Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 4, 285 - 290, 30.10.2020
https://doi.org/10.17694/bajece.716693

Abstract

References

  • O. D. Duncan, “Notes on social measurement: Historical and critical”, New York: Russell Sage Foundation, 1984.
  • F. M., Lord, M. R. Novick, “Statistical theories of mental test scores, Charlotte, NC: Infprmation Age, 2008.
  • R. F. DeVellis, “Scale development: Theory and applications”, Sage publications, 2016.
  • B., Marcus, M., Bosnjak, S., Lindner, S., Pilischenko, & A. Schütz, “Compensating for low topic interest and long surveys: A field experiment on nonresponse in web surveys”, Social Science Computer Review, vol.25, pp.372-383, 2007.
  • P., Edwards, I. Roberts, M. Clarke, C. DiGuiseppi, S. Pratap, R. Wentz, I. Kwan, “Increasing response rates to postal questionnaires: Systematic review”, British Medical Journal, vol.324, 2002, pp.1183–1185.
  • K. Sheehan, “E-mail survey response rates: A review”, Journal of Computer-Mediated Communication, vol.6, 2001.
  • A. H. Church, “Estimating the effect of incentives on mail survey response rates: A meta-analysis”, Public Opinion Quarterly, vol.57, 1993, pp.62–79.
  • F. J. Yammarino, S. J. Skinner, T. L. Childers, “Understanding mail survey response behavior”, Public Opinion Quarterly, vol.55, 1991, pp.613–639.
  • G. Yetter, K. Capaccioli, “Differences in responses to Web and paper surveys among school professionals”, Behavior Research Methods, vol.42, 2010, pp.266-272.
  • D. S. Carlson, K. M. Kacmar, J. H. Wayne, & J. G. Grzywacz, “Measuring the positive side of the work–family interface: Development and validation of a work–family enrichment scale”, Journal of Vocational Behavior, vol.68, 2006, pp.131-164.
  • K. Kacmar, C. Michele, S. Wayne, D. S. Carlson, M. Ferguson, & D. Whitten, “A short and valid measure of work-family enrichment”, Journal of Occupational Health Psychology, vol.19, 2014, pp.32-45.
  • İ. D. Ülbeği, E. İplik, “İş-Aile Zenginleşmesi Ölçeğinin Geçerlik ve Güvenirlik Çalışması”, Journal of Business Research-Turk, vol.10, 2018, pp.722-741.
  • M. Kwon, J. Y. Lee, W. Y. Won, J. W. Park, J. A. Min, C. Hahn, X. Gu, J. Choi, D. J. Kim, “Development and validation of a smartphone addiction scale (SAS)”, PloS one, vol.8, 2013b, e56936. https://doi.org/10.1371/journal.pone.0056936
  • M. Kwon, D. J. Kim, H. Cho, & S. Yang, “The smartphone addiction scale: development and validation of a short version for adolescents”, PloS one, vol.8, 2013a, e83558.
  • S. Sendjaya, N. Eva, I. B. Butar, M. Robin & S. Castles, “SLBS-6: Validation of a short form of the servant leadership behavior scale”, Journal of Business Ethics, vol.156, 2019, pp.941-956.
  • C. Maggiori, J. Rossier, & M. L. Savickas, “Career adapt-abilities scale–short form (CAAS-SF) construction and validation”, Journal of career assessment, vol.25, 2017, pp.312-325.
  • Ç. Tekin, G. Güneş, C. Çolak, “Cep Telefonu Problemli Kullanım (Pu) Ölçeğinin Türkçe’ye Uyarlanması: Geçerlik ve Güvenilirlik Çalışması”, Medicine Science, vol.3, 2014, pp.1361-1381.
  • F. Kaysi, E. Aydemir & M. Yavuz, “Meslek Lisesi Öğrencilerinin Akıllı Cihaz Problemli Kullanımlarının İncelenmesi”, X. Uluslararası Eğitim Araştırmaları Kongresi, Nevşehir, Türkiye, Nisan, 2018.
  • C. Yildirim, E. Sumuer, M. Adnan, S. Yildirim, “A growing fear: Prevalence of nomophobia among Turkish college students”, Information Development, vol.32, 2016, pp.1322-1331.
  • A. Kara, “Öğrenmeye ilişkin tutum ölçeğinin geliştirilmesi”, Elektronik Sosyal Bilimler Dergisi, vol.32, 2010, pp.49-62.
  • M. Dikmen, M. Şimşek, M. Tuncer, “Öğrenme stilleri ile öğrenmeye yönelik tutum arasındaki ilişki”, Uluslararası Sosyal Araştırmalar Dergisi, vol.11, 2018, pp.388-400.
  • T. W. Ryu, C. F. Eick, “A Database Clustering Methodology and Tool”, Information Sciences, vol.171, 2004, pp.29-59.
  • G. G. Emel, & Ç. Taşkın, “Veri madenciliğinde karar ağaçları ve bir satış analizi uygulaması”, Sosyal Bilimler Dergisi, vol.6, 2005, pp.221-239.
  • C. Bounsaythip, & R. R. Esa, “Overview of Data Mining For Customer Behavior Modeling”, VTT Information Technology Research Report, vol.1, 2001, pp.1-53.
  • M. Ç. Aksu, & E. Karaman, “Karar Ağaçları ile Bir Web Sitesinde Link Analizi ve Tespiti”, ACTA Infologica, vol.1, 2017, pp.84-91.
  • B. K. Hamre & R. C. Pianta, “Early teacher–child relationships and the trajectory of children's school outcomes through eighth grade”, Child development, vol.72, 2001, pp.625-638.
  • R. C. Pianta, & M. W. Stuhlman, “Teacher-child relationships and children's success in the first years of school”, School psychology review, vol.33, 2004, pp.444.
  • N. Tsigilis, & A. Gregoriadis, “Measuring teacher–child relationships in the Greek kindergarten setting: A validity study of the Student–Teacher Relationship Scale–Short Form”, Early Education and Development, vol.19, 2008, pp.816-835.
  • A. Anastasi, S. Urbina, “Psychological testing (7th ed.)”, Upper Saddle River, NJ: Prentice Hall, 1997.
  • S. A. Nelemans, W. H. Meeus, S. J. Branje, K. Van Leeuwen, H. Colpin, K. Verschueren & L. Goossens, “Social Anxiety Scale for Adolescents (SAS-A) Short Form: Longitudinal measurement invariance in two community samples of youth”, Assessment, vol.26, 2019, pp.235-248.
  • M. A. Rogers, A. J. Hickey, J. Wiener, N. Heath & R. Noble, “Factor structure, reliability and validity of the Parental Support for Learning Scale: Adolescent Short Form (PSLS-AS)”, Learning Environments Research, vol.21, 2018, pp.423-431.

Development of Short Forms of Scales with Decision Tree Algorithms

Year 2020, Volume: 8 Issue: 4, 285 - 290, 30.10.2020
https://doi.org/10.17694/bajece.716693

Abstract

Scales or surveys are among the measurement tools developed to measure the perceptions of individuals on specified topics. In some cases, the length of these measuring tools may negatively affect the response rates of individuals towards these tools. In this regard, this study aimed to development of short forms of scales by decision trees algorithms. In this way, it can be provided to design short-form measuring tools that perform similar functions and to increase the rate of responses to measuring tools. In the study, predictions were made with decision trees, which are data mining methods. In this context, analyzes were made with decision trees algorithms to obtain short forms of three scales. According to the results obtained, a high level of correlation was found between scales’ short and long forms. Thus, it can be concluded that short forms of scales are suitable for measuring similar purposes. Instead of using scales consisting of 40, 20 and 20 items, expected measurements can be made with at least three and 10 items with appropriate tree algorithms for each scale. Among the suggestions of the study, it is possible to carry out similar studies for frequently used scales. So high participation rates for scales can be obtain.

References

  • O. D. Duncan, “Notes on social measurement: Historical and critical”, New York: Russell Sage Foundation, 1984.
  • F. M., Lord, M. R. Novick, “Statistical theories of mental test scores, Charlotte, NC: Infprmation Age, 2008.
  • R. F. DeVellis, “Scale development: Theory and applications”, Sage publications, 2016.
  • B., Marcus, M., Bosnjak, S., Lindner, S., Pilischenko, & A. Schütz, “Compensating for low topic interest and long surveys: A field experiment on nonresponse in web surveys”, Social Science Computer Review, vol.25, pp.372-383, 2007.
  • P., Edwards, I. Roberts, M. Clarke, C. DiGuiseppi, S. Pratap, R. Wentz, I. Kwan, “Increasing response rates to postal questionnaires: Systematic review”, British Medical Journal, vol.324, 2002, pp.1183–1185.
  • K. Sheehan, “E-mail survey response rates: A review”, Journal of Computer-Mediated Communication, vol.6, 2001.
  • A. H. Church, “Estimating the effect of incentives on mail survey response rates: A meta-analysis”, Public Opinion Quarterly, vol.57, 1993, pp.62–79.
  • F. J. Yammarino, S. J. Skinner, T. L. Childers, “Understanding mail survey response behavior”, Public Opinion Quarterly, vol.55, 1991, pp.613–639.
  • G. Yetter, K. Capaccioli, “Differences in responses to Web and paper surveys among school professionals”, Behavior Research Methods, vol.42, 2010, pp.266-272.
  • D. S. Carlson, K. M. Kacmar, J. H. Wayne, & J. G. Grzywacz, “Measuring the positive side of the work–family interface: Development and validation of a work–family enrichment scale”, Journal of Vocational Behavior, vol.68, 2006, pp.131-164.
  • K. Kacmar, C. Michele, S. Wayne, D. S. Carlson, M. Ferguson, & D. Whitten, “A short and valid measure of work-family enrichment”, Journal of Occupational Health Psychology, vol.19, 2014, pp.32-45.
  • İ. D. Ülbeği, E. İplik, “İş-Aile Zenginleşmesi Ölçeğinin Geçerlik ve Güvenirlik Çalışması”, Journal of Business Research-Turk, vol.10, 2018, pp.722-741.
  • M. Kwon, J. Y. Lee, W. Y. Won, J. W. Park, J. A. Min, C. Hahn, X. Gu, J. Choi, D. J. Kim, “Development and validation of a smartphone addiction scale (SAS)”, PloS one, vol.8, 2013b, e56936. https://doi.org/10.1371/journal.pone.0056936
  • M. Kwon, D. J. Kim, H. Cho, & S. Yang, “The smartphone addiction scale: development and validation of a short version for adolescents”, PloS one, vol.8, 2013a, e83558.
  • S. Sendjaya, N. Eva, I. B. Butar, M. Robin & S. Castles, “SLBS-6: Validation of a short form of the servant leadership behavior scale”, Journal of Business Ethics, vol.156, 2019, pp.941-956.
  • C. Maggiori, J. Rossier, & M. L. Savickas, “Career adapt-abilities scale–short form (CAAS-SF) construction and validation”, Journal of career assessment, vol.25, 2017, pp.312-325.
  • Ç. Tekin, G. Güneş, C. Çolak, “Cep Telefonu Problemli Kullanım (Pu) Ölçeğinin Türkçe’ye Uyarlanması: Geçerlik ve Güvenilirlik Çalışması”, Medicine Science, vol.3, 2014, pp.1361-1381.
  • F. Kaysi, E. Aydemir & M. Yavuz, “Meslek Lisesi Öğrencilerinin Akıllı Cihaz Problemli Kullanımlarının İncelenmesi”, X. Uluslararası Eğitim Araştırmaları Kongresi, Nevşehir, Türkiye, Nisan, 2018.
  • C. Yildirim, E. Sumuer, M. Adnan, S. Yildirim, “A growing fear: Prevalence of nomophobia among Turkish college students”, Information Development, vol.32, 2016, pp.1322-1331.
  • A. Kara, “Öğrenmeye ilişkin tutum ölçeğinin geliştirilmesi”, Elektronik Sosyal Bilimler Dergisi, vol.32, 2010, pp.49-62.
  • M. Dikmen, M. Şimşek, M. Tuncer, “Öğrenme stilleri ile öğrenmeye yönelik tutum arasındaki ilişki”, Uluslararası Sosyal Araştırmalar Dergisi, vol.11, 2018, pp.388-400.
  • T. W. Ryu, C. F. Eick, “A Database Clustering Methodology and Tool”, Information Sciences, vol.171, 2004, pp.29-59.
  • G. G. Emel, & Ç. Taşkın, “Veri madenciliğinde karar ağaçları ve bir satış analizi uygulaması”, Sosyal Bilimler Dergisi, vol.6, 2005, pp.221-239.
  • C. Bounsaythip, & R. R. Esa, “Overview of Data Mining For Customer Behavior Modeling”, VTT Information Technology Research Report, vol.1, 2001, pp.1-53.
  • M. Ç. Aksu, & E. Karaman, “Karar Ağaçları ile Bir Web Sitesinde Link Analizi ve Tespiti”, ACTA Infologica, vol.1, 2017, pp.84-91.
  • B. K. Hamre & R. C. Pianta, “Early teacher–child relationships and the trajectory of children's school outcomes through eighth grade”, Child development, vol.72, 2001, pp.625-638.
  • R. C. Pianta, & M. W. Stuhlman, “Teacher-child relationships and children's success in the first years of school”, School psychology review, vol.33, 2004, pp.444.
  • N. Tsigilis, & A. Gregoriadis, “Measuring teacher–child relationships in the Greek kindergarten setting: A validity study of the Student–Teacher Relationship Scale–Short Form”, Early Education and Development, vol.19, 2008, pp.816-835.
  • A. Anastasi, S. Urbina, “Psychological testing (7th ed.)”, Upper Saddle River, NJ: Prentice Hall, 1997.
  • S. A. Nelemans, W. H. Meeus, S. J. Branje, K. Van Leeuwen, H. Colpin, K. Verschueren & L. Goossens, “Social Anxiety Scale for Adolescents (SAS-A) Short Form: Longitudinal measurement invariance in two community samples of youth”, Assessment, vol.26, 2019, pp.235-248.
  • M. A. Rogers, A. J. Hickey, J. Wiener, N. Heath & R. Noble, “Factor structure, reliability and validity of the Parental Support for Learning Scale: Adolescent Short Form (PSLS-AS)”, Learning Environments Research, vol.21, 2018, pp.423-431.
There are 31 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Araştırma Articlessi
Authors

Emrah Aydemir 0000-0002-8380-7891

Feyzi Kaysi 0000-0001-6681-4574

Publication Date October 30, 2020
Published in Issue Year 2020 Volume: 8 Issue: 4

Cite

APA Aydemir, E., & Kaysi, F. (2020). Development of Short Forms of Scales with Decision Tree Algorithms. Balkan Journal of Electrical and Computer Engineering, 8(4), 285-290. https://doi.org/10.17694/bajece.716693

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı