, M. Panigrahi, K. Vijayakumar, S. K. Behera. “Machine learning based classification of EEG signal for detection of child epileptic seizure without snipping”, Int J Speech Technology, 2021.
  • [13] M. SAVADKOOHI, T. Oladunni, L. Thompson. “A machine learning approach to epileptic seizure prediction using Electroencephologram (EEG) Signal”, Biocybernetics and Biomedical Engineering, pp. 1328-1341, 2020.
  • [14] T. Sonmezocak, S. Kurt. “Machine learning and regression analysis for diagnosis of bruxism by using EMG signals of jaw muscles”, Biomedical Signal Processing and Control, Vol. 69, 2021.
  • [15] K. Zeng, J. Yan, Y. Wang, A. Sık, G. Ouyang and X. Li. “Automatic detection of absence seizures with compressive sensing EEG”, Neurocomputing. 2016, vol. 171, pp. 497-502, 2016.
  • [16] S. Karlsson, B. Gerdlle. “Mean frequency and signal amplitude of the surface EMG of the quadriceps muscles increase with increasing torque-a study using the continuous wavelet transform”, J. Electromyogr. Kinesiology. 2001, pp. 131–140, 2001.
  • [17] A. Georgakis, A., L. K. “Stergioulas and G. Giakas. Fatigue analysis of the surface EMG signal in isometric Constant force contractions using the average instantaneous frequency”, IEEE Trans. Biomed. Engineering. 2003, pp. 262– 265.
  • [18] M. A. Oskoei, H. Hu. “Support vector machine-based classification scheme for myoelectric control applied to upper limb”. IEEE Transactions on Biomedical Engineering. 2008, 1956-1965.
  • [19] A. Phinyomark, P. Phukpattaranont, C. Limsakul. “Feature reduction and selection for EMG signal classification”, Expert Systems with Applications, vol. 39, pp. 7420–7431, 2012.
  • [20] S. P. Arjunan, D. K. Kumar. “Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors”, Journal of NeuroEngineering and Rehabilitation. 2010, 7(1):53.
  • [21] A. N. Kamarudin, T. Cox and R. Kolamunnage-Dona. “Time-dependent ROC curve analysis in medical research: current methods and applications”, BMC Med. Res. Methodology, 2017.
  • [22] M. Maeda, T. Yamaguchi, S. Mikami, W. Yachida, T. Saito, T. Sakuma, H. Nakamura et al., “Validity of single-channel masseteric electromyography by using an ultraminiature wearable electromyographic device for diagnosis of sleep bruxism”, Journal of Prosthodontic Research. 2020, vol. 64, pp. 90–97.
  • [23] M. V. Artega, J. C. Castiblanco, I. F. Mondragon, J. D. Colorado, C. Alvarado-Rojas. “EMG-driven hand model based on the classification of individual finger movements”, Biomed. Signal Process. And Control. 2020.
  • [24] R. Asif, A. Merceron and M. K. Pathan. “Predicting Student Academic Performance at Degree Level: A Case Study”, I. J. Intell. Syst. And App., 2015, pp. 49–61.
  • [25] J. Too, A. R. Abdullah, N. M. Saad and W. Tee. “EMG feature Selection and classification using a pbest-guide binary particle swarm optimization”, Computation, vol. 7, iss. 1, 2019.
  • [26] A. Shoeb, J. Guttag. “Application of Machine Learning To Epileptic Seizure Detection”, Appearing in Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel. 2010. pp. 975-982.
There are 26 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Research Article
Authors

Temel Sönmezocak 0000-0003-4831-9005

B. Koray Tunçalp 0000-0003-1632-8900

Submission Date November 3, 2024
Acceptance Date January 9, 2025
Early Pub Date October 8, 2025
Publication Date September 30, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Sönmezocak, T., & Tunçalp, B. K. (2025). Detection of Epileptic Seizures with Different Machine Learning Algorithms Using EEG Signals in Daily Life. Balkan Journal of Electrical and Computer Engineering, 13(3), 263-271. https://doi.org/10.17694/bajece.1577914

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı