Year 2022,
Volume: 10 Issue: 4, 363 - 369, 19.10.2022
Gökhan Öztürk
,
Fatih Tutar
,
Mehmet Ertugrul
,
Abdulsemih Koçkeser
,
Yakup Öztürk
Supporting Institution
TÜBİTAK
References
- V. G. Veselego, “The Electrodynamics of Substances with Simultaneously Negative Values of and ,” Physics-Uspekhi, vol. 10, no. 4, pp. 509–514, 1968.
- J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” Journal of Physics: Condensed Matter, vol. 10, no. 22, pp. 4785–4809, Mar. 1998.
- J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” Journal of Physics: Condensed Matter, vol. 47, no. 11, pp. 2075–2084, Nov. 1999.
- D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Physical review letters, vol. 84, no. 18, pp. 4184–4187, May. 2000.
- N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nature Materials, vol. 9, no. 2, pp. 129–132, Feb. 2010.
- R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Transactions on antennas and propagation, vol. 54, no. 7, pp. 2113–2130, Jul. 2006.
- H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan and L. Wang, “Highly efficient selective metamaterial absorber for high temperature solar thermal energy harvesting” Solar Energy Materials and Solar Cells, vol. 137, pp. 235–242, Feb. 2015.
- W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux and D. Abbott, “Metamaterial-based microfluidic sensor for dielectric characterization,” Sensors and Actuators A: Physical, vol. 189, no. 20, pp. 233–237, Jan. 2013.
- D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, Oct. 2006.
- N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett., vol. 100, no. 20, pp. 207402, May. 2008.
- A.K. Fahad, C. Ruan, S.A. Ali, R. Nazir, T.U. Haq, S. Ullah and W. He, “Triple-wide-band Ultra-thin Metasheet for transmission polarization conversion,” Scientific Reports, vol. 10, no. 1, pp. 1–12, Jun. 2020.
- D.E. Wen, H. Yang, Q. Ye, M. Li, L. Guo and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Physica Scripta, vol. 88, no. 1, pp. 015402 Jul. 2013.
- P. Nochian and Z. Atlasbaf, “A Novel Single Layer Ultra-Wideband Metamaterial Absorber,” Progress In Electromagnetics Research Letters, vol. 93, pp. 107–114 Jul. 2020.
- M.Q. Dinh, T. Le Hoang, H.T. Vu, N.T. Tung and M.T. Le, “Design, fabrication, and characterization of an electromagnetic harvester using polarization-insensitive metamaterial absorbers,” Journal of Physics D: Applied Physics, vol. 54, no. 34, pp. 345502 Aug. 2021.
- J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu and X. Wu, “ A polarization-dependent wide-angle three-dimensional metamaterial absorber,” Journal of magnetism and magnetic materials, vol. 321, no. 18, pp. 2805–2809 Apr. 2017.
- Y. Zhu, K. Donda, S. Fan, L. Cao and B. Assouar, “ Broadband ultra-thin acoustic metasurface absorber with coiled structure,” Applied Physics Express, vol. 12, no. 11, pp. 114002 Nov. 2019.
- G. Sen, A. Banerjee, A. Nurul Islam and S. Das, “ Ultra-thin miniaturized metamaterial perfect absorber for x-band application,” Microwave and Optical Technology Letters, vol. 58, no. 10, pp. 2367–2370 Oct. 2016.
- J.W. Park, D.L. Vu, H.Y. Zheng, J.Y. Rhee, K.W. Kim and Y.P. Lee, “ THz-metamaterial absorbers,” Advances in Natural Sciences:
Nanoscience and Nanotechnology, vol. 4, no. 1, pp. 015001 Mar. 2013.
- T.K.T. Nguyen, T.N. Cao, N.H. Nguyen, D.T. Lee, X.K. Bui, C.L. Truong and T.Q.H. Nguyen, “Simple design of a wideband and
wide-angle insensitive metamaterial absorber using lumped resistors for X-and Ku-bands,” IEEE Photonics Journal, vol. 13, no. 3, pp. 015001 Jun. 2021.
- R. Zvagelsky, D. Chubich, A. Pisarenko, Z. Bedran and E. Zhukova, “Plasmonic Metasurfaces as Surface-Enhanced Infrared Absorption Substrates for Optoelectronics: Alq3 Thin-Film Study,” The Journal of Physical Chemistry C, vol. 125, no. 8, pp. 4694–4703 Mar. 2021.
- Y. Zhang, J. Lv, L. Que, Y. Zhou, W. Meng and Y. Jiang, “A doubleband tunable perfect terahertz metamaterial absorber based on Dirac semimetals,” Results in Physics, vol. 15, no. 102773, Dec. 2019.
- J. Wang, X. Wan and Y. Jiang, “Tunable Triple-Band Terahertz Absorber Based on Bulk-Dirac-Semimetal Metasurface,” IEEE Photonics Journal, vol. 13, no. 4, pp. 1–5, Aug. 2021.
- V.B. Shalini, “ A polarization insensitive miniaturized pentaband metamaterial THz absorber for material sensing applications,” Optical and Quantum Electronics, vol. 53, no. 5, pp. 1–14, May. 2021.
- Z. Gao, Q. Fan, X. Tian, C. Xu, Z. Meng, S. Huang and C. Tian, “An optically transparent broadband metamaterial absorber for radar-infrared bi-stealth,” Optical Materials, vol. 112, no. 110793, Feb. 2021.
- Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu and S. Xu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” Journal of applied physics, vol. 123, no. 15, pp. 155106, Apr. 2018.
- F. Lu and T. Han, “Optically Transparent Ultra-broadband Metamaterial Absorber,” 2019 Photonics and Electromagnetics Research Symposium- Fall (PIERS-Fall), pp. 2592–2595, Dec. 2019.
- Q. Zhou, X. Yin, F. Ye, R. Mo, Z. Tang, X. Fan and L. Zhang, “Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure,” Applied Physics A, vol. 125, no. 2, pp. 131, Feb. 2019.
- Y. Zhou, S. Li, Y. Jiang, C. Gu, L. Liu and Z. Li, “An ultra-wideband and wide-angle optically transparent flexible microwave metamaterial absorber,” Journal of Physics D: Applied Physics, vol. 54, no. 27, pp. 275101, Jul. 2021.
- R. Deng, M. Li, B. Muneer,Q. Zhu, Z. Shi, L. Song and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials, vol. 11, no. 107, pp. 1-15, Jan. 2018.
- G. Ozturk, “Triple Band Wide Angle Polarization Insensitive Metamaterial Absorber,” Journal of Science and Technology, impress, Aug. 2021.
Air Based Flexible Ultra-Thin Transparent ITO Based Broadband and Polarization Insensitivity Metamaterial Absorber
Year 2022,
Volume: 10 Issue: 4, 363 - 369, 19.10.2022
Gökhan Öztürk
,
Fatih Tutar
,
Mehmet Ertugrul
,
Abdulsemih Koçkeser
,
Yakup Öztürk
Abstract
In this study, a metamaterial-based transparent and flexible microwave absorber design was carried out. Transparent
PET (polyethylene terephthalate) was used as the dielectric substrate and ITO (indium tin oxide) was used as the conductor for the air and metamaterial structure. The intended absorber provides %90 absorption in the range of 9.6 GHz to 34.8 GHz with a normal incidence angle of approximately 25.2 GHz. Oblique angle performance shows % 80 absorptions up to 45 degrees. In addition, the designed absorber works as a polarization-insensitive absorber as it provides the same absorption performance in both TE and TM polarization under the normal incidance of the electromagnetic wave. The transparent dielectric is only 2.85 mm thickness, making it thinner than comparable ultra-wideband transparent materials. The study was carried out as a simulation in the CST microwave simulator. The results obtained were compared with other reference studies.
References
- V. G. Veselego, “The Electrodynamics of Substances with Simultaneously Negative Values of and ,” Physics-Uspekhi, vol. 10, no. 4, pp. 509–514, 1968.
- J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” Journal of Physics: Condensed Matter, vol. 10, no. 22, pp. 4785–4809, Mar. 1998.
- J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” Journal of Physics: Condensed Matter, vol. 47, no. 11, pp. 2075–2084, Nov. 1999.
- D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Physical review letters, vol. 84, no. 18, pp. 4184–4187, May. 2000.
- N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nature Materials, vol. 9, no. 2, pp. 129–132, Feb. 2010.
- R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Transactions on antennas and propagation, vol. 54, no. 7, pp. 2113–2130, Jul. 2006.
- H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan and L. Wang, “Highly efficient selective metamaterial absorber for high temperature solar thermal energy harvesting” Solar Energy Materials and Solar Cells, vol. 137, pp. 235–242, Feb. 2015.
- W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux and D. Abbott, “Metamaterial-based microfluidic sensor for dielectric characterization,” Sensors and Actuators A: Physical, vol. 189, no. 20, pp. 233–237, Jan. 2013.
- D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, Oct. 2006.
- N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett., vol. 100, no. 20, pp. 207402, May. 2008.
- A.K. Fahad, C. Ruan, S.A. Ali, R. Nazir, T.U. Haq, S. Ullah and W. He, “Triple-wide-band Ultra-thin Metasheet for transmission polarization conversion,” Scientific Reports, vol. 10, no. 1, pp. 1–12, Jun. 2020.
- D.E. Wen, H. Yang, Q. Ye, M. Li, L. Guo and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Physica Scripta, vol. 88, no. 1, pp. 015402 Jul. 2013.
- P. Nochian and Z. Atlasbaf, “A Novel Single Layer Ultra-Wideband Metamaterial Absorber,” Progress In Electromagnetics Research Letters, vol. 93, pp. 107–114 Jul. 2020.
- M.Q. Dinh, T. Le Hoang, H.T. Vu, N.T. Tung and M.T. Le, “Design, fabrication, and characterization of an electromagnetic harvester using polarization-insensitive metamaterial absorbers,” Journal of Physics D: Applied Physics, vol. 54, no. 34, pp. 345502 Aug. 2021.
- J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu and X. Wu, “ A polarization-dependent wide-angle three-dimensional metamaterial absorber,” Journal of magnetism and magnetic materials, vol. 321, no. 18, pp. 2805–2809 Apr. 2017.
- Y. Zhu, K. Donda, S. Fan, L. Cao and B. Assouar, “ Broadband ultra-thin acoustic metasurface absorber with coiled structure,” Applied Physics Express, vol. 12, no. 11, pp. 114002 Nov. 2019.
- G. Sen, A. Banerjee, A. Nurul Islam and S. Das, “ Ultra-thin miniaturized metamaterial perfect absorber for x-band application,” Microwave and Optical Technology Letters, vol. 58, no. 10, pp. 2367–2370 Oct. 2016.
- J.W. Park, D.L. Vu, H.Y. Zheng, J.Y. Rhee, K.W. Kim and Y.P. Lee, “ THz-metamaterial absorbers,” Advances in Natural Sciences:
Nanoscience and Nanotechnology, vol. 4, no. 1, pp. 015001 Mar. 2013.
- T.K.T. Nguyen, T.N. Cao, N.H. Nguyen, D.T. Lee, X.K. Bui, C.L. Truong and T.Q.H. Nguyen, “Simple design of a wideband and
wide-angle insensitive metamaterial absorber using lumped resistors for X-and Ku-bands,” IEEE Photonics Journal, vol. 13, no. 3, pp. 015001 Jun. 2021.
- R. Zvagelsky, D. Chubich, A. Pisarenko, Z. Bedran and E. Zhukova, “Plasmonic Metasurfaces as Surface-Enhanced Infrared Absorption Substrates for Optoelectronics: Alq3 Thin-Film Study,” The Journal of Physical Chemistry C, vol. 125, no. 8, pp. 4694–4703 Mar. 2021.
- Y. Zhang, J. Lv, L. Que, Y. Zhou, W. Meng and Y. Jiang, “A doubleband tunable perfect terahertz metamaterial absorber based on Dirac semimetals,” Results in Physics, vol. 15, no. 102773, Dec. 2019.
- J. Wang, X. Wan and Y. Jiang, “Tunable Triple-Band Terahertz Absorber Based on Bulk-Dirac-Semimetal Metasurface,” IEEE Photonics Journal, vol. 13, no. 4, pp. 1–5, Aug. 2021.
- V.B. Shalini, “ A polarization insensitive miniaturized pentaband metamaterial THz absorber for material sensing applications,” Optical and Quantum Electronics, vol. 53, no. 5, pp. 1–14, May. 2021.
- Z. Gao, Q. Fan, X. Tian, C. Xu, Z. Meng, S. Huang and C. Tian, “An optically transparent broadband metamaterial absorber for radar-infrared bi-stealth,” Optical Materials, vol. 112, no. 110793, Feb. 2021.
- Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu and S. Xu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” Journal of applied physics, vol. 123, no. 15, pp. 155106, Apr. 2018.
- F. Lu and T. Han, “Optically Transparent Ultra-broadband Metamaterial Absorber,” 2019 Photonics and Electromagnetics Research Symposium- Fall (PIERS-Fall), pp. 2592–2595, Dec. 2019.
- Q. Zhou, X. Yin, F. Ye, R. Mo, Z. Tang, X. Fan and L. Zhang, “Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure,” Applied Physics A, vol. 125, no. 2, pp. 131, Feb. 2019.
- Y. Zhou, S. Li, Y. Jiang, C. Gu, L. Liu and Z. Li, “An ultra-wideband and wide-angle optically transparent flexible microwave metamaterial absorber,” Journal of Physics D: Applied Physics, vol. 54, no. 27, pp. 275101, Jul. 2021.
- R. Deng, M. Li, B. Muneer,Q. Zhu, Z. Shi, L. Song and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials, vol. 11, no. 107, pp. 1-15, Jan. 2018.
- G. Ozturk, “Triple Band Wide Angle Polarization Insensitive Metamaterial Absorber,” Journal of Science and Technology, impress, Aug. 2021.